二次函数距离与定值

合集下载

二次函数-定值问题典型例题

二次函数-定值问题典型例题

二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.考点:二次函数综合题专题:压轴题.分析:(1)先求出直线y=kx+b与x轴正半轴交点D的坐标及与y轴交点C的坐标,得到△OCD的面积S=﹣,再根据kS+32=0,及b>0即可求出b的值;(2)先由y=kx+8,得x=,再将x=代入y=x2,整理得y2﹣(16+8k2)y+64=0,然后由已知条件直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,知y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,根据一元二次方程根与系数的关系得到y1•y2=64,即点(y1,y2)在反比例函数的图象上;(3)先由勾股定理,得出OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,又易得x1•x2=﹣64,则OA2+OB2=AB2,根据勾股定理的逆定理得出∠AOB=90°.再过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,根据两角对应相等的两三角形相似证明△AEO∽△OFB,由相似三角形对应边成比例得到=,即可证明x1•OB+y2•OA=0.解答:(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,与y轴相交于点C,∴令x=0,得y=b;令y=0,x=﹣,∴△OCD的面积S=(﹣)•b=﹣.∵kS+32=0,∴k(﹣)+32=0,解得b=±8,∵b>0,∴b=8;(2)证明:由(1)知,直线的解析式为y=kx+8,即x=,将x=代入y=x2,得y=()2,整理,得y2﹣(16+8k2)y+64=0.∵直线y=kx+8与抛物线相交于点A(x1,y1),B(x2,y2)两点,∴y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,∴y1•y2=64,∴点(y1,y2)在反比例函数的图象上;(3)证明:由勾股定理,得OA2=+,OB2=+,AB2=(x1﹣x2)2+(y1﹣y2)2,由(2)得y1•y2=64,同理,将y=kx+8代入y=x2,得kx+8=x2,即x2﹣8kx﹣64=0,∴x1•x2=﹣64,∴AB2=+++﹣2x1•x2﹣2y1•y2=+++,又∵OA2+OB2=+++,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°.如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵∠AOB=90°,∴∠AOE=90°﹣∠BOF=∠OBF,又∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴=,∵OE=﹣x1,BF=y2,∴=,∴x1•OB+y2•OA=0.点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数、反比例函数图象上点的坐标特征,三角形的面积,一次函数与二次函数的交点,一元二次方程根与系数的关系,勾股定理及其逆定理,相似三角形的判定与性质,综合性较强,难度适中.求出△OCD的面积S是解第(1)问的关键;根据函数与方程的关系,得到y1,y2是方程y2﹣(16+8k2)y+64=0的两个根,进而得出y1•y2=64是解第(2)问的关键;根据函数与方程的关系,一元二次方程根与系数的关系,勾股定理及其逆定理得出∠AOB=90°,是解第(3)问的关键.【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:m 1 2 3由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.考点:二次函数综合题分析:猜想与证明:把P点的纵坐标分别代入C1、C2的解析式就可以AB、CD的值,就可以求出结论,从而发现规律得出对任意m(m>0)将y=m2代入两个二次函数的解析式就可以分别表示出AB与CD的值,从而得出均有=;探究与证明:(1)由条件可以得出△AOB与△CQD高相等,就可以得出面积之比等于底之比而得出结论;(2)分两种情况讨论,当△AOB为等腰直角三角形时,可以求出m的值就可以求出△AOB的面积,从而求出△CQD的面积,就可以求出其差,当△CQD为等腰直角三角形时,可以求出m的值就可以求出△CDQ的面积,进而可以求出结论;联想与拓展:由猜想与证明可以得知A、D的坐标,可以求出F、E的纵坐标,从而可以求出AE、DF的值,由三角形的面积公式分别表示出△MAE与△MDF面积,就可以求出其比值.解答:解:猜想与证明:当m=1时,1=x2,1=x2,∴x=±2,x=±3,∴AB=4,CD=6,∴;当m=2时,4=x2,4=x2,∴x=±4,x=±6,∴AB=8,CD=12,∴;当m=3时,9=x2,9=x2,∴x=±6,x=±9,∴AB=12,CD=18,∴;∴填表为m 1 2 3对任意m(m>0)均有=.