高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

合集下载

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题

高等数学第五版下册第十一章曲线积分与曲面积分复习知识点及例题第11章曲线积分与曲面积分一(曲线积分1.对弧长的曲线积分 (第一类), f(x,y)ds,f[,(t),,(t)],'(t),,'(t)dt(,,,),,L,典型例题,x,acost (1)圆周0,t,1 {y,asint2,222n222n222n,1 (,)ds,(cost,asint)(acos't),(asin't)dt,2,ayax,,L0(x,y)ds(2)线段:把线段表示出来 L是(1,0)到(0,1)的直线段 ,L1(x,1,x)x,1dx,2,0 原式= 直线为:y=1-x22x,yeds (3)圆弧的整个边界(分段) ,La,a222,,xyxa22a42e1dx,e(acos't),(asin't)dt,e1,1dx,e(2,a),2 ,,,0004(4)参数方程 (公式)2xyzds(5)利用折线围成的封闭图形 (坐标分段) A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2) ,,3322,0,0,1y20,1,0dy,y,9AB: BC: CD: ,,,,ABBC0CD0?,,,,9 ,,,,,ABBCCD2.对坐标的曲线积分 (第二类),P(x,y)dx,Q(x,y)dy,{P[,(t),,(t)],'(t),Q[,(t),,(t)],'(t)dt ,,L,典型例题x,acost222xydx0,t,1(1)圆周圆周及x轴在一(x,a),y,a(a,0){,Ly,asint xaacost,,x,x:(0,t,1),:象限逆时针 {{LL12yasint0,y,2a,3a(1cost)asint(aacost)'dt0dxa,,,,,,,, ,,,,120LLL21222(2)直线: 写出函数关系从(0,0)到(2,4) x-ydx,L:y,x,L25624 原式=x-xdx- (),,015,(3)圆弧 L: x=rcost,y=rsint上对应t从0到的一段弧 ydx,xdy,,L2(4)参数方程 (公式)(5)利用折线围成的封闭图形dx-dy,ydz ,A(1,0,0) B(0,1,0) C(0,0,1) ABCA封闭图形 ,,=01131[1(1)][(1)'(1)']121 ,,,,,zdx,,,z,,zzdz,dx,,,,,,,,,,,ABBCCA10022二(格林公式,Q,P(-)dxdy,Pdx,Qdy1. ,,,L,x,yD1A,xdy-ydx2.面积 ,L2,,PQ3.曲线积分;pdx,dy,, 与路径无关Q,L,y,xP(x,y)dx,Q(x,y)dy同上Pdx,Qdy与路径无关,存在u(x,y)使du,Pdx,Qdy4. ,Lxy u(x,y),p(x,y)dx,Q(x,y)dy0,,xy00典型例题22xyxyyedxxedyL(,),(3,):,,1的正向(1) 22,Lab,p,Q,1,3?,2dxdy,2,ab,解: ,,,L,y,xD(2)验证整个xoy面内存在u(x,y)使2232ydu= (3xy,8xy)dx,(x,8xy,12ye)dy并求u(x,y),p,Q2,,3x,16xy,?存在解: ,y,xxy32y322yU(x,y),0dx,(x,8xy,12ye)dy,c,xy,4xy,12(y,1)e,c ,,002三(曲面积分1.对面积的曲面积分 (第一类)22 f(x,y,z)ds,f[x,y,z(x,y)]1,z,zdxdyxy,,,,Dxy典型例题221,4zds,其中,是z,x,y上z,1的曲面部分(1)球面。

(完整版)曲线积分与曲面积分(解题方法归纳)

(完整版)曲线积分与曲面积分(解题方法归纳)

