2013年高考新课标河南理科数学高清试题及答案

合集下载

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

2013年高考新课标河南理科数学高清试题及答案

2013年高考新课标河南理科数学高清试题及答案

第Ⅰ卷(50 分。在每个小题给出的四 个选项中,只有一项是符合题目要求的。 (1)已知集合 M {x ( x 1) 2 4, x R}, N {1,0,1,2,3} ,则 M N (
(A) {0,1,2} (B) {1,0,1,2} (C) {1,0,2,3} (D) {0,1,2,3}
A
)
(2)设复数 z 满足 (1 i ) z 2i ,则 z =( (A) 1 i (B) 1 i
A
) (D) 1 i C )
(C) 1 i
(3)等比数列 {an } 的前 n 项和为 S n ,已知 S3 a2 10a1 ,a5 9 ,则 a1 ( (A)
(B)
(C) D
(D) ) (D) a b c
(8)设 a log 3 6 , b log 5 10 , c log 7 14 则( (A) c b a (B) b c a
(C) a c b
x 1 (9) 已知 a 0, x, y 满足条件 x y 3 ,若 z 2 x y 的最小值为 1, 则 a ( B) y a ( x 3)
4 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(Ⅰ)将 T 表示为 X 的函数; (Ⅱ)在直方图的需求量分组中, 以各组的区间中点值代表改组的各个值求量落入 该区间的频率作为需求量取该区间中点值的概率(例如:若 X [100,110 ) )则取
X 105 ,且 X 105 的概率等于需求量落入 [100,110 ) 的 T 的数学期望。
(A)
1 4
(B)
1 2
(C) 1
(D) 2 C )

【VIP专享】2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

【VIP专享】2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

接触水面时测得水深为 6 cm,如不计容器的厚度,则球的体
积为
(A) 500π cm3 3
(C) 1372π cm3 3
(B) 866π cm3 3
(D) 2048π cm3 3
(7)设等差数列 an的前 n 项和为 Sn ,若 Sm1 2 , Sm 0 , Sm1 3 ,则 m
(A)3
(8)某几何体的三视图如图所示,则该几何体的体积为
2013 年普通高等学校招生全国统一考试
理科数学
(新课标 I 卷)使用省份:河北、河南、山西、陕西
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考生务必将自
己的姓名、准考证号填写在本试卷和答题卡相应位置上。 2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是
(A)简单的随机抽样
(C)按学段分层抽样
(4)已知双曲线 C
(A) y 1 x 4

x2 a2
y2 b2
1(a
(B) y 1 x 3
0,b
(B)按性别分层抽样
(D)系统抽样
0) 的离心率为
第 1 页,共 12 页
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。

2013年河南省高考理科数学及标准答案

2013年河南省高考理科数学及标准答案

2013年普通高等学校全国统一考试理科数学(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( ).A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3}D.{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z满足(1-i)z=2i,则z=( ).A.-1+i B.-1-I C.1+i D.1-i3.(2013课标全国Ⅱ,理3)等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=( ).A.13 B.13-C.19 D.19-4.(2013课标全国Ⅱ,理4)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则( ).A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( ).A.-4 B.-3 C.-2 D.-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N=10,那么输出的S=().A.111 1+2310+++B.111 1+2!3!10!+++C.111 1+2311+++D.111 1+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a=log36,b=log510,c=log714,则( ).A.c>b>a B.b>c>a C.a>c>b D.a>b>c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△AB C分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

2013年高考数学(全国卷)理科及答案

2013年高考数学(全国卷)理科及答案

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B )1++ +…+(C )1+ + +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a=(A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是x ≥1, x+y ≤3, y ≥a(x-3). {(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