理由:将y=m2(m>0)代入y=x2,得x=±2m,∴A(﹣2m,m2),B(2m,m2),∴AB=4m.将y=m2(m>0)代入y=x2,得x=±3m,∴C(﹣3m,m2),D(3m,m2),∴CD=6m.∴,∴对任意m(m>0)均有=;探究与运用:(1)∵O、Q关于直线CD对称,∴PQ=OP.∵CD∥x轴,∴∠DPQ=∠DPO=90°.∴△AOB与△CQD的高相等.∵=,∴AB=CD.∵S△AOB=AB•PO,S△CQD=CD•PQ,∴=,(2)当△AOB为等腰直角三角形时,如图3,∴PO=PB=m2,AB=2OP∴m2=m4,∴4m2=m4,∴m1=0,m2=﹣2,m3=2.∵m>0,∴m=2,∴OP=4,AB=8,∴PD=6,CD=12.∴S△AOB==16∴S△CQD==24,∴S△CQD﹣S△AOB=24﹣16=8.当△CQD是等腰直角三角形时,如图4,∴PQ=PO=PD=m2,CD=2QP∴m2=m4,∴9m2=m4,∴m1=0,m2=﹣3,m3=3.∵m>0,∴m=3,∴OP=6,AB=12,∴PQ=9,CD=18.∴S△AOB==54∴S△CQD==81,∴S△CQD﹣S△AOB=81﹣54=27;联想与拓展由猜想与证明可以得知A(﹣2m,m2),D(3m,m2),∵AE∥y轴,DF∥y轴,∴E点的横坐标为﹣2m,F点的横坐标为3m,∴y=(﹣2m)2,y=(3m)2,∴y=m2,y=m2,∴E(﹣2m,m2),F(3m,m2),∴AE=m2﹣m2=m2,DF=m2﹣m2=m2.S△AEM=×m2•2m=m3,S△DFM=m2•3m=m3.∴=.故答案为:;;.点评:本题考出了对称轴为y轴的抛物线的性质的运用,由特殊到一般的数学思想的运用,等腰直角三角形的性质的运用,三角形的面积公式的运用,轴对称的性质的运用,在解答本题时运用两个抛物线上的点的特征不变建立方程求解是关键.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.考点:二次函数综合题.专题:代数几何综合题.分析:(1)设抛物线C2,(a≠0),然后把点(0,)代入求出a的值,再化1的顶点式形式y=a(x﹣1)为一般形式即可;(2)先根据m的值求出直线AB与x轴的距离,从而得到点B、C的纵坐标,然后利用抛物线解析式求出点C的横坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出点A的坐标,然后根据平移的性质设出抛物线C2的解析式,再把点A的坐标代入求出h的值即可;(3)先把直线AB与x轴的距离是m2代入抛物线C1的解析式求出C的坐标,从而求出CE,再表示出点A的坐标,根据抛物线的对称性表示出ED,根据平移的性质设出抛物线C2的解析式,把点A的坐标代入求出h的值,然后表示出EF,最后根据锐角的正切值等于对边比邻边列式整理即可得证.解答:(1)解:设抛物线C1的顶点式形式y=a(x﹣1)2,(a≠0),∵抛物线过点(0,),∴a(0﹣1)2=,解得a=,∴抛物线C1的解析式为y=(x﹣1)2,一般形式为y=x2﹣x+;(2)解:当m=2时,m2=4,∵BC∥x轴,∴点B、C的纵坐标为4,∴(x﹣1)2=4,解得x1=5,x2=﹣3,∴点B(﹣3,4),C(5,4),∵点A、C关于y轴对称,∴点A的坐标为(﹣5,4),设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣5﹣1)2﹣h=4,解得h=5;(3)证明:∵直线AB与x轴的距离是m2,∴点B、C的纵坐标为m2,∴(x﹣1)2=m2,解得x1=1+2m,x2=1﹣2m,∴点C的坐标为(1+2m,m2),又∵抛物线C1的对称轴为直线x=1,∴CE=1+2m﹣1=2m,∵点A、C关于y轴对称,∴点A的坐标为(﹣1﹣2m,m2),∴AE=ED=1﹣(﹣1﹣2m)=2+2m,设抛物线C2的解析式为y=(x﹣1)2﹣h,则(﹣1﹣2m﹣1)2﹣h=m2,解得h=2m+1,∴EF=h+m2=m2+2m+1,∴tan∠EDF﹣tan∠ECP=﹣=﹣=﹣=,∴tan∠EDF﹣tan∠ECP=.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,二次函数图象与结合变换,关于y轴对称的点的坐标特征,抛物线上点的坐标特征,锐角的正切的定义,(3)用m表示出相应的线段是解题的关键,也是本题的难点.【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.3718684专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且AB=35,sin ∠OAB=55. (1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,35AB =5sin OAB ∠=5sin 3535BD AB OAB ∴=∠==. 又由勾股定理, 得2222(35)36AD AB BD =-=-=.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.y F P 3BEC D A P 2P 1O∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。