1 / 13第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分利用性质计算曲线积分和曲面积分. .(2) 直接化为定积分或二重积分计算曲线或曲面积分直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分利用格林公式计算平面闭曲线上的曲线积分. . (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分利用斯托克斯公式计算空间闭曲线上的曲线积分. . (6) 利用高斯公式计算闭曲面上的曲面积分利用高斯公式计算闭曲面上的曲面积分. . 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则轴对称,则10 (,)2(,)L L f x f x y ds f x y dsf x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)LL Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数 其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则轴对称,则10 (,)2(,)L L f y f x y ds f x y dsf y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则对称,则 ()()=⎰⎰L L f x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则,则 []22(,)(),()()()()βααβ''=+<⎰⎰Lf x y ds f x t y t x t y t dt若曲线弧:()()θαθβ=≤≤L r r (极坐标),则,则[]22(,)()cos ,()sin ()()βαθθθθθθθ'=+⎰⎰Lf x y ds f r r r r d若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则,则[]222(,,)(),(),()()()()()βααβΓ'''=++<⎰⎰f x y z ds f x t y t z t x t y t z t dt (5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则,则[]22(,,),,(,)1(,)(,)xyx y D f x y z dS f x y z x y z x y z x y dxdy ∑''=++⎰⎰⎰⎰ 其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则,则[]22(,,)(,),,1(,)(,)yzy z D f x y z dS f x y z y z x y z x y z dydz ∑''=++⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则,则[]22(,,),(,),1(,)(,)zxz x D f x y z dS f x y x z z y y z y y z dzdx ∑''=++⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域.(8)d d +⎰⎰L P x Q y 与路径无关d d 0⇔+=⎰⎰Ñc P x Q y (c 为D 内任一闭曲线)内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Q y x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰ÑL DQ P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdydv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 或 (cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式)斯托克斯公式dydz dzdx dxdyPdx Qdy Rdz x y z P Q RΓ∑∂∂∂++=∂∂∂⎰⎰⎰Ñ 其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1.计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:)计算曲线积分的步骤: 1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dy I x y x x x x由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此函数,因此220,011==++⎰⎰LLdx dy xx故 20+==++⎰L dx dyI x y x 『方法技巧』『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用同,记清楚后再使用..事实上,本题还可应用格林公式计算事实上,本题还可应用格林公式计算..例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS 2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS故2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS by dS cz dS ndS22222()∑∑=+++⎰⎰⎰⎰a b c x dS ndS22222222()43π∑++=+++⎰⎰a b c x y z dS R n 22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n 『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些同,理解起来更容易些..若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰Òx y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰乙乙x y z dS axdS a x a dS a dS222402248ππ∑=+==⎰⎰g Òa dS a a a 『方法技巧』 积分曲面积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰Òx a dS例4 计算曲线积分2222-+⎰ÑLxy dy x ydxx y,其中L 为圆周222(0)+=>x y a a 的逆时针方向 解法1 直接计算. 将积分曲线L 表示为参数方程形式表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a 代入被积函数中得代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰ÑLxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d ad324332013118(sinsin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰g g g ad a a解法2 利用格林公式利用格林公式2222222211()-=-=++⎰⎰⎰⎰蜒L L Dxy dy x ydx xy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故,故2222322112πθρρρπ-==+⎰⎰⎰g ÑaLxy dy x ydxd d a ax y『方法技巧』『方法技巧』 本题解法本题解法1用到了定积分的积分公式:用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰g g Lg g g Lg g g n n n n n n d n n n n n 为奇数为偶数 解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰Lx y dx x y dyx y ,其中L 为沿cos π=y x 由点由点(,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难. 由于由于 2222,+-+==++x yx y P Q x y x y ,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:2cos 5:(:)442sin πθππθπθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得,代入被积函数中得222()()1()()2π'+--=+--+⎰⎰L L x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』『方法技巧』 本题的关键是选取积分弧段本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑为1++=x y z 的法向量与各坐标轴正向夹锐角的侧面解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy 面的区域{}(,)1=+≤xy D x y x y ,故,故233(1)∑∑∑++==--⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy x y dxdy21(1)22003(1)3(1)-=--=--⎰⎰⎰⎰xyx D x y dxdy dx x y dy 1401(1)2=-⎰x dx 04111(1)30=---=⎰t x t t dt『方法技巧』『方法技巧』 由于积分曲面由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑+∑=-+-+-⎰⎰x ydydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy 123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故 222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰g g xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰g hh h h d d h『方法技巧』『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求..本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号例8 计算曲线积分()()()-+-+-⎰ÑLz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰ÑL dydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量曲线或曲面形物体的质量. . (2) 曲线或曲面的质心(形心)曲线或曲面的质心(形心). . (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论:(1)平面曲线形物体)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体空间曲线形物体 (,,)ρ=⎰LM x y z ds 曲面形构件曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标质心坐标平面曲线形物体的质心坐标:平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰LLLLx x y dsy x y dsx y x y dsx y ds空间曲线形物体的质心坐标:空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y L L I y x y ds I x x y ds 空间曲线形物体的转动惯量:空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y L LI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds11 / 13曲面形物体的转动惯量:曲面形物体的转动惯量: 2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰zI x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度的散度div A ∂∂∂=++∂∂∂P Q R x y z 矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1.曲线积分或曲面积分应用题的计算步骤: i j k12 / 13 (1)根据所求物理量,代入相应的公式中;)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分)计算曲线积分或曲面积分. .例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功(其中22,=+r x y k 为常数)为常数) 解 积分曲线积分曲线L 如图11.7所示. 场力所做的功为场力所做的功为»(,)(,)=+⎰ABW P x y dx Q x y dy »22=-⎰AB y xk dx dy r r 令22,==-y x P Q r r ,则22224()(0)∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y xW k dx dy kk r r 『方法技巧』 本题的关键是另取路径本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如U AO OB ,但不可以选取此路径,,但不可以选取此路径,因为因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线21(12)0⎧⎪=+≤≤⎨=⎪⎩y z z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy 2sin ∑=+⎰⎰xz dydz xdxdy1L A B o y L x 图11.713 / 13 1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分. .。

