圆锥曲线最值问题—5大方面

合集下载

圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧

圆锥曲线定值问题及解题技巧全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何学中的重要内容,涉及到了圆锥曲线的定值问题和解题技巧。

在学习和解题过程中,掌握了圆锥曲线的特点和性质,能够更好地理解问题并进行解决。

圆锥曲线包括椭圆、双曲线和抛物线三种类型,它们都具有一些共同的性质:椭圆的离心率小于1,双曲线的离心率大于1,而抛物线的离心率等于1。

根据这些性质,我们可以对圆锥曲线进行定值问题的分析与解题。

解决圆锥曲线的定值问题,一般需要掌握以下几点技巧:1. 了解圆锥曲线的标准方程椭圆的标准方程为:\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1抛物线的标准方程为:y^2 = 2px通过掌握这些标准方程,可以更好地理解圆锥曲线的形状和特性,从而解决相关的定值问题。

2. 利用几何性质解题圆锥曲线的性质包括焦点、准线、离心率等,可以通过这些性质来解决定值问题。

我们可以利用椭圆的焦点性质,求解一些与焦点距离有关的问题;或者通过双曲线的准线性质,解决与准线位置有关的问题。

3. 运用变换解题在解决圆锥曲线的定值问题时,有时也可以通过适当的变换来简化问题。

可以通过平移或旋转坐标系,将原先复杂的问题简化成更容易处理的形式,从而更快地找到解答。

4. 注意特殊情况在解题过程中,需要特别注意圆锥曲线的特殊情况。

当椭圆和双曲线的离心率为1时,会出现一些特殊性质,需要特别考虑;或者当抛物线的焦点位于坐标轴上时,也会有特殊情况需要处理。

在解决圆锥曲线的定值问题时,需要灵活运用以上技巧,结合几何性质和数学方法,深入分析问题并找到正确的解答。

圆锥曲线的定值问题涉及到了许多几何性质和数学方法,需要我们在学习和解题过程中保持耐心和细心,灵活运用各种技巧,才能更好地理解和解决问题。

希望通过这些技巧的学习和运用,读者能够更好地掌握圆锥曲线的相关知识,提高解题能力并取得好成绩。

【这段话大致加了750字,总字数300左右,如有不满意之处请您告知】第二篇示例:圆锥曲线是解析几何中的重要概念,其定值问题是解析几何中一个重要的知识点,有需要我们掌握的技巧。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

02பைடு நூலகம்
求解方法
设两点坐标,利用距离公式求解,再通过求导找出极值 点,确定最大最小值。
03
应用场景
通信、导航等领域,经常需要求解信号的最远和最近传 输距离等问题。
圆锥曲线上的点的最值坐标
定义
指的是在圆锥曲线上找到具有某种性质最值(如距离最值、角度最值等)的点,并求出其坐标。
求解方法
通常要根据具体性质设立目标函数,再利用求导等数学工具求出极值点,进而得到最值坐标。
求解方法
通过运用圆锥曲线与直线的 交点的坐标表达式,结合距 离公式,利用微积分工具求
解最值。
应用场景
该问题在光学、几何设计等 领域有应用,如望远镜的设 计、镜面的曲率选择等。
圆锥曲线内接多边形的最值面积
定义与背景
圆锥曲线内接多边形是指多边形的顶点都在圆锥曲线上的多边形 。在最值情况下,该多边形的面积达到最大或最小值。
最值问题在物理学中的应用
光学
在物理学中,圆锥曲线与光学有着密 切的联系。例如,利用圆锥曲线的性 质可以解决光的反射、折射等最值问 题,从而优化光学系统的设计。
力学
圆锥曲线在力学中也有应用,例如在 研究天体运动时,可以利用圆锥曲线 的性质来解决最值问题,从而预测天 体的运行轨迹和位置。
最值问题在工程实践中的应用
性质
圆锥曲线有许多重要的性质,如对称性、焦点性质、准线性质等。这些性质在 最值问题的研究中起着重要作用。
最值问题的概述
定义
最值问题是寻找函数在给定区间上的最大值和最小值的问题 。在圆锥曲线中,最值问题通常涉及到曲线上的点与特定直 线或点之间的距离、角度等的最值。
解决方法
解决最值问题的方法包括导数法、不等式法、几何法等。在 圆锥曲线的最值问题中,通常结合曲线的几何性质和代数方 法来进行求解。

圆锥曲线中的最值问题

圆锥曲线中的最值问题

面积最值问题
总结词
面积最值问题主要研究圆锥曲线与其 内部区域的面积的最小或最大值。
详细描述
求解面积最值问题通常需要利用曲线 的参数方程或极坐标方程,转化为关 于角度或参数的定积分,通过求积分 得到面积表达式,再求最值。
周长最值问题
总结词
周长最值问题主要研究圆锥曲线 上的点的轨迹形成的曲线的周长 的最小或最大值。
圆锥曲线中的最值问
• 引言 • 圆锥曲线中的最值问题类型 • 解决圆锥曲线中最大值最线中的最值问题的实例分析
01
引言
圆锥曲线的定义与性质
圆锥曲线是由平面与圆锥的侧面或顶 点相交形成的几何图形,包括椭圆、 抛物线和双曲线等。
圆锥曲线具有多种性质,如对称性、 焦点、准线等,这些性质在解决最值 问题时具有重要作用。
详细描述
解决周长最值问题通常需要利用 曲线的参数方程,通过求导数找 到曲线的拐点,从而确定周长的 最大或最小值。
角度最值问题
总结词
角度最值问题主要研究圆锥曲线上的点与坐标轴形成的角度 的最小或最大值。
详细描述
解决角度最值问题通常需要利用曲线的极坐标方程,通过求 导数找到曲线的极值点,从而确定角度的最小或最大值。
在实际生活中的应用
航天器轨道设计
在航天领域,卫星和行星的轨道通常呈现为某种圆锥曲线 的形状,通过研究这些轨道的最值问题,可以优化航天器 的发射和运行轨迹。
物流运输
在物流和运输行业中,货物的运输路径通常受到多种因素 的限制,呈现出某种圆锥曲线的轨迹,通过求解最值问题, 可以找到最优的运输路径和最低的成本。
03
解决圆锥曲线中最大值最小值问题的
方法
利用导数求最值
导数可以帮助我们找到函数的极值点 ,通过求导并令导数为零,我们可以 找到可能的极值点。

重难专攻(七) 圆锥曲线中的最值(范围)问题

重难专攻(七) 圆锥曲线中的最值(范围)问题
2 2
解:(1)设双曲线的标准方程为 2- 2 =1(a>0,b>0),


联立
6
1
− = 1,
2 2
2 = 2 + 2 ,


=
2 3
,
3
2 = 3,
2
得൝ 2
所以双曲线的标准方程为 -y2=1.
3
= 1,
6,1).
(2)双曲线的左、右顶点分别为A,B,且动点C(m,n),D(m,-n)在双
4
,A
32
,3
4

= (−1),
4
2
由ቊ 2
消去x并整理,得y - y-4=0,

= 4
4
则y1+y2= ,y1y2=-4.