方法必备07二次函数中定值、定点问题(8类题型)原卷版

方法必备07二次函数中定值、定点问题(8类题型)原卷版

方法必备07二次函数中定值、定点问题(8类题型)题型一面积(面积比)定值题型二线段(线段比)定值题型三线段和差倍定值题型四线段乘积为定值题型五横(纵)坐标定值题型六其它定值问题题型七结合韦达定理求定点题型八直线过定点题型一面积(面积比)定值1.(2023•花都区二模)已知,抛物线22(22)2y x m x m m =-+++与x 轴交于A ,B 两点(A 在B 的左侧).(1)当0m =时,求点A ,B 坐标;(2)若直线y x b =-+经过点A ,且与抛物线交于另一点C ,连接AC ,BC ,试判断ABC ∆的面积是否发生变化?若不变,请求出ABC ∆的面积;若发生变化,请说明理由;(3)当5221m x m --时,若抛物线在该范围内的最高点为M ,最低点为N ,直线MN 与x 轴交于点D ,且3MD ND=,求此时抛物线的解析式.2.(2023•兴化市一模)已知抛物线2(0)y ax a =>经过第二象限的点A ,过点A 作//AB x 轴交抛物线于点B ,第一象限的点C 为直线AB 上方抛物线上的一个动点.过点C 作CE AB ⊥于E ,连接AC 、BC .(1)如图1,若点(1,1)A -,1CE =.①求a 的值;②求证:ACE CBE ∆∆∽.(2)如图2,点D 在线段AB 下方的抛物线上运动(不与A 、B 重合),过点D 作AB 的垂线,分别交AB 、AC 于点F 、G ,连接AD 、BD .若90ADB ∠=︒,求DF 的值(用含有a 的代数式表示).(3)在(2)的条件下,连接BG 、DE ,试判断BGF DBES S ∆∆的值是否随点D 的变化而变化?如果不变,求出S BGF S DBE ∆∆的值,如果变化,请说明理由.题型二线段(线段比)定值3.(2023•绵阳)如图,抛物线经过AOD ∆的三个顶点,其中O 为原点,(2,4)A ,(6,0)D ,点F 在线段AD 上运动,点G 在直线AD 上方的抛物线上,//GF AO ,GE DO ⊥于点E ,交AD 于点I ,AH 平分OAD ∠,(2,4)C --,AH CH ⊥于点H ,连接FH .(1)求抛物线的解析式及AOD ∆的面积;(2)当点F 运动至抛物线的对称轴上时,求AFH ∆的面积;(3)试探究FG GI 的值是否为定值?如果为定值,求出该定值;不为定值,请说明理由.4.(2023•金东区三模)如图,一次函数(0,0)b y x b a b a=-+>>与坐标轴交于A ,B 两点,以A 为顶点的抛物线过点B ,过点B 作y 轴的垂线交该抛物线于另一点D ,以AB ,AD 为边构造ABCD ,延长BC 交抛物线于点E .(1)若2a b ==,如图1.①求该抛物线的表达式.②求点E 的坐标.(2)如图2,请问BE AB是否为定值,若是,请求出该定值;若不是,请说明理由.5.(2023•黑龙江一模)已知,抛物线2y ax bx c =++经过(1,0)A -、(3,0)B 、(0,3)C 三点,点P 是抛物线上一点.(1)求抛物线的解析式;(2)当点P 位于第四象限时,连接AC ,BC ,PC ,若PCB ACO ∠=∠,求直线PC 的解析式;(3)如图2,当点P 位于第二象限时,过P 点作直线AP ,BP 分别交y 轴于E ,F 两点,请问CE CF的值是否为定值?若是,请求出此定值;若不是,请说明理由.题型三线段和差倍定值6.(2023•红桥区三模)已知抛物线22(y ax bx a =++,b 为常数,0)a ≠经过点(1,0)A -,(3,0)B ,与y 轴相交于点C ,其对称轴与x 轴相交于点E .(1)求该抛物线的解析式;(2)连接BC ,在该抛物线上是否存在点P ,使PCB ABC ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)Q 为x 轴上方抛物线上的动点,过点Q 作直线AQ ,BQ ,分别交抛物线的对称轴于点M ,N ,点Q 在运动过程中,EM EN +的值是否为定值?若是,请求出该定值;若不是,请说明理由.7.(2023•呼和浩特)探究函数22||4||y x x =-+的图象和性质,探究过程如下:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:x ⋯52-2-32-1-12-012132252⋯y ⋯52-032m 32032232052-⋯其中,m =.根据如表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;(2)点F 是函数22||4||y x x =-+图象上的一动点,点(2,0)A ,点(2,0)B -,当3FAB S ∆=时,请直接写出所有满足条件的点F 的坐标;(3)在图2中,当x 在一切实数范围内时,抛物线224y x x =-+交x 轴于O ,A 两点(点O 在点A 的左边),点P 是点(1,0)Q 关于抛物线顶点的对称点,不平行y 轴的直线l 分别交线段OP ,AP (不含端点)于M ,N 两点.当直线l 与抛物线只有一个公共点时,PM 与PN 的和是否为定值?若是,求出此定值;若不是,请说明理由.8.(2023•平遥县一模)综合与探究.如图1,在平面直角坐标系中,已知二次函数224233y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)点P 是二次函数图象上的一个动点,请问是否存在点P 使PCB ABC ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线l ,交x 轴于点D .若点M 是二次函数图象上一动点,且点M 始终位于x 轴上方,作直线AM ,BM ,分别交l 于点E ,F ,在点M 的运动过程中,DE DF +的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.9.