高数第十一章曲线积分与曲面积分 (1)

高数第十一章曲线积分与曲面积分 (1)


( )
10
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
例1 计算
L
yds, 其中L是抛物线y x 上点
2
O(0,0)与点B(1,1)之间的一段弧.


L 1
yds
0
1
y
y x2
0
x
2
2 1 ( x ) dx 2
B
x 1 4 x 2 dx
i 1 n
y
B
L M n 1
( i , i ) M i M2 M i 1 M A 1
o
x
3
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
如果当各小弧段的 长度的最大值 0时, 这和的极限存在 , 则称此极限为函数 f ( x , y ) 在曲线弧 L上对弧长的曲线积分或 第一类曲 线积分, 记作 f ( x , y )ds, 即
x ( t ), L的参数方程为 ( t )其中 y ( t ), ( t ), ( t )在[ , ]上具有一阶连续导数 , 且
2 ( t ) 2 ( t ) 0,则曲线积分 f ( x , y )ds
L
存在,且

L
f ( x , y )ds
曲线积分与曲面积分
定义 设L为xoy面内一条光滑曲线弧 ,函数f ( x , y )
在L上有界.用L上的点M 1 , M 2 ,, M n1把L分成n 个小段.设第i个小段的长度为 si , 又( i , i )为第 i个小段上任意取定的一 点, 作乘积f ( i , i ) si , 并作和 f ( i , i ) si ,

曲线积分与曲面积分复习

曲线积分与曲面积分复习


L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt


一定,二代,三换元,定,代,换关键在 方程。小下限,大上限.
L:
L:
步骤:
1.写出L的参数方程,确定参数的范围 2.化为定积分

L
f ( x, y )ds f ( (t ), (t )) (t )2 ( t )2 dt
应用:
例6 计算 L (3x y)dy ( x y)dx, 其中L为
( x 1) 2 ( y 4) 2 9 的负向.
例7 计算
2 2 xdy , 其中 L 为 x y 1上由点 L
A(1,0) 到点 B(0,1) 的一段弧.
例8 计算 原点的分段光滑正向闭曲线. y L
利用路径无关计算曲线积分
2 2 xy d x x dy,其中L是xoy平面内的任 例9 计算 L
意有向闭曲线. 特点:路径无关,闭曲线,积分为零.
x e 例10 计算 L cos ydx sin ydy,其中L是从点(0, 0)
到点 ( , ) 的任意有向曲线. 2 2
特点:路径无关,非闭曲线,选易积分路线.
i
n 1
L
L
对坐标的曲线积分