河南省2013年高考真题——数学理(新课标I卷)word版

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16xx ≥1,x+y ≤3, y ≥a(x-3). {(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考理科数学全国新课标卷1(附答案)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则().A.A∩B=B.A∪B=RC.B⊆A D.A⊆B答案:B解析:∵x(x-2)>0,∴x<0或x>2.∴集合A与B可用图象表示为:由图象可以看出A∪B=R,故选B.2.(2013课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为().A.-4 B.45-C.4 D.45答案:D解析:∵(3-4i)z=|4+3i|,∴55(34i)34i 34i(34i)(34i)55z+===+--+.故z的虚部为45,选D.3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样答案:C解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.4.(2013课标全国Ⅰ,理4)已知双曲线C:2222=1x ya b-(a>0,b>0)的离心率为52,则C的渐近线方程为().A.y=14x±B.y=13x±C.y=12x±D.y=±x答案:C解析:∵52cea==,∴22222254c a bea a+===.∴a2=4b2,1 =2 ba±.∴渐近线方程为12b y x x a =±±.5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 答案:A解析:若t ∈[-1,1),则执行s =3t ,故s ∈[-3,3). 若t ∈[1,3],则执行s =4t -t 2,其对称轴为t =2.故当t =2时,s 取得最大值4.当t =1或3时,s 取得最小值3,则s ∈[3,4]. 综上可知,输出的s ∈[-3,4].故选A.6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3 B .866π3cm 3C .1372π3cm 3D .2048π3cm 3答案:A解析:设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R , 由R 2=(R -2)2+42,得R =5, 所以球的体积为34500π5π33=(cm 3),故选A. 7.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ).A .3B .4C .5D .6 答案:C解析:∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=. ∴m =5.故选C.8.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ).A .5B .6C .7D .8 答案:B解析:由题意可知,a =2C mm ,b =21C mm +, 又∵13a =7b ,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得m =6.故选B. 10.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 答案:D解析:设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+, 即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 11.(2013课标全国Ⅰ,理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0] 答案:D解析:由y =|f (x )|的图象知:①当x >0时,y =ax 只有a ≤0时,才能满足|f (x )|≥ax ,可排除B ,C. ②当x ≤0时,y =|f (x )|=|-x 2+2x |=x 2-2x . 故由|f (x )|≥ax 得x 2-2x ≥ax .当x =0时,不等式为0≥0成立. 当x <0时,不等式等价于x -2≤a . ∵x -2<-2,∴a ≥-2. 综上可知:a ∈[-2,0].12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 答案:B第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.答案:2解析:∵c =t a +(1-t )b , ∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c , ∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t . ∴t =2.14.(2013课标全国Ⅰ,理14)若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________. 答案:(-2)n -1解析:∵2133n n S a =+,① ∴当n ≥2时,112133n n S a --=+.②①-②,得12233n n n a a a -=-,即1n n aa -=-2. ∵a 1=S 1=12133a +,∴a 1=1.∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.答案: 解析:f (x )=sin x -2cos xx x ⎫⎪⎭,令cos αsin α=则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α=5=-16.(2013课标全国Ⅰ,理16)若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为__________.