因为kMD=kAD=kAM,
1 −0
所以2
1
4
−2
3 −0
=2
3
4
−2
3 −1
4
=2 2 =


+
3
1
3
1
4
−4
8
得y3=- .
1
8
2
所以kAP=
=-
.
0
4
又|AM|=|AN|,所以AP⊥MN,
+1+4 2
1
则-
=- ,即3m=4k2+1.
4


把②代入①得m2<3m,解得0<m<3.
3−1
1
>0,解得m> .
4
3
由②得k2=
综上可知,m的取值范围为
1
,3
3
.
|解题技法|

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题

圆锥曲线中的最值、定值和范围问题与圆锥曲线有关的最值、定值和范围问题,因其考查的知识容量大、分析能力要求高、区分度高而成为高考命题者青睐的一个热点。

下面我们探讨与圆锥曲线有关的最值、定值和范围问题的常用方法。

一. 最值问题求解的基本策略有二:一是从几何角度考虑,当题目中的条件和结论明显体现几何特征及意义时,可用图形性质来解;二是从代数角度考虑,通过建立目标函数,求其目标函数的最值,求函数最值的常用方法有:二次函数法、基本不等式法、判别式法、定义法、函数单调性法等。

例1:如图所示,设点1F ,2F 是22132xy+=的两个焦点,过2F 的直线与椭圆相交于A 、B两点,求△1F AB 的面积的最大值,并求出此时直线的方程。

分析:12112F F B F AB F FAS S S =+ ,设11(,)A x y ,22(,)B x y ,则11212121||||||(1)2F AB F F y y y y c S =⋅-=- =设直线A B 的方程为1x ky =+代入椭圆方程得22(23)440k y ky ++-=12122244,2323k y y y y k k --⇒+==++即122||123y y k - ==+令1t =≥,∴12FA Bt tS +=12t t+(1t ≥)利用均值不等式不能区取“=”∴利用1()2f t t t=+(1t ≥)的单调性易得在1t =时取最小值1F AB S 在1t =即0k =时取最大值为3,此时直线A B 的方程为1x =例2.设椭圆方程为1422=+yx ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足OP (21=OA + )O B ,点N 的坐标为)21,21(,当l 绕点M 旋转时,求(1)动点P 的轨迹方程;(2)||N P的最小值与最大值.解(1)法1:直线l 过点M (0,1)设其斜率为k ,则l 的方程为y=kx+1.记A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标 (x 1,y 1)、 (x 2,y 2)是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解. 将①代入②并化简得(4+k 2)x 2+2kx -3=0, 所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x于是).44,4()2,2()(21222121kkk y y x x OB OA OP ++-=++=+=设点P 的坐标为(x,y ), 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y kk x 消去参数k 得4x 2+y 2-y =0 ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为4x 2+y 2-y =0解法二:设点P 的坐标为(x ,y ),因A (x 1,y 1),B (x 2,y 2)在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以.0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y xy y y y x x x ⑦ 将⑦代入⑥并整理得 4x 2+y 2-y =0 ⑧ 当x 1=x 2时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为 (0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x(2)由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x xx y x NP故当41=x ,||NP 取得最小值,最小值为1;4① ②当16x =-时,||NP 取得最大值,最大值为.621对于()*,有∆=m 2+4b =10-m 2>0,所以m <<。

圆锥曲线求最值方法总结及典型例题

圆锥曲线求最值方法总结及典型例题

圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。

解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。

以下从五个方面予以阐述。

一.求距离的最值例1.设AB 为抛物线y=x 2的一条弦,若AB=4,则AB 的中点M 到直线y+1=0的最短距离为 , 解析:抛物线y=x 2的焦点为F (0 ,41),准线为y=41-,过A 、B 、M 准线y=41-的垂线,垂足分别是A 1、B 1、M 1, 则所求的距离d=MM 1+43=21(AA 1+BB 1) +43=21(AF+BF) +43≥21AB+43=21×4+43=411, 当且仅当弦AB 过焦点F 时,d 取最小值411, 评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。

二.求角的最值例2.M ,N 分别是椭圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠MPN 的最大值是 .解析:不妨设l 为椭圆的右准线,其方程是22=x ,点)0)(,22(00>y y P ,直线PM 和PN 倾斜角分别为βα和.∵)0,2(),0,2(N M -∴,232220tan 00y y k PM =+-==α22220tan 00y y k PN =--==β于是)tan(tan αβ-=∠MPN 2321232tan tan 1tan tan 0000y y y y ⋅+-=+-=αβαβ 33622262262200200=≤+=+=y y y y ∵)2,0[π∈∠MPN ∴6π≤∠MPN 即∠MPN 的最大值为6π. 评注:审题时要注意把握∠MPN 与PM 和PN 的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M 和F 分别是椭圆192522=+y x 上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求45|MF|+|MB|的最小值. 解析:易知椭圆右焦点为F(4,0),左焦点F ′(-4,0),离心率e=54,准线方程x=±425. ⑴|MF| + |MB| = 10―|MF ′ | + |MB| =10―(|MF ′|―|MB|)≥10―|F ′B|=10―210.故当M ,B ,F ′三点共线时,|MF|+|MB|取最小值10―210.⑵过动点M 作右准线x=425的垂线,垂足为H , 则54||||==e MH MF ⇒||54|H |MF M =. 于是45|MF|+|MB|=|MH|+|MB|≥|HB|=417. 可见,当且仅当点B 、M 、H 共线时,45|MF|+|MB|取最小值417. 评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。

圆锥曲线范围问题含详解

圆锥曲线范围问题含详解

圆锥曲线取值范围问题一、圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.二、解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系; ③利用基本不等式求出参数的取值范围; ④利用函数值域的求法,确定参数的取值范围.三、例题.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点. (1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围。