(2023•广元)如图1,在平面直角坐标系中,已知二次函数24y ax bx =++的图象与x 轴交于点(2,0)A -,(4,0)B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴l 上一点,以B ,E ,F 为顶点的三角形是等腰直角三角形,且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接AP 交y 轴于点M ,连接BP 并延长交y 轴于点N ,在点P 运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.10.(2023•扬州)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点(0,0)、(0,2)、(1,1)、(1,1)-中恰有三个点在二次函数2(y ax a =为常数,且0)a ≠的图象上.①a =;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2(y ax a =为常数,且0)a >的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.11.(2023•长汀县模拟)在平面直角坐标系中,抛物线2(0)y ax bx c a =++>经过(2,0)A -,(0,2)B -两点.(1)用含a 的式子表示b ;(2)当2a =时,如图1,点C 是直线AB 下方抛物线上的一个动点,求点C 到直线AB 距离的最大值.(3)当1a =时,如图2,过点1(2P -,2)-的直线交抛物线2(0)y ax bx c a =++>于M ,N .①若//MN x 轴,计算11PM PN +=.②若MN 与x 轴不平行,请你探索11PM PN+是否定值?请说明理由.12.(2023•宿豫区三模)如图,在平面直角坐标系中,一次函数15544y x =+的图象与x 轴交于点A ,与y 轴交于点C ,对称轴为直线2x =的抛物线22(0)y ax bx c a =++≠也经过点A 、点C ,并与x 轴正半轴交于点B .(1)求抛物线22(0)y ax bx c a =++≠的函数表达式;(2)设点25(0,)12E ,点F 在抛物线22(0)y ax bx c a =++≠对称轴上,并使得AEF ∆的周长最小,过点F 任意作一条与y 轴不平行的直线交此抛物线于1(P x ,1)y ,2(Q x ,2)y 两点,试探究11FP FQ +的值是否为定值?说明理由;(3)将抛物线22(0)y ax bx c a =++≠适当平移后,得到抛物线23()(1)y a x h h =->,若当1x m <时,3y x -恒成立,求m的最大值.13.(2023•武侯区校级模拟)如图,抛物线2y x bx c =++与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,若(1,0)A -且3OC OA =.(1)求该抛物线的函数表达式;(2)如图1,点P 是第四象限内抛物线上的一个点且位于对称轴右侧,分别连接BC 、AP 相交于点G ,当12PBG ABG S S ∆∆=时,求点P 的坐标;(3)如图2,在(2)的条件下,AP 交y 轴于点M ,过M 点的直线l 与线段AB ,AC 分别交于E ,F ,当直线l 绕点M 旋转时,m n AE AF+为定值3,请求出m 和n 的值.14.(2023•丹阳市二模)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点A 、B ,与y 轴相交于点C ,其中B 点的坐标为(3,0),点M 为抛物线上的一个动点.(1)二次函数图象的对称轴为直线1x =.①求二次函数的表达式;②若点M 与点C 关于对称轴对称,则点M 的坐标是;③在②的条件下,连接OM ,在OM 上任意取一点P ,过点P 作x 轴的平行线,与抛物线对称轴左侧的图象交于点Q ,求线段PQ 的最大值.(2)过点M 作BC 的平行线,交抛物线于点N ,设点M 、N 的横坐标为m 、n ,在点M 运动的过程中,试问m n +的值是否会发生改变?若改变,请说明理由;若不变,请求出m n +的值.题型四线段乘积为定值15.(2023•南充)如图1,抛物线23(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点(1,3)K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.题型五横(纵)坐标(坐标和)定值16.(2023•湖北)如图1,在平面直角坐标系xOy 中,已知抛物线26(0)y ax bx a =+-≠与x 轴交于点(2,0)A -,(6,0)B ,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于M ,N 两点(直线l 与BC 不重合),连接CN ,BM ,直线CN 与BM 交于点P .当//MN BC 时,点P 的横坐标是否为定值,请说明理由.17.(2023•清江浦区校级三模)如图,已知抛物线2:23(0)T y ax ax a a =-->与y 轴交于点C ,交x 轴于点A ,B ,且OB OC =.(1)求抛物线T 的解析式;(2)如图1,直线1:(0)2l y x b b =+<交x 轴于点M ,交y 轴于点N ,将MON ∆沿直线l 翻折,得到MPN ∆,点O 的对应点为点P 若点O 的对应点P 恰好落在抛物线上,求b 的值;(3)如图2,点D 是抛物线T 上一动点,连接AD ,并将直线AD 沿x 轴翻折交抛物线T 于点E .设点D 的横坐标为D x ,点E 的横坐标为E x ,试问:D E x x +是否为定值?若为定值,请求出定值;若不是定值,请说明理由.题型六其它定值问题18.