M i 1 M2 M 1
L
Pdx Qdy
A
o
x
对坐标的曲线积分

L
Pdx Qdy
特点(1)积分曲线是有向曲线弧. (2)被积函数的定义域是曲线弧.
P( x, y ), Q( x, y ),( x, y) L
(3)微元 dx,dy 是有向弧微分ds 在坐标轴上的投影 与一类曲线积分的 本质区别

高数下十一章重点总结+例题

高数下十一章重点总结+例题

高数下十一章重点总结+例题第十一章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

2.掌握计算两类曲线积分的方法。

3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数。

4.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,了解高斯公式、斯托克斯公式,会用高斯公式计算曲面积分。

5.知道散度与旋度的概念,并会计算。

6.会用曲线积分及曲面积分求一些几何量与物理量。

【教学重点】1.两类曲线积分的计算方法;2.格林公式及其应用;3.两类曲面积分的计算方法;4.高斯公式、斯托克斯公式;5.两类曲线积分与两类曲面积分的应用。

【教学难点】1.两类曲线积分的关系及两类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3.应用格林公式计算对坐标的曲线积分;4.应用高斯公式计算对坐标的曲面积分;5.应用斯托克斯公式计算对坐标的曲线积分。

6.两类曲线积分的计算方法,两类曲线积分的关系;7.格林公式及其应用格林公式计算对坐标的曲线积分;8.两类曲面积分的计算方法及两类曲面积分的关系;9.高斯公式、斯托克斯公式,应用高斯公式计算对坐标的曲面积分;10.两类曲线积分与两类曲面积分的应用;11.应用斯托克斯公式计算对坐标的曲线积分。