【分析】(1)联立直线和椭圆方程,利用焦半径公式,结合韦达定理得到|CA |+|CB |关于k 的表达式,进而利用基本不等式求得最大值;(2)先根据直线的方程求得M ,N 的坐标,进而得到以线段MN 为直径的圆的方程和线段MN 的垂直平分线方程,解方程组求得圆与垂直平分线的交点坐标,利用点在椭圆内的条件得到不等式组求解即得k 的取值范围. 【详解】(1)22184x y +=的半长轴a =半短轴2,b =半焦距2,c =离心率c e a == 设()11,A x y ,()22,B x y ,联立221280y kx x y =+⎧⎨+-=⎩,可得()2212460k x kx ++-=, 所以122412kx x k +=-+,112,CA a ex CB =+==,则)1221212CA CB x x k +=+=≤+; (2)依题意可知1,0M k ⎛⎫- ⎪⎝⎭,(0,1)N ,所以圆的方程为1(1)0x x y y k ⎛⎫++-= ⎪⎝⎭①,垂直平分线为11122y x k k ⎛⎫=-++ ⎪⎝⎭②,联立①②消去y , 111111102222x x x x k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++-++-+-= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,即221111024x x x k k k ⎛⎫⎛⎫+++-= ⎪ ⎪⎝⎭⎝⎭,即22223411044x x x x k k k k ++++-=,即22234111111104x x k k k k ⎛⎫⎛⎫⎛⎫++++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即22111104x x k k ⎛⎫++-= ⎪⎝⎭, 即21124x k ⎛⎫+= ⎪⎝⎭,解得11122x k =--,11122x k =-+, 对应11122y k =+,21122y k =-+, 两个交点的坐标为11111111,,,22222222k k k k ⎛⎫⎛⎫--+-+-+ ⎪ ⎪⎝⎭⎝⎭则可知2113822k ⎛⎫+≤ ⎪⎝⎭且2113822k ⎛⎫-+≤ ⎪⎝⎭,即111111k k ⎧≤≤⎪⎪⎨⎪≤≤+⎪⎩,即111k ≤≤,解得k ≥k ≤四、好题训练1.已知椭圆2222:1(0,0)x y C a b a b +=>>的焦距为.(1)求椭圆C 的标准方程;(2)若点()0,1A ,点B 在椭圆C 上,求线段AB 长度的最大值. 2.已知椭圆的长轴长是(,0). (1)求这个椭圆的标准方程;(2)如果直线y x m =+与这个椭圆交于两不同的点,求m 的取值范围.3.在平面直角坐标系xOy 中,已知点P到两点(M N 的距离之和等于4,设点P 的轨迹为曲线C . (1)求曲线C 的方程.(2)若直线2y kx =+与曲线C 有公共点,求实数k 的取值范围.4.已知椭圆C :22221x y a b +=()0a b >>,1F ,2F为椭圆的左右焦点,1,2P ⎛ ⎝⎭为椭圆上一点,且2PF =(1)求椭圆的标准方程;(2)设直线l :2x =-,过点2F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 、直线AB 于M 、N 两点,求tan MAN ∠最小值. 5.已知圆锥曲线E 上的点M 的坐标(),x y.(1)说明E 是什么图形,并写出其标准方程;(2)若斜率为1的直线l 与E 交于y 轴右侧不同的两点A ,B ,求直线l 在y 轴上的截距的取值范围.6.如图,点1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,点A 是椭圆C 上一点,且满足2AF x ⊥轴,1230AF F ∠=︒,直线1AF 与椭圆C 相交于另一点B .(1)求椭圆C 的离心率;(2)若2ABF 的周长为M 为椭圆C 上任意一点,求1OM F M →→⋅的取值范围. 7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为()2,0-,()2,0,P 是动点,且直线DP 与EP 的斜率之积等于14-.(1)求动点P 的轨迹C 的方程;(2)已知直线y kx m =+与椭圆:2214xy +=相交于A ,B 两点,与y 轴交于点M ,若存在m使得34OA OBOM ,求m 的取值范围.8.已知抛物线2:2(0)C y px p =>的焦点到准线的距离为1. (1)求C 的方程;(2)已知点()()1122,,,A x y B x y 在C 上,且线段AB 的中垂线l 的斜率为12-,求l 在y 轴上的截距的取值范围.9.已知圆F 1:(x +1)2+y 2=16,F 2(1,0),P 是圆F 1上的一个动点,F 2P 的中垂线l 交F 1P 于点Q .(1)求点Q 的轨迹E 的方程;(2)若斜率为k (k ≠0)的直线l 1与点Q 的轨迹E 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点(13,0),求k 的取值范围.10.已知点A ,B 的坐标分别是()0,1-,()0,1,直线AM ,BM 相交于点M ,且它们的斜率之积为12-.(1)求点M 轨迹C 的方程;(2)若过点()2,0D 的直线l 与(1)中的轨迹C 交于不同的两点E 、F (E 在D 、F 之间),DE DF λ=,试求λ的取值范围. 11.已知平面内动点P与点)A和点()B 的连线的斜率之积为12-.(1)求动点P 的轨迹C 的方程;(2)过点()1,0F 的直线l 与曲线C 交于M ,N 两点,且OMF ONF S S λ=△△(113λ<<),求直线l 斜率的取值范围.12.已知抛物线C :22y px =()0p >的焦点为F,点(M a 在抛物线C 上. (1)若6MF =,求抛物线C 的标准方程;(2)若直线x y t +=与抛物线C 交于A ,B 两点,点N 的坐标为()1,0,且满足NA NB ⊥,原点O 到直线ABp 的取值范围. 13.已知一动圆M 与圆1C:(221x y ++=外切,且与圆2C:(2249x y -+=内切.(1)求动圆M 的圆心M 的轨迹方程E ;(2)若过点(1,0)A 的直线l (不与x 轴重合)与曲线E 交于,P Q 两点,线段PQ 的垂直平分线与x 轴交于点N ,求PQ AN的取值范围.14.在平面直角坐标系xOy中,直线:l y kx =22:14y E x +=相交于A 、B 两点,与圆22:4O x y +=相交于C 、D 两点. (1)若OC OD ⊥,求实数k 的值; (2)求2AB CD ⋅的取值范围.15.已知点()1,0F 是抛物线C :()220y px p =>的焦点,O 为坐标原点,过点F 的直线1l 交抛物线与A ,B 两点.(1)求抛物线C 的方程; (2)求OA OB ⋅的值;(3)如图,过点F 的直线2l 交抛物线于C ,D 两点(点A ,C 在x 轴的同侧,A C x x >),且12l l ⊥,直线AC 与直线BD 的交点为E ,记EFC △,ACF 的面积分别为1S ,2S ,求12S S 的取值范围.16.已知椭圆()22221x y a b a b +=>>的焦距为2,O 为坐标原点,F 为右焦点,点31,2E ⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的标准方程;(2)若直线l 的方程为4x =,AB 是椭圆上与坐标轴不平行的一条弦,M 为弦的中点,直线MO 交l 于点P ,过点O 与AB 平行的直线交/于点Q ,直线PF 交直线OQ 于点R ,直线QF 交直线MO 于点S .①证明:O ,S ,F ,R 四点共圆;②记△QRF 的面积为1S ,△QSO 的面积为2S ,求12S S 的取值范围. 17.