(2023•宿豫区二模)阅读下列材料:在九年级下册“5.2二次函数的图象和性质”课时学习中,我们发现,函数:2()y a x k h =-+中a 的符号决定图象的开口方向,||a 决定图象的开口大小,为了进一步研究函数的图象和性质,我们作如下规定:如图1,抛物线上任意一点(A )(异于顶点)O 到对称轴的垂线段的长度(AB 的长度)叫做这个点的“勾距”,记作m ;垂足(B )到抛物线的顶点()O 的距离()BO 叫这个点的“股高”,记作h ;点(A )到顶点()O 的距离(AO 的长度)叫这个点的“弦长”,记作l ;过这个点(A )和顶点()O 的直线()AO 与对称轴()BO 相交所成的锐角叫做这个点的“偏角”,记作α.由图1可得,对于函数2(0)y ax a =≠.(1)当勾距m 为定值时,①2||h am =、22(1)l m a m =+;股高和弦长均随a 增大而增大;②1tan ||amα=;偏角随||a 增大而减小;(如:函数23y =中,当1m =时,2||3h am ==22(1)2l m a m =+=、13tan ||30)3am αα===︒(2)当偏角α为定值时,③1||tan m a α=、21||(tan )h a α=、2cos ||(sin )l a αα=,勾距、股高和弦长均随||a 增大而减小;(如:函数2y x =中,当45α=︒时,1||1tan m a α==、21||1(tan )h a α==、2cos ||2)(sin )l a αα==利用以上结论,完成下列任务:如图2:已知以A 为顶点的抛物线211(2)2y x =-与y 轴相交于点B ,若抛物线22()y a x b =-的顶点也是A ,并与直线AB 相交于点C ,与y 轴相交于点D .(1)函数22y x =中,①当1m =时,h =,②当60α=︒时,l =;(2)如图2:以(2,0)A 为顶点作抛物线:211(2)2y x =-和22()y a x b =-,1y 与y 轴相交于点B ,2y 与直线AB 相交于点C ,与y 轴相交于点D ;①当12a >时,设S AC OD =⋅,随a 的取值不同,S 的值是否发生改变,如果不变,请求出S 的值,如果发生改变,请直接写出S 的取值范围;②若点M 在抛物线1y 上,直线AM 与2y 的另一个交点为N ,记BAM ∆的面积为1S ,CAN ∆的面积为2S ,若1249S S =,请求出a 的值.19.(2023•宜都市二模)抛物线234(0)y ax ax ac a =--<与x 轴交于点(1,0)A -和点B ,与y 轴交于点C .(1)写出抛物线的对称轴,并求c 的值;(2)如图1,90ACB ∠=︒,点1(D x ,11)(0)y x <是抛物线上234y ax ax ac =--的动点,直线DO 与抛物线的另一个交点为E ;①若D ,E 关于点O 对称,求D 点坐标;②若点(0,)P m 是y 轴上一点,直线DP 的表达式为11y k x b =+,直线EP 的表达式为22y k x b =+,当12k k +的值是一个定值时,求m 的值.20.(2023•长沙)我们约定:若关于x 的二次函数21111y a x b x c =++与22222y a x b x c =++同时满足22121()||0b b c a +++-=,202312()0b b -≠,则称函数1y 与函数2y 互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数2123y x kx =++与22y mx x n =++互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点(,)P r t 与点(Q s ,)()t r s ≠始终在关于x 的函数212y x rx s =++的图象上运动,函数2y 与1y 互为“美美与共”函数.①求函数2y 的图象的对称轴;②函数2y 的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数21y ax bx c =++与它的“美美与共”函数2y 的图象顶点分别为点A ,点B ,函数1y 的图象与x 轴交于不同两点C ,D ,函数2y 的图象与x 轴交于不同两点E ,F .当CD EF =时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.题型七结合韦达定理求定点21.(2023•汉阳区校级模拟)抛物线2222y x mx m m =-+-+,(0)m >交x 轴于A ,B 两点(A 在B 的左边),C 是抛物线的顶点.(1)当2m =时,直接写出A ,B ,C 三点的坐标;(2)如图1,点D 是对称轴右侧抛物线上一点,COB OCD ∠=∠,求线段CD 长度;(3)如图2,将抛物线平移使其顶点为(0,1),点P 为直线3y x =+上的一点,过点P 的直线PE ,PF 与抛物线只有一个公共点,问直线EF 是否过定点,请说明理由.题型八直线过定点22.(2023•锦江区校级模拟)已知抛物线22y ax ax c =-+与x 轴交于(1,0)A -、B 两点,顶点为P ,与y 轴交于C 点,且ABC ∆的面积为6.(1)求抛物线的对称轴和解析式;(2)平移这条抛物线,平移后的抛物线交y 轴于E ,顶点Q 在原抛物线上,当四边形APQE 是平行四边形时,求平移后抛物线的表达式;(3)若过定点(2,1)K 的直线交抛物线于M 、N 两点(N 在M 点右侧),过N 点的直线2y x b =-+与抛物线交于点G ,求证:直线MG 必过定点.2123.(2023•洪山区校级模拟)如图,已知抛物线21:3C y ax bx =++与x 轴交于A ,B 两点,与y 轴交于C 点,3OB OC OA ==.(1)求抛物线1C 的解析式;(2)如图2,已知点P 为第一象限内抛物线1C 上的一点,点Q 的坐标为(1,0),45POC OCQ ∠+∠=︒,求点P 的坐标;(3)如图3,将抛物线1C 平移到以坐标原点为顶点,记为2C ,点(1,1)T -在抛物线2C 上,过点T 作TM TN ⊥分别交抛物线2C 于M ,N 两点,求证:直线MN过定点,并求出该定点的坐标.。