【教学课时分配】(14学时)第1 次课§1第2 次课§2 第3 次课§3第4 次课§4 第5次课§5 第6次课§6第7次课习题课【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社.[2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy 面内的一段曲线弧L 上, 已知曲线形构件在点(x , y )处的线密度为μ(x , y ). 求曲线形构件的质量.把曲线分成n 小段, ?s 1, ?s 2, ? ? ?, ?s n (?s i 也表示弧长); 任取(ξi , ηi )∈?s i , 得第i 小段质量的近似值μ(ξi , ηi )?s i ; 整个物质曲线的质量近似为i i i ni s M ?≈=∑),(1ηξμ;令λ=max{?s 1, ?s 2, ? ? ?, ?s n }→0, 则整个物质曲线的质量为 i i i ni s M ?==→∑),(lim 10ηξμλ.这种和的极限在研究其它问题时也会遇到.定义设函数f (x , y )定义在可求长度的曲线L 上, 并且有界.,将L 任意分成n 个弧段: ?s 1, ?s 2, ? ? ?, ?s n , 并用?s i 表示第i 段的弧长; 在每一弧段?s i 上任取一点(ξi , ηi ), 作和i i i ni s f ?=∑),(1ηξ; 令λ=max{?s 1, ?s 2, ? ? ?, ?s n }, 如果当λ→0时, 这和的极限总存在, 则称此极限为函数f (x , y )在曲线弧L 上对弧长的曲线积分或第一类曲线积分, 记作ds y x f L ),(?, 即i i i ni L s f ds y x f ?==→∑?),(lim ),(10ηξλ. 其中f (x , y )叫做被积函数, L 叫做积分弧段.曲线积分的存在性: 当f (x , y )在光滑曲线弧L 上连续时, 对弧长的曲线积分ds y x f L ),(?是存在的. 以后我们总假定f (x , y )在L 上是连续的.根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分ds y x L ),(?μ的值, 其中μ(x , y )为线密度.对弧长的曲线积分的推广:i i i i ni s f ds z y x f ?==→Γ∑?),,(lim ),,(10ζηξλ. 如果L (或Γ)是分段光滑的, 则规定函数在L (或Γ)上的曲线积分等于函数在光滑的各段上的曲线积分的和. 例如设L 可分成两段光滑曲线弧L 1及L 2, 则规定ds y x f ds y x f ds y x f L L LL ),(),(),(2121+=+.闭曲线积分: 如果L 是闭曲线, 那么函数f (x , y )在闭曲线L 上对弧长的曲线积分记作ds y x f L ),(?.对弧长的曲线积分的性质: 性质1 设c 1、c 2为常数, 则ds y x g c ds y x f c ds y x g c y x f c L L L ),(),()],(),([2121+=+;性质2 若积分弧段L 可分成两段光滑曲线弧L 1和L 2, 则ds y x f ds y x f ds y x f L LL ),(),(),(21+=;性质3设在L 上f (x , y )≤g (x , y ), 则??≤L L ds y x g ds y x f ),(),(. 特别地, 有≤L L ds y x f ds y x f |),(||),(|二、对弧长的曲线积分的计算法根据对弧长的曲线积分的定义, 如果曲线形构件L 的线密度为f (x , y ), 则曲线形构件L 的质量为L ds y x f ),(.另一方面, 若曲线L 的参数方程为x =?(t ), y =ψ (t ) (α≤t ≤β),则质量元素为dt t t t t f ds y x f )()()]( ),([),(22ψ?ψ?'+'=,曲线的质量为?'+'βαψ?ψ?dt t t t t f )()()]( ),([22.即'+'=βαψ?ψ?dt t t t t f ds y x f L)()()]( ),([),(22.定理设f (x , y )在曲线弧L 上有定义且连续, L 的参数方程为x =?(t ), y =ψ(t ) (α≤t ≤β), 其中?(t )、ψ(t )在[α, β]上具有一阶连续导数, 且?'2(t )+ψ'2(t )≠0, 则曲线积分dsy x f L ),(?存在, 且dt t t t t f ds y x f L )()()](),([),(22ψ?ψ?βα'+'=??(α<β).应注意的问题: 定积分的下限α一定要小于上限β. 讨论:(1)若曲线L 的方程为y =ψ(x )(a ≤x ≤b ), 则ds y x f L ),(?=?提示: L 的参数方程为x =x , y =ψ(x )(a ≤x ≤b ),dx x x x f ds y x f baL ??'+=)(1)](,[),(2ψψ.(2)若曲线L 的方程为x =?(y )(c ≤y ≤d ), 则ds y x f L ),(?=?提示: L 的参数方程为x =?(y ), y =y (c ≤y ≤d ),dy y y y f ds y x f dcL ??+'=1)(]),([),(2??.(3)若曲Γ的方程为x =?(t ), y =ψ(t ), z =ω(t )(α≤t ≤β), 则ds z y x f ),,(?Γ=?提示:dt t t t t t t f ds z y x f )()()()](),(),([),,(222ωψ?ωψ?βα'+'+'=??Γ.例1 计算ds y L, 其中L 是抛物线y =x 2上点O (0, 0)与点B (1, 1)之间的一段弧.解曲线的方程为y =x 2 (0≤x ≤1), 因此'+=1222)(1dx x x ds y L ?+=10241dx x x )155(121-=.例2 计算半径为R 、中心角为2α的圆弧L 对于它的对称轴的转动惯量I (设线密度为μ=1).解取坐标系如图所示, 则?=L ds y I 2. 曲线L 的参数方程为x =R cos θ, y =R sin θ (-α≤θ<α). 于是 ?=L ds y I 2?-+-=ααθθθθd R R R 2222)cos ()sin (sin-=ααθθd R 23sin =R 3(α-sin α cos α).例3 计算曲线积分ds z y x )(222++?Γ, 其中Γ为螺旋线x =a cos t 、y =a sin t 、z =kt 上相应于t 从0到达2π的一段弧.解在曲线Γ上有x 2+y 2+z 2=(a cos t )2+(a sin t )2+(k t )2=a 2+k 2t 2, 并且 dt k a dt k t a t a ds 22222)cos ()sin (+=++-=, 于是ds z y x )(222++?Γ?++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=.小结用曲线积分解决问题的步骤: (1)建立曲线积分;(2)写出曲线的参数方程 ( 或直角坐标方程) , 确定参数的变化范围;(3)将曲线积分化为定积分;(4)计算定积分.教学方式及教学过程中应注意的问题在教学过程中要注意曲线积分解决问题的步骤,要结合实例,反复讲解。