答案:16解析:∵函数f (x )的图像关于直线x =-2对称, ∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(x )=-4x 3-24x 2-28x +8=0,得x 1=-2x 2=-2,x 3=-2易知,f (x )在(-∞,-2上为增函数,在(-22)上为减函数,在(-2,-2上为增函数,在(-2∞)上为减函数.∴f (-2=[1-(-22][(-22+8(-2+15]=(-8--=80-64=16.f (-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15) =-9.f (-2=[1-(-22][(-22+8(-2+15]=(-8++=80-64=16.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ; (2)若∠APB =150°,求tan ∠PBA . 解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=.故P A (2)设∠PBA =α,由已知得PB =sin α.在△PBAsin sin(30)αα=︒-,α=4sin α. 所以tan α,即tan ∠PBA18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. (1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C . (2)解:由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz.由题设知A (1,0,0),A 1(0,3,0),C (0,0,B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,. 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩nn 即0,30.x x y ⎧+=⎪⎨-+=⎪⎩可取n =1,-1).故cos 〈n ,1AC 〉=11AC AC ⋅n n =. 所以A 1C 与平面BB 1C 1C 19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P (A )=P (A 1B 1)+P (A 2B 2)=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)=41113161616264⨯+⨯=. (2)X 可能的取值为400,500,800,并且 P (X =400)=41111161616--=,P (X =500)=116,P (X =800)=14.所以X 的分布列为EX =111400+500+80016164⨯⨯⨯=506.25. 20.(2013课标全国Ⅰ,理20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P(x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2. 所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r=,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M =1,解得k =4±. 当k =4时,将4y x =代入22=143x y +, 并整理得7x 2+8x -8=0,解得x 1,2=47-±.所以|AB |2118|7x x -=.当4k =-时,由图形的对称性可知|AB |=187.综上,|AB |=|AB |=187.21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.①若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0.即F (x )在(-2,x 1)单调递减,在(x 1,+∞)单调递增.故F (x )在[-2,+∞)的最小值为F (x 1).而F (x 1)=2x 1+2-21x -4x 1-2=-x 1(x 1+2)≥0.故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.②若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)单调递增. 而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.③若k >e 2,则F (-2)=-2k e -2+2=-2e -2(k -e 2)<0. 从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2].请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(1)证明:DB =DC ;(2)设圆的半径为1,BC CE 交AB 于点F ,求△BCF 外接圆的半径. (1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE .而∠ABE =∠CBE ,故∠CBE =∠BCE ,BE =CE .又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF23.(2013课标全国Ⅰ,理23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.24.(2013课标全国Ⅰ,理24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a ⎡⎫-⎪⎢⎣⎭时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a -≥a -2,即43a ≤. 从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。