14 专题十四、二次函数与定值问题

14 专题十四、二次函数与定值问题

专题十四、二次函数与定值问题【专题导入】1.若线段AB=x+2,线段PQ=-x+7,则AB+PQ=_____,也即是说,AB与PQ线段和为定值。

2.求证:不论m取什么实数,二次函数y=x2﹣2(m+1)x+m(m+2)的图象与x轴两个交点之间的距离为定值.【方法技巧】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的某种几何量却始终保持不变(或几何元素间的某种几何性质或位置关系不变)。

平面几何定值一般可分为两类:一类是定量问题(如定长度、定角、定比、平方和或倒数和为定值等);一类是定形问题(如定点、定线、定圆或弧、定方向等),它们有共同的基本特点,即给定条件中一般由固定条件和变动条件两部分组成。

一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:①参数计算法。

即:在图形运动中,选取其中的变量(如线段长、点坐标)作为参数,将要求的定值用参数表出,然后消去参数即得定值。

②韦达定理法。

当涉及到直线(一次函数图像或x轴)与二次函数交点时,先联立方程消去y之后整理得到一元二次方程,借助韦达定理可得到交点横坐标与参数的关系,可以将要求的定值代数式用交点横坐标的和或积表示,往往会刚好抵消掉参数,则得到定值。

【典例剖析】3.如图,直线y=−32x+6分别交x轴、y轴于A、B两点,抛物线y=−18x2+8,与y轴交于点D,点P是抛物线在第一象限部分上的一动点,过点P作PC⊥x轴于点C.(1)点A的坐标为_______,点D的坐标为_______;(2)试判断:对于任意一点P,PB+PC的值是否为定值?并说明理由。

4.如图,已知直线y=kx﹣9k(k<0)与抛物线y=x2﹣2x﹣3交于A,B两点,与x轴交于点P.过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,求证:PD•PC为定值.【举一反三】5.(2017•武汉模拟)如图,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A,B两点,与y轴交于点C.(1)填空:A点坐标是________,B点的坐标是________;(2)当a=1时,如图,将直线BC沿y轴向上平移交抛物线于M,N,交y轴于点P,求证:PM﹣PN是定值.【强化训练】6.已知直线y =kx +2与抛物线y =ax 2(a >0)交于A 、B 两点,AM ⊥y 轴于M ,BN ⊥y 轴于N ,求OM •ON 的值.7.已知关于x 的二次函数y =x 2﹣2mx +m 2+m 的图象与直线y =kx +1.(1)若k =1,求证:无论m 为何值,二次函数图象与直线总有两个不同交点.(2)在(1)条件下,若两图象交于两点A 、B ,试证明AB 的长为定值,并求出这个定值. 8.如图,抛物线C 1:y =ax 2+bx +c 经过A (﹣1,0)、C (0,54)两点,与x 轴正半轴交于点B ,对称轴为直线x =2.(1)求抛物线C 1的函数表达式;(2)设点D (0,2512),若F 是抛物线C 1:y =ax 2+bx +c 的对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1)、M 2(x 2,y 2)两点,试探究1M 1F +1M 2F 是否为定值,请说明理由。