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分(整理解答)

第十一章 曲线积分与曲面积分一、 第一类、第二类曲线积分的计算,格林公式 11.6⎰Lxds =( ),其中L 是连接(1,0)及(0,1)的直线段A.21 B. 22 C. 22 D. 2 解:如图所示,L 所在直线方程参数为 1,,01y x x x x =-=≤≤,1102Lxds x x ===⎰⎰⎰所以,选B 。

11.9ds y xL)(22+⎰=( ),其中L 是圆周)20(sin ,cos π≤≤==t t y t xA.π4B.2πC.π2D.π解:2222220()(cos sin )2Lx y ds t t dt πππ+=+==⎰⎰⎰所以,选C 。

11.14 下列为第一类曲线积分的是( ); A .⎰Γs z y x f d ),,(,其中Γ为3R 中的光滑曲线 B .⎰Γx z y x f d ),,(,其中Γ为3R 中的光滑曲线 C .⎰Γy z y x f d ),,(,其中Γ为3R中的光滑曲线 D .⎰Γz z y x f d ),,(,其中Γ为3R中的光滑曲线解:由第一类曲线积分的表示,选A 。

11.18 L 为曲线t y t x sin ,cos ==上0=t 到π=t 的一段弧,则=+⎰Ls y x d )( ( );A. 1-B. 0C. 1D. 2解:()(cos sin )(cos sin )2Lx y ds t t t t dt ππ+=+=+=⎰⎰⎰所以,选D 。

11.21 L 为曲线212y x =上0x =到1x =的一段弧,则d Lx s =⎰ ( ); A.11)3 B .C.21)3 D .解:31121200011d (1)|1)33Lx s x x x ===+=⎰⎰⎰所以,选A 。

11.25 设L 是圆周222x y a +=在第一象限内的弧段,则Ls =⎰( ).(A)ae π; (B)2a π; (C)2a ae π; (D)2a e π.解:L 的参数方程为:cos ,sin ,02x a t y a t t π==≤≤,所以,202a Ls e ae ππ==⎰⎰所以,选C 。

高数下第十一章曲线积分与曲面积分

高数下第十一章曲线积分与曲面积分

(3) f ( x, y)ds f ( x, y)ds f ( x, y)ds.
L
L1
L2
(L L1 L2 ).
5、对弧长曲线积分的计算
定理
设 f ( x, y)在曲线弧L上有定义且连续,
L的参数方程为
x y
( t ), ( t ),
( t )其中
(t), (t)在[ , ]上具有一阶连续导数, 且
3、 ( x 2 y 2 )ds,其中 L为曲线 L
x a(cos t t sin t)
y
a(sin
t
t
cos
t
)
(0 t 2 );
练习题答案
1、ea (2 a) 2; 4
2、9;
3. 22a3 (1 22 );
二、对坐标的曲线积分的概念
1. 定义:
函数 P(x,y)在有向曲线弧L上对坐标 x 的曲线积分
线 AB是半径为r 的圆在
第一象限部分.
A
D
o
L
Bx
解 引入辅助曲线L, L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy
D
OA xdy AB xdy BO xdy,
由于 OA
xdy
0,
BO xdy 0,
xdy dxdy 1 r2.
f ( x, y)ds f [ (t), (t)] 2 (t) 2 (t)dt
L
( )
注意: 1. 定积分的下限 一定要小于上限 ;
2. f ( x, y)中x, y不彼此独立, 而是相互有关的.
例1
求I
L xyds,
L
:
椭圆