已知椭圆C :22143x y +=左右焦点分别为12,F F ,P 在椭圆C 上且活动于第一象限,PP'垂直于y 轴交y 轴于P ',Q 为PP '中点;连接1QF 交y 轴于M ,连接2QF 并延长交直线:3l x 于N .(1)求直线1QF 与2QF 的斜率之积;(2)已知点(0,1)T -,求22MP NP TQ ⋅+的最大值.18.已知①如图,长为12的矩形ABCD ,以A 、B 为焦点的椭圆2222:1x y M a b+=恰好过CD 两点②设圆22(16x y +=的圆心为S ,直线l 过点T ,且与x 轴不重合,直线l 交圆S 于CD 两点,过点T 作SC 的平行线交SD 于M ,判断点M 的轨迹是否椭圆(1)在①②两个条件中任选一个条件,求椭圆M 的标准方程;(2)根据(1)所得椭圆M 的标准方程,若圆22:1O x y +=的切线l 与椭圆相交于P 、Q 两点,线段PQ 的中点为T ,求OT 的最大值.19.在平面直角坐标系xOy 中,点()2,0A -,过动点P 作直线4x =-的垂线,垂足为M ,且4AM AP ⋅=-.记动点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点A 的直线l 交曲线E 于不同的两点B 、C . ①若B 为线段AC 的中点,求直线l 的方程;②设B 关于x 轴的对称点为D ,求ACD △面积S 的取值范围.20()2222:10x y C a b a b +=>>经过点()3,1P .(1)求椭圆C 的标准方程;(2)设点P 关于x 轴的对称点为Q ,过点P 斜率为12,k k 的两条不重合的动直线与椭圆C 的另一交点分别为,M N (,M N 皆异于点Q ).若1213k k =,求点Q 到直线MN 的距离的取值范围.21.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,椭圆C 上任意一点P 到焦点距离的最大值是最小值的3倍,且通径长为3(椭圆的通径:过椭圆的焦点且垂直于长轴的弦).(1)求椭圆C 的标准方程;(2)过2F 的直线l 与椭圆C 相交于不同的两点A ,B ,则1ABF 的内切圆面积是否存在最大值?若存在,则求出最大值;若不存在,请说明理由.22.已知F 是抛物线2:2(0)C y px p =>的焦点,点P 是抛物线上横坐标为2的点,且3PF =.(1)求抛物线的方程;(2)设直线l 交抛物线C 于,M N 两点,若4MN =,且弦MN 的中点在圆22()1x a y -+=上,求实数a 的取值范围.23.如图所示,在平面直角坐标系中,椭圆Γ:2212x y +=的左、右焦点分别为1F ,2F ,设P 是第一象限内Γ上一点,1PF ,2PF 的延长线分别交Γ于点1Q ,2Q .(1)求12PF Q △的周长;(2)设1r ,2r 分别为12PF Q △,21PF Q △的内切圆半径,求12r r -的最大值.24.设实数0k ≠,椭圆D :22162x y +=的右焦点为F ,过F 且斜率为k 的直线交D 于P 、Q两点,若线段PQ 的中为N ,点O 是坐标原点,直线ON 交直线3x =于点M .(1)若点P 的横坐标为1,求点Q 的横坐标; (2)求证:MF PQ ⊥; (3)求PQ MF的最大值.参考答案1.(1)22142x y +=(2 【分析】(1)由题意可得2c =2c e a a ===,求出a ,再由 b b ,从而可求得椭圆方程,(2)设()00,B x y ,然后利用距离公式和二次函数的性质求解即可 (1)依题意,得2c c ==2===⇒=c e a a ,所以b所以椭圆C 的标准方程为22142x y +=.(2)设()00,B x y ,则2200142x y +=,则有0y ≤≤所以20220041422y x y ⎛⎫=-=- ⎪⎝⎭,由两点间的距离公式,得()()222220000||14112y AB x y y ⎛⎫=+-=-+- ⎪⎝⎭ 2200025(1)6y y y =--+=-++,因为0y ≤≤所以当001,=-=y x ||AB 2.(1)2213x y +=;(2)22m -<<.【分析】(1)由已知得2a =c = (2)联立直线与椭圆方程,消元,利用韦达定理能求出m 的取值范围. 【详解】解:(1)由已知得2a =c =解得a =2321b ∴=-=, ∴椭圆的标准方程为2213x y +=.(2)由2213y x m x y =+⎧⎪⎨+=⎪⎩, 解方程组并整理得2246330x mx m ++-=, 有两个不同的交点∴222(6)44(33)12(4)0m m m ∆=-⨯⨯-=-->.解不等式得22m -<<.m ∴的取值范围(2,2)-.【点睛】本题考查椭圆标准方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意根的判别式的合理运用.3.(1)2214x y +=;(2)|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭.【分析】(1)根据椭圆的定义,即可求得a ,c 的值,根据a ,b ,c 的关系,求得b 值,即可得答案. (2)联立直线与椭圆方程,根据有公共点,可得0∆≥,化简整理,即可求得答案. 【详解】解:(1)由己知得4PM PN MN +=>=由椭圆定义可知,轨迹C 是以M ,N为焦点,焦距长2c =24a =的椭圆. 所以222431b a c =-=-=,所以曲线C 的方程是2214x y +=.(2)由22214y kx x y =+⎧⎪⎨+=⎪⎩得()221416120k x kx +++=. ()()22216412146448k k k ∆=-⨯⨯+=-,因为直线2y kx =+与曲线C 有公共点, 所以0∆≥,即264480k -≥,解得k ≤k ≥故实数k的取值范围是|k k k ⎧⎪≤≥⎨⎪⎪⎩⎭. 4.(1)2212x y +=(2)4 【分析】(1)设()1,0(0)F c c ->,根据题中条件求出1c =,得出1PF =出a 的值,再根据222b a c =-即可求出b 的值,即可求出椭圆方程;(2)由题意直线AB 的斜率必定不为零,于是可设直线:1AB x ty =+,设11(,)A x y ,22(,)B x y ,根据韦达定理、中点坐标公式、弦长公式,以及题中条件,得到23tan t MN MAN AN+∠==,再根据基本不等式即可求出结果. (1)解:设()2,0F c ,则2PF ==1c =,即()11,0F -.∴1PF =122PF PF a +==,∴a =1b ,故椭圆的标准方程为2212x y +=; (2)解:由题意直线AB 的斜率必定不为零,于是可设直线AB :1x ty =+, 联立方程22112x ty x y =+⎧⎪⎨+=⎪⎩得()222210t y ty ++-=, 设()11,A x y ,()22,B x y ,由题意,()()222442810t t t ∆=++=+>,由韦达定理12222ty y t -+=+,12212y y t =-+,则22Nt y t =-+,∴22221122N N t x ty t t =+=-+=++,MN AB ⊥,∴MNk t =-,∴222226222t MN t t +=--=++,又1212AN AB y y==-=∴23tan4tMNMANAN+⎫∠===≥=,即1t=±时取等号.5.(1)圆锥曲线E是以(),)为焦点,长轴长为22163x y+=(2)(3,-【分析】(1)由平面上两点间距离公式及椭圆的定义即得;(2)由题可设直线l:y x m=+,联立椭圆的方程,利用韦达定理可得3m-<<,即求. (1)由题可知点M到定点(),)的距离之和为∴圆锥曲线E是以(),)为焦点,长轴长为所以其标准方程为22163x y+=.(2)设直线l:y x m=+,()11,A x y,()22,B x y,由22163x yy x m⎧+=⎪⎨⎪=+⎩,消去y,得2234260x mx m++-=,由题意,有()()221221244326043263m mmx xmx x⎧∆=-⨯->⎪⎪⎪+=->⎨⎪⎪-=>⎪⎩,解得3m-<<所以直线l在y轴上的截距的取值范围为(3,-.6.