高三数学期中试卷(理科试题正式)

合集下载

高三上学期期中数学理科试卷及答案

高三上学期期中数学理科试卷及答案

山东省聊城市 —高三第一学期期中考试数学试题(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分为150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷的答案必须写在答题卷各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.已知集合,则实数的取值范围是( )A .B .C .D . 2.函数的零点所在的大致区间是( )A .(3,4)B .(2,e )C .(1,2)D .(0,1) 3.如右图所示,D 是的边AB 的中点,则向量( )A .B .C .D .4.下列函数中,其图像的一部分如右图所示的是( )A .B .{|},{|12},()R A x x a B x x A C B R =<=<<⋃=且a 1a ≤1a <2a ≥2a >2()ln(1)f x x x=+-ABC ∆CD =12BC BA -+12BC BA --12BC BA -12BC BA +sin()6y x π=+sin(2)6y x π=-C.D.5.给出下列四个命题:①命题“,都有”的否定是“,使”②一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数是5;③将函数的图像向右平移个单位,得到的图像;④命题“设向量,若”的逆命题、否命题、逆否命题中真命题的个数为2。

其中正确命题的个数为()A.1 B.2 C.3 D.06.已知垂直,则实数的值为()A.B.C.D.17.已知的值为()A.B.C.D.8.已知,则在同一坐标系内的大致图象是()9.设函数的图象位于轴右侧所有的对称中心从左至右依次为,则A的横坐标是()A.B.C.4021 D.402310.若函数内有极小值,则实数b的取值范围是()A.(0,1)B.(—,1)C.(0,+)D.(0,)cos(4)3y xπ=-cos(2)6y xπ=-x R∀∈2314x x-+≥x R∃∈2314x x-+<cos2y x=4πcos(2)4y xπ=-()4sin,3,(2,3cos)a bαα==//,4a bπα=则,||2,||3,32a b a b a b a bλ⊥==+-且与λ32-3232±21tan(),tan(),tan()5444ππαββα+=-=+则16221332213182(),()log||(0,1),(2011)(2011)0xaf x ag x x a a f g-==>≠⋅-<且且(),()y f x y g x==cos2y xπ=y12,,,,nA A A3()63(0,1)f x x bx b=-+在∞∞1211.已知定义在R 上的偶函数,且当时,,则的值为( )A .—2B .—1C .2D .112.已知函数的定义域为(—,+),的导函数,函数的图象如右图所示,且,则不等式的解集为 ( ) A . B .C .(2,3)D .第Ⅱ卷(非选择题,90分)二、填空题:本大题共4小题,每小题4分,共16分。