高数第十一章曲线积分与曲面积分 (2)

高数第十一章曲线积分与曲面积分 (2)

A(1, 1)
4 2 y dy . 1 5
1 4
13
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
例2 计算

L
y dx, 其中L为
2
(1) 半径为 a、圆心为原点、按逆时针方向绕行 的上半圆周; ( 2) 从点 A(a ,0) 沿 x 轴到点 B( a ,0) 的直线段.
n
7
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
5.性质 (1)设 、 为常数,则 [P1 P2 ]dx P1dx P2 dx,
L L L
L [Q1 Q2 ]dy L Q1dy L Q2dy .
( 2) 如果把 L分成 L1和 L2 , 则
( t ), ( t )在以及为端点的闭区间上具有一阶连
2 2 续导数, 且 ( t ) ( t ) 0, 则曲线积分
L P ( x, y)dx Q( x, y)dy存在,
9
总界面 上页 下页 返回 结束
第十一章
曲线积分与曲面积分
且 P ( x , y )dx Q( x , y )dy
L L
( t ) ( t ) ,cos , 其中cos 2 2 2 2 ( t ) ( t ) ( t ) ( t )
L : A B,
L
A
M2 M1
yi M i 1xi
M i M n 1
x
分割 A M 0 , M1 ( x1 , y1 ),, M n1 ( xn1 , yn1 ), M n B.
M i 1 M i ( xi )i ( yi ) j .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11章 曲线积分与曲面积分
一.曲线积分
1.对弧长的曲线积分 (第一类)
典型例题:
(1)圆周10{
cos x sin ≤≤==t t a t
a y
1222
22220
2
22
2)sin'(cos'()sin cos ()(x +=++=+
⎰⎰
n n n
L
a dt t a t a t a t ds a y
ππ

(2)线段:把线段表示出来 ds y x ⎰
+L )
( L 是(1,0)到(0,1)的直线段 原式=
2
1)11
=+-+⎰dx x x x ( 直线为:y=1-x
(3)圆弧的整个边界(分段)
ds L
y ⎰+2
2x e
2)4
2(11)sin'()cos'(12
20
40
2
2
a
2
2-+
=++++⎰
⎰⎰
+a e dx e
dt t a t a e
dx e
a a
y x a
x
π
π
(4)参数方程 (公式)
(5)利用折线围成的封闭图形 (坐标分段)ds yz ⎰Γ
2
x
A(0,0,0) B(0,0,2) C(1,0,2) D(1,3,2)
AB: 0=⎰
AB
BC:0=⎰
BC
CD:90102y 130
23
2==++=⎰⎰
y dy CD
9=++=∴


⎰⎰Γ
CD
BC
AB
2.对坐标的曲线积分 (第二类)
dt t t t Q t t t P dy y x Q dx y x L
)(')](),([)(')](),([{),(),(P ψψΦ+ΦψΦ=+⎰⎰β
α
典型例题
(1)圆周
10{cos x sin ≤≤==t t
a t
a y
dx xy ⎰
L
圆周
)0(y x 222
>=+-a a a )(及x 轴在一象限 逆时针{
{0
2acost a x asint
y 1:,)10(x x y L L t ==+==≤≤:
320
2
1
2
0)'cos (sin )cos 1(a a dx dt t a a t a t a
L L L
π
-
=+++=+=⎰⎰⎰