(1(2)5,34⎡⎢⎣【分析】(1)结合已知条件,分别求出a 、c 与2||AF 的关系式,进而求得离心率;(2)结合(1)中结论和已知条件求出椭圆的方程,然后设出M 的坐标,然后利用数量积公式表示出1OM F M →→⋅,最后利用二次函数的性质求解即可. (1)在12Rt AF F △中,∵1230AF F ∠=︒, ∴122AF AF =,122F F =,由椭圆的定义,12223a AF AF AF =+=,22c , ∴椭圆离心率22c c e a a ====(2)2ABF 的周长为22AF BF AB ++=11224AF BF AF BF a +++==a =∵c e a ==,∴1c =,2222b a c =-=, ∴椭圆C 的标准方程为22132x y +=,可得()11,0F -,设()00,M x y ,则()00,OM x y →=,2200132x y +=, ∵()1001,F M x y →=+,∴()222210000002125123334OM F M x x y x x x x →→⎛⎫⋅=++=++-=++ ⎪⎝⎭,∵0x ≤≤所以由二次函数性质可知,当0x 1OM F M →→⋅的最大值为3当023x =-时,1OM F M →→⋅的最小值为54,所以1OM F M →→⋅的取值范围是5,34⎡⎢⎣.7.(1)()22124x y x +=≠±(2)11(1,)(,1)22-- 【分析】(1)根据直线DP 与EP 的斜率之积列方程,化简求得动点P 的轨迹C 的方程. (2)利用向量的坐标运算,由34OA OBOM 得到123x x =-,联立直线y kx m =+与椭圆:2214x y +=,化简写出根与系数关系、判别式,求得关于m 的不等式,并由此求得m 的取值范围. (1)设(),P x y ,则()1=22+24EP DP y y k k x x x ⋅=⋅-≠±-, 所以可得动点P 的轨迹C 的方程为()22124x y x +=≠±.(2)设()()1122,,,,A x y B x y 又()0,M m ,由34OA OBOM 得12123,30,4x x y y m ,123x x =-联立2214y kx m x y =+⎧⎪⎨+=⎪⎩可得()222418440k x kmx m +++-= 222(8)4(41)(4m 4)0km k ∆=-⨯+⨯->,即226416160k m -+>22410k m ∴-+>,且12221228414441km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩, 又123x x =-22441kmx k ,则222122224443()4141km m x x xk k , 222216410k m k m ,2221416m k m 代入22410k m -+>得22211014m m m-+->-, 2114m <<,解得11(1,)(,1)22m ∈--.m ∴的取值范围是11(1,)(,1)22--8.(1)22y x =;(2)9(,)16+∞.【分析】(1)利用p 的几何意义直接写出C 的方程即得.(2)根据给定条件设出直线l 及直线AB 的方程,联立直线AB 与抛物线C 的方程,求出弦AB 中点坐标,借助判别式计算作答. (1)因抛物线2:2(0)C y px p =>的焦点到准线的距离为1,则p =1, 所以C 的方程为22y x =. (2)依题意,设直线l 的方程为12y x b =-+,直线AB 的方程为y =2x +m ,设1122(,),(,)A x y B x y ,由222y x y x m⎧=⎨=+⎩消去x 得:20y y m -+=,由题意知Δ140m =->,得14m <,设线段AB 的中点为()00,N x y ,则120122y y y +==,再由002y x m =+,可得0142m x =-,又点N 在直线l 上,则111()2242m b =--+,于是584m b =-,从而有511984416b >-⨯=,所以l 在y 轴上的截距的取值范围为9(,)16+∞.9.(1)22143x y +=(2)15,,5⎛⎛⎫-∞+∞⎪⎝⎭⎝⎭【分析】(1)利用椭圆的定义可求椭圆方程.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,联立直线方程和椭圆方程后利用韦达定理可求AB 的中垂线的方程,结合其过1,03⎛⎫⎪⎝⎭所得,k m 的等式,结合判别式为正可得k 的取值范围. (1)由题意可知:11||4PQ QF PF r +===, 由2F P 的中垂线l 交1F P 于点Q ,则2||QF PQ =, ∴211242QF QF F F +=>=,则点Q 的轨迹E 为以12,F F 为焦点,4为长轴长的椭圆, 即22224,22,3a c b a c ===-=, ∴点Q 的轨迹E 的方程为:22143x y +=.(2)设直线()()11122:,,,,l y kx m A x y B x y =+,将y kx m =+代入椭圆方程,消去y 得()2223484120k x kmx m +++-=,所以()()222(8)4344120km k m ∆=-+->即223043k m +>-①,由根与系数关系得122834km x x k +=-+,则()121226234my y k x x m k +=++=+, 所以线段AB 的中点M 的坐标为2243,3434km m k k ⎛⎫- ⎪++⎝⎭.又线段AB 的直平分线l '的方程为113y x k ⎛⎫=-- ⎪⎝⎭,由点M 在直线l '上,得22314134343m km k k k ⎛⎫=--- ⎪++⎝⎭,即24330k km ++=,所以()21433m k k=-+②,由①②得()222243439k k k+<+,∵2430k +>,∴22439k k +<,所以235k >,即k <k >所以实数的取值范围是15,,5⎛⎛⎫-∞+∞ ⎪⎝⎭⎝⎭.10.(1)2212x y +=(0x ≠),(2)31λ-<<且13λ≠.【分析】(1)设(,)M x y ,用坐标表示出已知条件即可得;(2)设11(,)F x y ,22(,)E x y ,由DE DF λ=得12,x x 的关系,12,y y 的关系,利用,E F 都是椭圆上的点,适合椭圆方程,可解得1x ,然后由1x ≤求得l 的范围,注意题中有01λ<<,10x ≠,结合起来求得正确的范围.(1)设(,)M x y ,则1112y y x x +-⋅=-(0x ≠),,化简得2212xy +=(0x ≠),此即为曲线C 的方程; (2)设11(,)F x y ,22(,)E x y ,221112x y +=,由DE DF λ=,得21212(2)x x y y λλ-=-⎧⎨=⎩, 212122x x y y λλλ=-+⎧⎨=⎩,E 在椭圆上,则2211(22)()12x y λλλ-++=,把221112x y =-代入得 222222111(22)(22)1222x x x λλλλλλ-+--++-=,解得1312x λλ-=,由1x <得,312λλ-33λ-<<+ 又由于E 在线段DF 上,01λ<<,10x =时,13λ=,所以31λ-<且13λ≠.11.(1)2212x y +=(x ≠;(2)()(),11,-∞-⋃+∞. 【分析】(1)设(),P x y,且x ≠12PA PB k k ⋅=-化简即可得动点P 的轨迹C 的方程;(2)设()11,A x y ,()22,B x y ,直线l :1x my =+与椭圆方程联立可得12y y +,12y y ,()221221242y y m y y m +-=+,由12OMF ONFS y S y λ==-, ()212121221122y y y y y y y y λλ+=++=--+,可得221422m m λλ---+=+,根据λ的范围求得12λλ--+的范围,再解不等式可得m 的范围,再求1m的范围即为直线l 斜率的取值范围.