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

二次函数-定值问题典型例题

二次函数-定值问题典型例题

二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.,再根据x=代入y=与抛物线的图象上;++,根据两角对应相等的两三角=,即可证明﹣(﹣)﹣(﹣,x=y=x y=)与抛物线)在反比例函数++y=kx+8=x+++++,++,OFB=90 =,=【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.出均有=x1=x4=x9==.xx,)均有==,AB==CD=,m==m==(﹣(m y=m m﹣m2=m m m =m2m==m=.故答案为:;;.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.)代入求出),a=y=y=x+;(y=(﹣(y=(﹣ECP=﹣﹣=﹣,ECP=【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.的长,然后代入+x x,然后表示出+,,x,AO=mAM=+=+x x +==,+=取何值,++是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,AB =sin OAB ∠=sin 3BD AB OAB ∴=∠==. 又由勾股定理,得6AD ===.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。

《二次函数》知识点总结(修改版)

《二次函数》知识点总结(修改版)

《二次函数》主要知识点归纳(修改版)(何老师归纳)一、概念:形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。

1:条件:① a不为零②最高项次数为2(整理后)③整式2:特殊:若a=0 则y=bx+c 是一次函数3:若y=0,则函数图象交于x轴,化为一元二次方程a x2+bx + c =04:特殊解析式:形如y=kx²-2kx-3k这样各项都含参数k的二次函数,图像必过定点.(令y=0, 则kx²-2kx-3k=0,化掉参数k得:x²-2x-3=0)二、二次函数的几种基本形式1:2y ax=的性质:a越大,抛物线的开口越小,越靠近y轴2. 2y ax c=+的性质:平移规律:上加下减y。

3.()2y a x h=-的性质:平移规律:左加右减x。

y=3(x+4)2(x-2)2y=3x24.()2y a x h k=-+(顶点式)的性质:平移规律:左加右减x 。

上加下减y,5.2y ax bx c =++(一般式)的性质: 先将一般式2y ax bx c =++通过配方法化成22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,再对比顶点式,()2y a x h k =-+可得2424b ac b h k a a -=-=,.故两者性质相同。

三、二次函数2y ax bx c =++(或()2y a x h k =-+)图象及性质再归纳: 1:开口方向.①:当0>a 时,开口向上;当0<a 时,开口向下; ②:a 相等,几条抛物线的开口大小、形状相同. ③:a 越大,抛物线的开口越小,越靠近y 轴 2:对称轴,直线abx 2-=(或直线x =h ) 3:顶点坐标:),(ab ac a b 4422-- 或(h,k )4:增减性 ①:若0>a ,当x<a b 2-时,y 减;当x>a b2-时,y 增,简记:左减右增; ②:若0<a ,当x<a b 2-时,y 增;当x>ab2-时,y 减,简记:左增右减;5:最值 ⑴:若定义域是全体实数,则在顶点处取得最大值(或最小值),即:当a b x 2-=时,ab ac y 442-=最值,(或当x =h 时,最值是y =k )2-32⑵: 若定义域是21x x x ≤≤, 则:①:若a b 2-在21x x x ≤≤内,则当x=a b 2-时,ab ac y 442-=最值;②:若ab2-不在21x x x ≤≤内,则需要考虑函数在21x x x ≤≤范围内的增减性, A: 若y 为增,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小; B: 若y 为减,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。

专题3-1 二次函数中的10类定值、定点问题(原卷版)

专题3-1 二次函数中的10类定值、定点问题(原卷版)