(2)直线: 写出函数关系
222x y :dx y -x =⎰
L L
,从(0,0)到(2,4)
原式=15
56
-dx x -x 2
04
2=⎰
)( (3)圆弧
,⎰
+L
xdy ydx L: x=rcost,y=rsint 上对应t 从0到
2
π
的一段弧 (4)参数方程 (公式) (5)利用折线围成的封闭图形
⎰Γ
+ydz dy -dx ,A(1,0,0) B(0,1,0) C(0,0,1) ABCA 封闭图形
=
2
112321]')1()'1([)]1(1[1
10
01
=++
-=+-+--+--=++⎰⎰⎰⎰


dx dz z z z dx z CA
BC
AB
二.格林公式
1.⎰⎰⎰
+=∂∂∂∂L D
Q P P
Q dy dx dx dy y
-x )(
2.面积 ⎰=L
A ydx -xdy 21
3.曲线积分;
x
y dy pdx ∂∂=∂∂⇔
+⎰
Q P Q L
与路径无关 同上),(,dy y x dx )y x (Q P + 4.
dy dx du y x u dy dx Q P Q P L
+=⇔+⎰使)
,(存在与路径无关 dy y x Q dx y x p y x y
y x
x ⎰⎰
+=
),(),(),(u 0
典型例题
(1)的正向)(1:)3(22
22=+++-⎰
b y a x L dy
e x dx e y L
y
x
解:ab 2dx dy 23x
1y p π==∴=∂∂=∂∂⎰⎰⎰
D
L
Q

(2)验


个xoy


存在u (x ,y )使
du=),(并求)()(y x u dy ye 12y x 8x 8y x 3y
2
3
2
2
++++dx xy
解:
存在,∴+=∂∂=∂∂x y 16x 3x
y p 2Q c e y y x y x c dy ye y x x dx y y
y +-++=++++=⎰⎰)1(124)128(0y)U(x 2230
23x

三.曲面积分
1.对面积的曲面积分 (第一类)
典型例题
(1)球面。

的曲面部分上是其中1z z ,4122≤+=∑+⎰⎰

y x ds z
解:dxdy y x y x y x D xy
D 22222
2
xy 4414411
++++=
≤+⎰⎰
⎰⎰


=
ππθπ
32
3
2dr r r 41d 1
220
=•
=+⎰⎰
)( (2)圆周。

按面累加
计算所围成的与平面是锥面其中)(1z ,222
2=+=
∑+⎰⎰

z y x ds y x
解:锥面21
∑∑平面 投影xoy 为D :122≤+y x
dxdy y x dxdy y x D
D
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰
+++=+=∑∑∑
)(2)(22222
1
dxdy y D
)()(22x 21++=⎰⎰
=
πθπ2
2
1d 2120
1
3
+=+⎰⎰dr r )( 2.对坐标的曲面积分(第二类)
ds
R Q P Rdxdy Qdzdx Pdydz dxdy R dzdx Q dydz P ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑




++=++=++)cos cos cos (γβα计算 注意侧的问题 正负号
dxdy y x z y x R dxdy z y x R Dxy
⎰⎰⎰⎰=∑
)),(,,(,,)
( yz zx 同理 典例:
1.计算
为正数下侧,是下半球面其中)(a -z ,22222222
y x a dxdy y x z y x --=∑+++⎰⎰

解:dxdy y x a a
y x Dxy
⎰⎰⎰⎰

+=
≤+∑2
222
2
2
x oy 投影在
=532
2
20
2
3
2
32a -a a a dr r d a
ππθπ
-=⋅⋅-=⎰

四.高斯公式
空间闭区域上具有一阶连续偏导数在,ΩΩR Q P ,,
⎰⎰⎰⎰⎰

Ω
++=∂∂+∂∂+∂∂Rdxdy
Qdzdx Pdydz dv z
R
y Q x P )(=
ds R Q P ⎰⎰

++)(γβαcos cos cos 典例:计算
为正数的上侧,为上半球面其中R y R zdxdy ydzdx xdydz ⎰⎰∑
=
∑++222-x -z ,
解:补上平面块⎰⎰∑=≤+=∑1
0z 2
221下侧
,:R y x
331234
213dv 31R R ππ=⋅⋅==∑∑⎰⎰⎰⎰⎰∑+∑Ω围城半球体由高斯得和
⎰⎰⎰⎰⎰⎰∑
∑+∑∑=
=
∴1
1
-32R π。

相关文档
最新文档