2013年高考理科数学全国卷1(含详细答案)

数学试卷 第1页(共48页)数学试卷 第2页(共48页)数学试卷 第3页(共48页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合20{}|2A x x x =->,{|55}B x x <<=-,则( )A .AB =R B .A B =∅C .B A ⊆D .A B ⊆ 2.若复数z 满足(34i)|43i|z -=+,则z 的虚部为( )A .4-B .45-C .4D .453.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为5,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5.执行如图的程序框图,如果输入的[1,3]t ∈-,则输出的s 属于 ( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球 面恰好接触水面时测得水深为6cm ,如果不计容器的 厚度,则球的体积为( )A .3866πcm 3 B .3500πcm 3 C .31372πcm 3D .32048πcm 37.设等差数列{}n a 的前n 项和为n S ,12m S -=-,0m S =,13m S +=,则m =( )A .3B .4C .5D .68.某几何体的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .810.已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 11.已知函数22,0,()ln(1),0.x x x f x x x ⎧-+=⎨+>⎩≤若|()|f x ax ≥,则a 的取值范围是 ( )A .(,1]-∞B .(,0]-∞C .[2,1]-D .[2,0]-12.设n n n A B C △的三边长分别为n a ,n b ,n c ,n n n A B C △的面积为n S ,1,2,3,n =.若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )A .{}n S 为递增数列B .{}n S 为递减数列C .21{}n S -为递增数列,2{}n S 为递减数列D .21{}n S -为递减数列,2{}n S 为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b .若0=b c ,则t =________.14.若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a =________. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________.16.设函数22()(1)()f x x x ax b =-++的图象关于直线2x =-对称,则()f x 的最大值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,在ABC △中,90ABC ∠=,3AB =,1BC =,P 为ABC △内一点,90BPC ∠=.(Ⅰ)若12PB =,求PA ; (Ⅱ)若150APB ∠=,求tan PBA ∠.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共48页)数学试卷 第5页(共48页) 数学试卷 第6页(共48页)18.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果4n =,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立. (Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .21.(本小题满分12分)设函数2()f x x ax b =++,()e ()xg x cx d =+.若曲线()y f x =和曲线()y g x =都过点(0,2)P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若2x -≥时,()()f x kg x ≤,求k 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.=|2A B x{A B=R,故选【提示】根据一元二次不等式的解法,求出集合,再根据的定义求出A B和A B.【考点】并集及其运算,一元二次不等式的解法【答案】D4i)34=+,故z的虚部等于i553/ 16故选A.=,解得1)1245 / 16故选A .(2)(2+1)7!!!(+1)!m m m m m m =⨯,即13,再利用组合数的计算公式,解方程综上可知:[,0]2a∈-.(步骤4)67 / 16【提示】由1n n a a +=可知n n n A B C △的边n n B C 为定值1a ,由111112(2)2n n n n b c a b c a +++=+--及1112b c a +=得12n n b c a +=,则在n n n A B C △中边长1n n B C a =为定值,另两边n n n n A C A B 、的长度之和12n n b c a +=为定值,由此可知顶点n A 在以n n B C 、为焦点的椭圆上,根据111()2n n n n b c b c ++=---,得1111()2n n n b c b c -⎛⎫=- ⎪⎝⎭-,可知n →+∞时n n b c →,据此可判断n n n A B C △的边n n B C 的高n h 随着n 的增大而增大,再由三角形面积公式可得到答案. 