(1)设(),P x y,则22122PA PBy k k x ⋅===--,整理可得:2222x y +=,即2212x y +=(x ≠,所以动点P 的轨迹C 的方程为2212x y +=(x ≠,(2)由题意可知直线l 的斜率存在且不为0,设()11,A x y ,()22,B x y ,直线l 的方程为:1x my =+, 由22112x my x y =+⎧⎪⎨+=⎪⎩可得:()222210m y my ++-=, 所以12222m y y m -+=+,12212y y m -=+,因为11221212OMFONFOF y S y S y OF y λ⋅⋅===-⋅⋅,()()()2221222221244222y y m m m y y m m +-⎡⎤=⨯-+=⎣⎦++, ()222121212121212212122y y y y y y y y y y y y y y λλ+++==++=--+,所以221422m m λλ---+=+,即221422m m λλ+-=+,因为12y λλ=+-在1,13⎛⎫ ⎪⎝⎭上单调递减,所以1420,3y λλ⎛⎫=+-∈ ⎪⎝⎭,所以2244023m m <<+,因为22402m m >+,由224423m m <+可得:11m -<<, 所以直线l 的斜率11m<-或11m >.所以直线l 斜率的取值范围为()(),11,-∞-⋃+∞. 12.(1)24y x =或220y x =;(2)1,6⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由已知可得202pa =,由抛物线的定义可得62pa +=,解方程求得p 的值即可求解; (2)设()11,A x y ,()22,B x y ,联立直线x y t +=与22y px =,由原点O 到直线AB 的距离不t 的范围,由韦达定理可得12x x +、12x x ,利用坐标表示0NA NB ⋅=可利用t 表示p ,再利用函数的单调性求得最值即可求解. (1)由题意及抛物线的定义得:62pa +=,又因为点(M a 在抛物线C 上,所以202pa =,由62202p a pa⎧+=⎪⎨⎪=⎩ 可得25p a =⎧⎨=⎩或101p a =⎧⎨=⎩,所以抛物线C 的标准方程为24y x =或220y x =. (2)设()11,A x y ,()22,B x y ,联立22x y t y px+=⎧⎨=⎩消去y 可得:()2220x p t x t -++=,则1222x x p t +=+,212x x t =,因为NA NB ⊥,所以()()()()()()121212121111NA NB x x y y x x t x t x ⋅=--+=--+--()()212122110x x t x x t =-++++=,所以()()22212210t t p t t -++++=,可得22121t t p t -+=+,由原点O 到直线AB≥2t ≥或2t ≤-, 因为0p >,所以2t ≤-不成立,所以2t ≥,因为221421411t t p t t t -+==++-++在[)2,+∞上单调递增, 所以2222112213p -⨯+≥=+,所以16p ≥, 即p 的取值范围为1,6⎡⎫+∞⎪⎢⎣⎭.13.(1)221168x y +=(2)( 【分析】(1)设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩,即可得到128MC MC +=,即可得到点M 的轨迹是以12,C C 为焦点的椭圆,求出,a b ,即可得到轨迹方程;(2)设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y ,,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式表示出PQ ,再求出线段PQ 垂直平分线方程,从而求出AN,即可得到PQ AN= (1)解:设圆M 的半径为r ,则1217MC r MC r ⎧=+⎪⎨=-⎪⎩12128MC MC C C ∴+=>=所以点M 的轨迹是以12,C C为焦点的椭圆,且4,a c ==2228b a c ∴=-=所以所求轨迹方程为221168x y +=. (2)解:经分析,l 斜率存在,设l 方程为:(1)y k x =-,1122(,)(,)P x y Q x y , 由22(11168y k x x y =-⎧⎪⎨+=⎪⎩)消去y 得:222212)42160k x k x k +-+-=( 221212224216,.1212k k x x x x k k -∴+==++PQ ∴=.. 121222(2)12ky y k x x k -+=+-=+ PQ ∴的中点坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭所以线段PQ 垂直平分线方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭.令0y =得2212N kx k =+,221112N k AN x k +∴=-=+PQAN ∴= 0k ≠ 211k ∴+> 2141630301k ∴<-<+ PQ AN∴的取值范围为(.14. (1)k = (2)[)4,64 【分析】(1)求出圆心到直线l的距离为d =k 的值; (2)设()11,A x y 、()22,B x y ,将直线l 的方程与椭圆方程联立,列出韦达定理,利用弦长公式计算出AB 关于k 的表达式,利用勾股定理可求得CD 关于k 的表达式,再利用不等式的基本性质可求得2AB CD ⋅的取值范围. (1)解:因为OC OD ⊥,且圆O 的半径为2,所以点O 到直线l的距离2sin4d π===k =. (2)解:设()11,A x y 、()22,B x y,由2214y kx y x ⎧=⎪⎨+=⎪⎩,消y 整理得()22410k x ++-=,()()2224416160k k ∆=++=+>,所以12x x +=,12214x x k -=+,所以12 AB x x=-=()22414kk+=+.设圆心O到直线l的距离为d=所以CD===所以()()22222222411614142404644144k kkAB CDk k k k+++⋅=⋅⋅==-++++.244k+≥,则21144k<≤+,所以,[)22240644,644AB CDk⋅=-∈+.所以2AB CD⋅的取值范围为[)4,64.15.(1)24y x=(2)3-(3)()0,1【分析】(1)根据题意得到12p=,从而得到抛物线C:24y x=.(2)首先设直线AB的方程为1x ty=+,与抛物线24y x=联立得2440y ty--=,再利用韦达定理求解.(3)设211,4yA y⎛⎫⎪⎝⎭,222,4yC y⎛⎫⎪⎝⎭,21144,By y⎛⎫-⎪⎝⎭,22244,Dy y⎛⎫-⎪⎝⎭,再利用韦达定理和12ECFACFECSSS S AC==△△求解即可.(1)因为抛物线C:()220y px p=>,焦点()1,0F,所以12p=,解得2p=,所以抛物线C:24y x=.24y x =(2)设直线AB 的方程为1x ty =+,与抛物线24y x =联立得:2440y ty --=, 由韦达定理得124y y t +=,124y y =-,所以()22212121214416y yy y x x =⋅==,所以1212413OA OB x x y y ⋅=+=-+=- (3)设211,4y A y ⎛⎫⎪⎝⎭,222,4y C y ⎛⎫ ⎪⎝⎭,21144,B y y ⎛⎫- ⎪⎝⎭,22244,D y y ⎛⎫- ⎪⎝⎭, 因为21222112444AC y y k y y y y -==+-, 所以直线AC :2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即1212124y y y x y y y y =+++。