专题3-1 二次函数中的10类定值、定点问题二次函数背景下的定值与定点问题,解析法类似于高中,但并不超纲!因为解题方法比较特殊,同学们要专门学习和练习,才能在考场上应对自如,这些方法包括联立、转化等,对同学们的代数功底与几何功底都有较高的要求.知识点梳理一、定值问题二、定点问题题型一 面积定值2022·山东淄博·中考真题2023·福建厦门三模题型二 线段长为定值2024届湖北天门市九年级月考2024届福建龙岩市统考期中2020·西藏·中考真题题型二 线段和定值2023广州市二中月考2022·四川巴中·中考真题2024届湖北黄石市·九年级统考2023·四川乐山·统考二模2023·海口华侨中学考模2023·江苏徐州·4月模拟2022·湖南张家界·中考真题题型三 加权线段和定值2023·四川广元·中考真题2020·四川德阳·中考真题题型四 线段乘积为定值2023·四川南充·中考真题2024届·武汉市东湖高新区统考2024届福建省福州屏东中学月考2024届福州市晋安区统考2023·福建福州·校考三模题型五 比值为定值2023年广西钦州市一模2023福建厦门一中模拟2023年福州市屏东中学中考模拟武汉·中考真题题型六 横(纵)坐标定值2023·湖北潜江、天门、仙桃、江汉油田·中考真题2024届湖北潜江市初12校联考题型七 角度为定值2023·成都武侯区西川中学三模四川乐山·统考中考真题题型八 其它定值问题2023·浙江湖州·统考一模2024届福建省南平市统考2023年湖北省武汉市新观察中考四调题型九 结合韦达定理求定点2023年湖北省武汉市外国语学校中考模拟2024届武汉市青山区九年级统考2024届武汉市新洲区12月统考2024届·福建厦门市第九中学期中2023·武汉光谷实验中学中考模拟2023广东省梅州市九年级下期中2024届福州市九校联盟期中2023年湖北省武汉市新观察中考四调题型十 已知定值求定点2024届武汉市洪山区九年级统考2024届湖北省武汉市新洲区九年级上期中2023年广州市天河外国语学校中考三模知识点梳理一、定值问题一般来说,二次函数求解几何线段代数式定值问题属于定量问题,方法采用:1.参数计算法:即在图形运动中,选取其中的变量(如线段长,点坐标)作为参数,将要求的定值用参数表示出,然后消去参数即得定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定值与距离问题探究
主讲——周文春
【知识点拨】 1、 点与点距离 2、 点与直线距离
3、 讲线段与图形问题转化为距离问题
4、 熟记各种演化公式
【例1 二次函数与直线、距离、面积问题】 如图,已知直线与抛物线交于两点. (1)求两点的坐标;
(2)求线段的垂直平分线的解析式;
(3)如图2,取与线段等长的一根橡皮筋,端点分别固定在两处.用铅笔拉着这根橡皮筋使笔尖在直线上方的抛物线上移动,动点将与构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时
12y x =-
21
64
y x =-+A B ,A B ,AB AB A B ,P AB P A B ,P 图2
图1
【变式练习.成都】
如图,在平面直角坐标系xOy 中,△ABC 的A 、B 两个顶点在x 轴上,顶点C 在y 轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC 的面积S △ABC =15,抛物线y=ax 2+bx+c (a≠0)经过A 、B 、C 三点.
(1)求此抛物线的函数表达式;
(2)设E 是y 轴右侧抛物线上异于点B 的一个动点,过点E 作x 轴的平行线交抛物线于另一点F ,过点F 作FG 垂直于x 轴于点G ,再过点E 作EH 垂直于x 轴于点H ,得到矩形EFGH .则在点E 的运动过程中,当矩形EFGH 为正方形时,求出该正方形的边长; (3)在抛物线上是否存在异于B 、C 的点M ,使△MBC 中BC 边上的高为?若存在,
求出点M 的坐标;若不存在,请说明理由.
【例2二次函数中的线段面积最值问题】
如图,抛物线与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。

交Y 轴于C
(1)求该抛物线的解析式与△ABC 的面积。

(2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。

若没有,请说明理由
(3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂
直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写
出X 的取值范围?当E 运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标? (4)在(3)的情况下直线BC 与抛物线的对称轴交于点H 。

当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形?
(5)在(4)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大?
c bx x y ++-=
2
【变式练习.雅安】
如图,已知二次函数c x ax y ++=22)0(>a 图像的顶点M 在反比例函数x
y 3
=上,且与x 轴交于AB 两点。

(1)若二次函数的对称轴为2
1
-
=x ,试求c a ,的值; (2)在(1)的条件下求AB 的长;
(3)若二次函数的对称轴与x 轴的交点为N ,当NO+MN 取最小值时,试求二次函数的解析式。

【例3 二次函数中比例的定值、最值问题】
【成都】如图,抛物线y=ax 2
+c (a ≠0)经过C (2,0),D (0,﹣1)两点,并与直线y=kx 交于A 、B 两点,直线l 过点E (0,﹣2)且平行于x 轴,过A 、B 两点分别作直线l 的垂线,垂足分别为点M 、N .
(1)求此抛物线的解析式; (2)求证:AO=AM ; (3)探究: ①当k=0时,直线y=kx 与x 轴重合,求出此时
11
AM BN
+的值; ②试说明无论k 取何值,
11AM BN
+的值都等于同一个常数.
在平面直角坐标系中,已知抛物线2
12
y x bx c =-
++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限. (1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标; ii )取BC 的中点N ,连接,NP BQ .试探究PQ
NP BQ
+是否存在最大值?若存在,求出该最
大值;若不存在,请说明理由.
如图,在平面直角坐标系xOy中,一次函数(m为常数)的图象与x轴交于点A
(﹣3,0),与y轴交于点C.以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过A,C两点,并与x轴的正半轴交于点B.
(1)求m的值及抛物线的函数表达式;
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值,并写出探究过程.。

相关文档
最新文档