【答案】2t =【解析】∵(1)c ta t b =-+,∴2(+1)||b t b ab t =-.(步骤又∵||||1a b ==,且a 与b 夹角为60,b c ⊥,∴0|cos6|||0+t a b =︒2【提示】由于0b c =,对式子(1)c ta t b =-+两边与b 作数量积可得|cos6|||0+a b ︒【考点】平面向量的数量积.85)(22,--+)(25,-+5)单调递增,在5)2-+单调递增,在9 / 161OCOA O =,所以1OAC 平面两两相互垂直.为坐标原点,OA的方向为|OA|为单位长,建立如图所示的空间直角坐标系则(1,0,BC=,11(1,BB AA==-,(0,3,AC=-设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩即可取,1(3,n=-10cos,5||||n ACn ACn AC=-〈〉=BB1C1C所成角的正弦值为51111得1AB AC⊥;(Ⅱ)易证OA,1OA,OC两两垂直.以O为坐标原点,OA的方向为x轴的正向,||OA为单位长,建立坐标系,可得BC,1BB,AC的坐标,设,,()n x y z=10,0,n BCn BB⎧=⎪⎨=⎪⎩,可解得,1(3,n=-,n AC〈〉,即为所求正弦值.1011 / 1622)()A B ,411161616⨯+1【提示】(Ⅰ)设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得1212()()|+|+++4PM PN R r r R r r ==-=||,而||2NM =,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(Ⅱ)设曲线C 上任意一点,()P x y ,由于||2222PM PN R ≤|-|=-,所以2R ≤,当且仅当圆P 的圆心为所以可设l :4)+(y k x =,与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【考点】圆的标准方程及其性质,椭圆的的定义及其几何性质,直线与双曲线的位置关系.21.【答案】(Ⅰ)4a =2b =2c =2d =(Ⅱ)2[1,]e【解析】(Ⅰ)由已知得(0)2f =,(0)2g =,(0)4f '=,(0)4g '=.(步骤1)而+()2f x x a =',((+))+x g x e cx d c '=,故2b =,2d =,4a =,+4d c =.(步骤2)从而4a =,2b =,2c =,2d =.(步骤3)13 / 16(Ⅱ)由(Ⅰ)知,2()+4+2f x x x =,()21)+(x g x e x =.设函数2()()()2()+142x F x kg x f x ke x x x =-=---,则()2+()2242+1(2())x x F x ke x x x ke '=--=-.由题设可得(0)0F ≥,即1k ≥(步骤4)令()0F x '=得1ln x k =-,22x -=.(步骤5)①若21k e ≤<,则120x <≤-.从而当12(),x x ∈-时,()0F x '<;当1(),+x x ∈∞时,()0F x '>.即()F x 在1()2,x -单调递减,在1(),+x ∞单调递增.故()F x 在[)2,+-∞的最小值为1()F x .(步骤6)而1111211()2+24+0)22(F x x x x x x =--=-≥-.故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤7)②若2k e =,则2222+()()()2x F e x e e x -'=-.从而当2x >-时,)0(F x '>,即F (x )在()2,+-∞单调递增.而()20F -=,故当2x ≥-时,()0F x ≥,即()()f kg x x ≤恒成立.(步骤8)③若2k e >,则22222+220()()F ke e k e ---=-=-<-.从而当2x ≥-时,()()f kg x x ≤不可能恒成立.综上,k 的取值范围是2[1,]e .(步骤9)【提示】(Ⅰ)对()f x ,()g x 进行求导,已知在交点处有相同的切线及曲线()y f x =和曲线()y g x =都过点(0,2)P ,从而解出a ,b ,c ,d 的值;(Ⅱ)由(Ⅰ)得出()f x ,()g x 的解析式,再求出()F x 及它的导函数,通过对k 的讨论,判断出()F x 的90,由勾股定理可得,故DG 60.30,所以CF ⊥BF ,故60.从而30.得到15 / 16【提示】(Ⅰ)对于曲线1C 利用三角函数的平方关系式22sin cos 1t t +=即可得到圆1C 的普通方程;再利用极坐标与直角坐标的互化公式即可得到1C 的极坐标方程;(Ⅱ)先求出曲线2C 的极坐标方程;再将两圆的方程联立求出其交点坐标,最后再利用极坐标与直角坐标3⎝⎦21||23|2|x x y x +-=---,画出函数y 的图象,数形结合可得结论.。