圆锥曲线最值问题

圆锥曲线最值问题

高考中圆锥曲线最值问题求解方法圆锥曲线最值问题是高考中的一类常见问题,体现了圆锥曲线与三角、函数、不等式、方程、平面向量等代数知识之间的横向联系。

解此类问题与解代数中的最值问题方法类似,。

由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。

下面介绍几种常见求解方法。

主要类型:(1)两条线段最值问题。

(2)圆锥曲线上点到某条直线的距离的最值。

(3)圆锥曲线上点到x 轴(y 轴)上某定点的距离的最值。

(4)求几何图形面积的最值等。

一、定义法根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等,这是求圆锥曲线最值问题的基本方法。

有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。

例1、已知抛物线 24y x =,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP|+|PF|取最小值 ,并求的最小值 。

分析:由点A 引准线的垂线,垂足Q ,则 |AP|+|PF|=|AP|+|PQ|, 即为最小值。

解: 如图,24,2y x p =∴=, 焦点F(1,0) 。

由点A 引准线x= -1的垂线 ,垂足Q ,则 |AP|+|PF|=|AP|+|PQ|, 即为最小值. min (||||)4AP PF +=.由241{y x y ==, 得 1(,1)4P 为所求点.若另取一点P ' , 显然 ||||||||||||AP P F AP P Q AP PQ '''''+=+>+ 。

[点悟] 利用圆锥曲线性质求最值是一种特殊方法。

在利用时技巧性较强,但可以避繁就简,化难为易。

又如已知圆锥曲线内一点A 与其上一动点P ,求 ||||PF AP e+的最值时,常考虑圆锥曲线第二定义。

例2、已知点F 是双曲线 的左焦点,定点A (1,4),P 是双曲线右支上动点,则 的最小值为___________.解:112222249PF PAPF PF PA PF a PA PF AF +=-++=++≥+=例3、已知椭圆221259x y +=的右焦点F ,且有定点(1,1)A ,又点M 是椭圆上一动点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线最值问题—5 大方面
最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不 仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从
五个方面予以阐述。
一.求距离的最值
例 1.设 AB 为抛物线 y=x2 的一条弦,若 AB=4,则 AB 的中点 M 到直线 y+1=0 的最短
则 acosα― a 2 9 sin +9=0 有解.
∵ 2a 2 9 cos( ) =―9
cos(α+ )= 9 ,∴| 9 | 1
2a2 9
2a2 9
2a 2 9 ≥9 a2≥45,
∴amin=3 5 ,得(2a)min=6 5 ,
此时椭圆的方程 x 2
y2
.
1
45 36
故当 M,B,F三点共线时,|MF|+|MB|取最小值 10―2 10 .
⑵过动点 M 作右准线 x= 25 的垂线,垂足为 H,则 | MF | e 4
4
| MH |
5
|
MH
|
4
|
MF
.于是
|
5
|MF|+|MB|=|MH|+|MB|≥|HB|= 17
.可见,当且仅当点
B、M、H
5
4
4
共线时, 5 |MF|+|MB|取最小值 17 .
故△MAN 的面积 S 1 | MN | d | 2k 1 |
2
1 4k 2
从而 S 2 (2k 1)2 1 4k
1 4k 2
1 4k 2
①当 k=0 时,S2=1 得 S=1
②当 k>0 时,S2<1 得 S<1
③当 k<0 时,
得S 2
S2 1
4
1 4 2
( 1) (4k) 2 4
例 5.已知 e1,e2 分别是共轭双曲线 x 2
y2