2013年高考(新课标I卷)理科数学试卷(word版精编精校含答案详解)供河北、河南、山西、陕西使用

2013年普通高等学校招生全国统一考试理 科 数 学(新课标I 卷)使用省份:河北、河南、山西、陕西注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.(1)已知集合{}022>-=x x x A ,{}55B <<-=x x ,则(A )=B A ∅ (B )R =B A (C )A B ⊆ (D )B A ⊆(2)若复数z 满足()i 34i 43+=-z(A )4- (B )54- (C )4 (D )54 (3)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是(A )简单的随机抽样 (B )按性别分层抽样(C )按学段分层抽样 (D )系统抽样(4)已知双曲线C :)0,0(12222>>=-b a by a x 的离心率为25,则C 的渐近线方程为 (A )x y 41±= (B )x y 31±= (C ) x y 21±= (D )x y ±=(5)执行右面的程序框图,如果输入的[]31t ,-∈,则输出的s 属于(A )[]43,- (B )[]25,- (C )[]34,- (D )[]52,-(6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π(7)设等差数列{}n a 的前n 项和为n S ,若21-=-m S ,0=m S ,31=+m S ,则=m(A )3 (B )4 (C )5 (D )6(8)某几何体的三视图如图所示,则该几何体的体积为(A )8π16+(B )8π8+(C )π6116+(D )16π8+(9)设m 为正整数,()m y x 2+展开式的二项式系数的最大值为a ,()12++m y x 展开式的二项式系数的最大值为b ,若b a 713=,则m =(A )5 (B )6 (C )7 (D )8(10)已知椭圆E :)0(12222>>=+b a by a x 的右焦点为)03(,F ,过点F 的直线交椭圆E 于A 、B 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
(14)从 n 个正整数 1,2, , n 中任意取出两个不同的数,若取出的两数之和等于 5 的概率等于
1 ,则 n 8. 14
- 10 1 (15)设 为第二象限角,若 tan( ) ,则 sin cos . 5 4 2
(16)等差数列 {an } 的前 n 项和为 S n 已知 S10 0, S15 25 , nSn 的最小值为-49. 三.解答题:解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分 12 分)
(A)
1 4
(B)
1 2
(C) 1
(D) 2 C )
(10)已知函数 f ( x) x 3 ax 2 bx c ,则下列结论中错误的是( (A) x0 R, f ( x0 ) 0 (B)函数 y f ( x) 的图像是中心对称图形 (C)若 x0 是 f ( x) 的极小值点,则 f ( x) 在区间 (, x0 ) 单调递减 (D)若 x0 是 f ( x) 的极值点,则 f ( x0 ) 0
5 /5
Байду номын сангаас
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(20)(本小题满分 12 分) 平面直角坐标系 xoy 中, 过椭圆 M :
x2 y2 1(a 0, b 0) 右焦点 x y 3 0 交 a2 b2
1 M 于 A, B 两点, P 为 AB 的中点,且 OP 的斜率为 . 2 (Ⅰ)求 M 的方程
(23)(本小题满分 10 分)选修 4—4:坐标系与参数方程
x 2 cos 已知动点 P, Q 都在曲线 C : ( 为参数)上,对应参数分别为 与 y 2 sin
2 ( 0 2 ), M 为 PQ 的中点.
(Ⅰ)求 M 的轨迹的参数方程 (Ⅱ)将 M 到原点的距离 d 表示为 的函数,并判断 M 的轨迹是否过坐标原点.
(Ⅱ) C , D 为 M 上两点,若四边形 ABCD 的对角线 CD AB ,求四边形面积的最 大值.
6 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(21)(本小题满分 12 分) 已知函数 f ( x) e x ln( x m) (Ⅰ)设 x 0 是 f ( x) 的极值点,求 m ,并讨论 f ( x) 的单调性; (Ⅱ)当 m 2 时,证明 f ( x) 0 ;
第Ⅰ卷(选择题 共 50 分) 一、选择题:本大题共 10 小题。每小题 5 分,共 50 分。在每个小题给出的四 个选项中,只有一项是符合题目要求的。 (1)已知集合 M {x ( x 1) 2 4, x R}, N {1,0,1,2,3} ,则 M N (
(A) {0,1,2} (B) {1,0,1,2} (C) {1,0,2,3} (D) {0,1,2,3}
(B) 1
1 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(7)一个四面体的顶点在空间直角坐标系 O-xyz 中的坐标分别是 (1,0,1) , (1,1,0) ,
(0,1,1) ,(0,0,0) 画该四面体三视图中的正视图时,以 zOx 平面为搞影面,则得
到正视图可以为
(
A