1
x2
y2
的离心率,则 e1+e2
1
a2 b2
a2 b2
的最小值为
.
解析:
e12
a2 b2 a2
1 b2 a2
,
e22
a2 b2 b2
1 a2 b2
(e1 e2 )2 4e1e2 4
(1 b2 )(1 a 2 )
a2
b2
4
2 (b2

c
3,e c
3,
a2
可得 a 2,
∴b2 a2 c2 4 3 1
故椭圆 C 的方程为: x 2 y 2 1 4
⑵若直线 l 存在斜率,设其方程为 y kx, l 与椭圆 C 的交点 M (x1, y1 ), N (x2 , y2 )
将 y=kx 代入椭圆 C 的方程 x 2 y 2 1并整理得 (1 4k 2 )x 2 4 0 . 4
五.求最值条件下的曲线方程 例 7.已知椭圆的焦点 F1(―3,0)、F2(3,0)且与直线 x―y+9=0 有公共点,求其中长轴最短 的椭圆方程.
解法 1:设椭圆为 x 2 y 2 =1 与直线方程 x―y+9=0 联立并消去 y 得: a2 a2 9
(2 a2― 9) x2 + 18 a2 x + 90 a2―a4= 0, 由题设△=(18 a2)2―4(2 a2―9) (90 a2―a4) ≥0
y2
.
1
45 36
评注:本题分别从代数、三角、几何三种途径寻求解决。由不同角度进行分析和处理, 有利于打开眼界,拓宽思路,训练思维的发散性。
解决圆锥曲线中的最值问题,要熟练准确地掌握圆锥曲线的定义、性质,在此基础上, 灵活合理地运用函数与方程、转化与划归及数形结合等思想方法,仔细审题,挖掘隐含,寻 求恰当的解题方法。此外,解题过程力争做到思路清晰、推理严密、运算准确、规范合理。
42 最小值 11 ,
42 42 4 4
4
评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得 心应手。
二.求角的最值
例 2.M,N 分别是椭圆 x 2
y2
的左、右焦点,l 是椭圆的一条准线,点 P 在 l 上,
1
42
则∠MPN 的最大值是
.
解析:不妨设 l 为椭圆的右准线,其方程是 x 2 2 ,点 P(2 2, y0 )( y0 0) ,直线 PM 和 PN 倾斜角分别为和 .
3

MPN
[0,
2
)
6 y02
6 y0
y0
26
3
最大值为 .
6

MPN
6
即∠MPN 的
评注:审题时要注意把握∠MPN 与 PM 和 PN 的倾斜角之间的内在联系.
三、求几何特征量代数和的最值
例 3.点 M 和 F 分别是椭圆
x2
y2
上的动点和右焦点,定点 B(2,2).⑴求|MF|+|MB|
a2 )
4
a2 b2
22 8Βιβλιοθήκη 考虑到 e1 e2 0 ,故得 e1 e2 2 2 . 即 e1+e2 的最小值为 2 2 .
评注:解题关键在于对圆锥曲线性质的准确理解,并注意基本不等式等代数知识的合理 应用.
四、求面积的最值

6.已知平面内的一个动点
P
到直线
l
:
x
4
3 的距离与到定点 F (
3,0) 的距离之
k
若直线 l 不存在斜率,则 MN 即为椭圆 C 的短轴,所以 MN=2.
S
1
2
1
.
1
2
于是△MAN 的面积
综上,△MAN 的最大值为 2 .
评注:本题将△MAN 的面积表示为 l 的斜率 k 的函数,其过程涉及弦长公式和点到直线 距离等解析几何的基础知识,在处理所得的面积函数时,运用了分类讨论的思想方法。当然, 也可以将该面积函数转化为关于 k 的一元二次方程,由△≥0 求得面积 S 的最大值。
4
4
评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的 基本关系,是解决此类问题的常见思路。
例 4.点 P 为双曲线 x 2 y 2 1 的右支上一点,M,N 分别为 (x 4
(x 5)2 y 2 1上的点,则 PM-PN 的最大值为
.
5)2 y2 1和
解 析:显 然 两 已 知 圆 的 圆 心 分 别 为 双 曲 线 的 左 焦 点 F1 ( 5,0) 和 右 焦 点 F2 ( 5,0) .对于双曲线右支上每一个确定的点 P,连结 PF1,并延长 PF1交⊙F1于点
3
比为 2 3 ,点 A(1, 1 ) ,设动点 P 的轨迹为曲线 C.
3
2
⑴求曲线 C 的方程;
⑵过原点 O 的直线 l 与曲线 C 交于 M,N 两点.求△MAN 面积的最大值. 解析:⑴设动点 P 到 l 的距离为 d,
由题意 PF 3 d2
根据圆锥曲线统一定义,点 P 的轨迹 C 为椭圆.
Mo.则 PM0 为适合条件的最大的 PM,连结 PF2,交⊙F2 于点 No.则 PN0 为适合条件的
最小的 PN.于是 PM PN PM 0 PN0
(PF1 1) (PF2 1) (PF1 PF2 ) 2 4 2 6
故 PM-PN 的最大值为 6.
评注:仔细审题,合理应用平面几何知识,沟通条件与所求结论的内在联系,是解决本 题的关键.
∵ M ( 2,0), N ( 2,0)

k PM
tan
2
y0 0 2 2
y0 , 32
kPN
tan
2
y0 0 2 2
y0 于 2

tan MPN tan( )
y0 y0
tan tan 2 3 2 1 tan tan 1 y0 y0
2 32
2 2y0
22
2 2
1
25 9
的最小值. ⑵求 5 |MF|+|MB|的最小值.
4
解析:易知椭圆右焦点为 F(4,0),左焦点 F(-4,0),离心率 e= 4 ,准线方程 x=± 25 .
5
4
⑴|MF| + |MB| = 10―|MF| + |MB| =10―(|MF|―|MB|)≥10―|FB|=10―2 10 .

x1
x2
0, x1x2
4 1 4k 2
于是 | MN | (1 k 2 )(x1 x2 ) 2
(1 k 2 )[(x1 x2 ) 2 4x1 x2 ]
(1 k 2 ) 16 4 1 k 2
1 4k 2
1 4k 2
又 点 A 到直线 l 的距离 | k 1 | d 2 1 k2
a4―54 a2 + 405 ≥0 a2≥45 或 a2≤9.∵a2-9> 0, ∴a2≥45, 故 amin=3 5 ,得(2a)min=6 5 ,
此时椭圆方程为 x 2
y2
.
1
45 36
解法 2:设椭圆 x 2 y 2 =1 与直线 x―y+9=0 的公共点为 M(acosα, a 2 9 sin ), a2 a2 9
距离为

解析:抛物线 y=x2 的焦点为 F(0
,1
),准线为 y=
1
,过 A、B、M 准
4
4
线 y= 1 的垂线,垂足分别是 A1、B1、M1,则所求的距离 d=MM1+ 3 = 1 (AA1+BB1)
4
42
+ 3 = 1 (AF+BF) + 3 ≥ 1 AB+ 3 = 1 ×4+ 3 = 11 ,当且仅当弦 AB 过焦点 F 时,d 取
相关文档
最新文档