(A)
(6)执行右面的程序框图,如果输入的 N 10 ,那么输出的 s ( B )
1 1 1 2 3 10 1 1 1 (C) 1 2 3 11
(A) 1
1 1 1 2! 3! 10! 1 1 1 (D) 1 2! 3! 11!
(11)设抛物线 C y 2 3 px , ( p 0) 的焦点为 F , 点 M 在 C 上,MF 5 若以 MF 为 直径的园过点 (0,3) ,则 C 的方程为( (A) y 2 4 x 或 y 2 = -8 x (C) y 2 4 x 或 y 2 = -16 x C )
(B) y 2 2 x 或 y 2 8 x (D y 2 2 x 或 y 2 16 x
A
)
(2)设复数 z 满足 (1 i ) z 2i ,则 z =( (A) 1 i (B) 1 i
A
) (D) 1 i C )
(C) 1 i
(3)等比数列 {an } 的前 n 项和为 S n ,已知 S3 a2 10a1 ,a5 9 ,则 a1 ( (A)
ABC 在内角 A, B, C 的对边分别为 a, b, c 已知 a = b cos C + c sin B .
(Ⅰ)求 B ; (Ⅱ)若 b 2 ,求 ABC 面积的最大值。
3 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(18)(本小题满分 12 分) 如图,直棱柱 ABC A1 B1C1 中 D, E 分别是 AB, BB1 的中点
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
绝密★启用前
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷) 数学(理科)
注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前考生将自己的姓名\ 准考证号填写在本试卷和答题卡相应位置。 2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需 改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。 3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。 4. 考试结束,将试题卷和答题卡一并交回。
AB 与弦 AC 上的点,且 BC AE DC AF , B 、 E 、 F 、 C 四点共圆。 (Ⅰ)证明: AC 是 ABC 外接圆的直径;
(Ⅱ)若 DB BE EA ,求过 B, E , F , C 四点圆的面积与 ABC 外接圆面积的比值.
8 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
2 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
第Ⅱ卷
本卷包括必考题和选考题,每个试题考生都必修作答。第 22 题~第 24 题为 选考题,考生根据要求作答。 二、填空题:本大题共 4 小题,每小题 5 分。
(13)已知正方形 ABCD 的边长为 2,E 为 CD 的中点,则 AE BD =2
(24)(本小题满分 10 分)选修 4—5:不等式选讲 设 a, b, c 均为正数,且 a b c 1 ,证明:
1 (Ⅰ) ab bc ca ; 3
(Ⅱ)
a2 b2 c2 1; b c a
9 /5
4 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
(Ⅰ)将 T 表示为 X 的函数; (Ⅱ)在直方图的需求量分组中, 以各组的区间中点值代表改组的各个值求量落入 该区间的频率作为需求量取该区间中点值的概率(例如:若 X [100,110 ) )则取
X 105 ,且 X 105 的概率等于需求量落入 [100,110 ) 的 T 的数学期望。
7 /5
2013 年普通高等学校招生全国统一考(新课标Ⅱ卷)
请考生在第 22、23、24 题中任选择一题作答,如果多做,则按所做的第一部分, 做答时请写清题号。 (22)(本小题满分 10 分)选修 4-1:几何证明选讲 如图,CD 为 ABC 外接圆的切线,AB 的延长线教直线 CD 于点 D, E , F 分别为弦
(12)已知点 A(1,0), B (1,0), C (0,1) ,直线 y ax b(a 0) 将 ABC 分割为面积相 等的两部分,则 b 的取值范围是( (A) (0,1) (B) (1
2 1 , ) 2 2

)
2 1 , ) 2 3
1 1 (D) [ , ) 3 2
(C) (1
AA1 AC CB 2 AB 2
(Ⅰ)证明: BC1 // 平面A1CD1 ; (Ⅱ)求二面角 D A1C E 的正弦值
(19)(本小题满分 12 分) 经销商经销某种农产品,在一个销售季度内,每售出 1t 该产品获利润 500 元, 未售出的产品,没 1t 亏损 300 元。根据历史资料,得到销售季度内市场需求量 的频率分布直方图,如有图所示。经销商为下一个销售季度购进了 130t 该农产 品。以 X (单位:t,100 X 150 )表示下一个销售季度内经销该农产品的利润。
(B)
(C) D
(D) ) (D) a b c
(8)设 a log 3 6 , b log 5 10 , c log 7 14 则( (A) c b a (B) b c a
(C) a c b
x 1 (9) 已知 a 0, x, y 满足条件 x y 3 ,若 z 2 x y 的最小值为 1, 则 a ( B) y a ( x 3)
1 3
(B)
1 3
(C)
1 9
(D)
1 9
(4)已知 m, n 为异面直线, m , n 。直线 l 满足 l ⊥m,
l n, l , l ,则(
D ) (B) 且 l
(A) // 且 l //
(C) 与 相交,且交线垂直于 l (D)α与β相交,且交线平行于 l (5)已知 (1 ax)(1 x) 5 的展开式中 x 2 的系数为 5,则 a ( (A)-4 (B)-3 (C)-2 (D)-1 D )
相关文档
最新文档