高三上学期期中考试数学(理)试题 Word版含答案

高三上学期期中考试数学(理)试题 Word版含答案

大庆实验中学2020-2021学年度上学期期中考试高三数学(理科)试题注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每道小题答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设命题p :x R ∀∈,2320x x -+≤,则p ⌝为( )A .0x R ∃∈,200320x x -+≤ B .x R ∀∈,320x x -+> C .0x R ∃∈,200320x x -+>D .x R ∀∈,320x x -+≥2.若{}0,1,2A =,{}2,a B x x a A ==∈,则A B ⋃=( ) A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,4D .{}1,2,43.已知复数z 在复平面内对应的点的坐标为()1,2-,则下列结论正确的是( ) A .2z i i ⋅=-B .复数z 的共轭复数是12i -C .5z =D .13122z i i =++ 4.已知3a i j =+,2b i =,其中i ,j 是互相垂直的单位向量,则3a b -=( )A .B .C .28D .245.已知随机变量X 服从二项分布(),B n p ,若()2E X =,()43D X =,则p =( ) A .34B .23C .13D .146.在等差数列{}n a 中,首项10a =,公差0d ≠,n S 是其前n 项和,若6k a S =,则k =( )A .15B .16C .17D .187.若()cos cos2f x x =,则()sin15f ︒=( ) A .3-B .12-C .12D .3 8.已知函数()()31,0,0x x f x g x x ⎧+>⎪=⎨<⎪⎩是奇函数,则()()1g f -的值为( )A .10-B .9-C .7-D .19.为得到函数sin 2y x =-的图象,可将函数sin 23y x π⎛⎫=-⎪⎝⎭的图象( ) A .向右平移3π个单位 B .向左平移6π个单位 C .向左平移3π个单位D .向右平移23π个单位 10.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生A .互联网行业从业人员中90后占一半以上B .互联网行业中从事技术岗位的人数超过总人数的20%C .互联网行业中从事运营岗位的人数90后比80前多D .互联网行业中从事技术岗位的人数90后比80后多11.如图,棱长为2的正方体1111ABCD A B C D -中,P 在线段1BC (含端点)上运动,则下列判断不正确的是( )A .11A PB D ⊥B .三棱锥1D APC -的体积不变,为83C .1//A P 平面1ACDD .1A P 与1D C 所成角的范围是0,3π⎡⎤⎢⎥⎣⎦12.已知函数()ln 1f x x =+,若存在互不相等的实数1x ,2x ,3x ,4x ,满足()()()()1234f x f x f x f x ===,则411i if x =⎛⎫= ⎪⎝⎭∑( ) A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~21题为必考题,每个试题考生都必须作答,第22题、第23题为选考题,考生根据要求作答二、填空题(本大题共4小题,每小题5分,共20分) 13.已知点A 的极坐标为22,3π⎛⎫⎪⎝⎭,则它的直角坐标为______. 14.若x ,y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则z x y =+的最小值为______.15.已知三棱锥S ABC -中,SA ⊥面ABC ,且6SA =,4AB =,23BC =,30ABC ∠=︒,则该三棱锥的外接球的表面积为______.16.已知正项数列{}n a 的前n 项和为n S ,且对任意的*n N ∈满足()()2411n n S a +=+,则361111kk kk k kaa a a =++-=-______.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.在ABC △中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足2tan tan tan B bA B c=+(Ⅰ)求角A ;(Ⅱ)若13a =,3b =,求ABC △的面积18.如图,在三棱锥P ABC -中,2PA PB AB ===,3BC =,90ABC ∠=︒,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 中点.(1)求证:AB PE ⊥;(2)求二面角A PB E --的大小.19.在某市高中某学科竞赛中,某一个区4000名考生的参考成绩统计如图所示.(1)求这4000名考生的竞赛平均成绩x (同一组中数据用该组区间中点作代表); (2)由直方图可认为考生竞赛成绩z 服正态分布()2,N μσ,其中μ,2σ分别取考生的平均成绩x 和考生成绩的方差2s ,那么该区4000名考生成绩超过84.81分(含84.81分)的人数估计有多少人?(3)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取4名学生,记成绩不超过84.81分的考生人数为ξ,求()3P ξ≤(精确到0.001)附:①2204.75s =204.7514.31=;②()2~,z N μσ,则()0.6826P z μσμσ-<<+=,()220.9544P z μσμσ-<<+=;③40.84130.501=20.已知数列{}n a 的前n 项和为n S ,且n 、n a 、n S 成等差数列,()22log 11n n b a =+-. (1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)若数列{}n b 中去掉数列{}n a 的项后余下的项按与按原顺序组成数列{}n c ,求12100c c c +++的值.21.已知函数()ln x xf x xe x=+. (Ⅰ)求证:函数()f x 有唯一零点;(Ⅱ)若对任意的()0,x ∈+∞,ln 1x xe x kx -≥+恒成立,求实数k 的取值范围 请考生在第22、23两题中任意选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 经过点()23,0P -,其倾斜角为α,设曲线S 的参数方程为141x k k y ⎧=⎪⎪⎨-⎪=⎪⎩(k 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=(1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围 23.选修4-5:不等式选讲 已知x ,y R ∈,且1x y +=. (1)求证:22334x y +≥; (2)当0xy >时,不等式1121a a x y+≥-++恒成立,求a 的取值范围.大庆实验中学2020-2021学年度上学期期中考试高三理科数学答案1.C 2.C 3.D4.A 5.C 6.B 7.A8.B 9.A 10.D11.B12.A13.(-14.315.52π1617.(Ⅰ)3A π=(Ⅱ)解:(Ⅰ)由2tan tan tan B bA B c =+及正弦定理可知,∴sin 2sin cos sin sin cos cos cos B B B A B C A B =+∴()2sin cos cos sin cos sin sin B A B B B A B C⋅⋅=+, 所以2cos 1A =,又()0,A π∈,所以3A π=(Ⅱ)由余弦定理2222cos a b c bc A =+-, 得21393c c =+-,所以2340c c --=,即()()410c c -+=, 所以4c =,从而11sin 3422ABC S ab A ==⨯⨯=△18.(1)证明见解析;(2)60°解析:(1)连结PD ,∵PA PB =,∴PD AB ⊥,∵//DE BC ,BC AB ⊥,DE AB ⊥ 又∵PD DE D ⋂=,∴AB ⊥平面PDE ,∵PE ⊂平面PDE ,∴AB PE ⊥ (2)法一:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 则DE PD ⊥,又ED AB ⊥,PD ⋂平面AB D =,DE ⊥平面PAB过D 做DF 垂直PB 与F ,连接EF ,则EF PB ⊥,DFE ∠为所求二面角的平面角,32DE =,2DF =,则tan DEDFE DF∠==A PB E --大小为60°法二:∵平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,PD AB ⊥,PD ⊥平面ABC 如图,以D 为原点建立空间直角坐标系,∴()1,0,0B ,()0,0,3P ,30,,02E ⎛⎫⎪⎝⎭,∴()1,0,3PB =-,30,,32PE ⎛⎫=- ⎪⎝⎭设平面PBE 的法向量()1,,z n x y =,∴30,330,2x z y z ⎧-=⎪⎨-=⎪⎩令3z =,得()13,2,3n = ∵DE ⊥平面PAB ,∴平面PAB 的法向量为()20,1,0n = 设二面角A PB E --大小为θ,由图知,1212121cos cos ,2n n n n n n θ⋅===⋅, 所以60θ=︒,即二面角的A PB E --大小为60°19.(1)70.5分;(2)634人;(3)0.499 (1)由题意知: 中间值 45 55 65 75 85 95 概率0.10.150.20.30.150.1∴450.1550.15650.2750.3850.15950.170.5x =⨯+⨯+⨯+⨯+⨯+⨯=, ∴4000名考生的竞赛平均成绩x 为70.5分(2)依题意z 服从正态分布()2N μσ,,其中=70.5x μ=,2204.75D σξ==,14.31σ=,∴z 服从正态分布()()2270.5,14.31N N μσ=,,而()()56.1984.810.6826P z P z μσμσ-<<+=<<=,∴()10.682684.810.15872P z -≥==, ∴竞赛成绩超过84.81分的人数估计为0.158********.8⨯=人634≈人(3)全市竞赛考生成绩不超过84.81分的概率10.15870.8413-=,而()~4,0.8413B ξ,∴()()44431410.841310.5010.499P P C ξξ≤=-==-⋅=-=20.(1)证明见解析,21nn a =-;(2)11202(1)证明:因为n ,n a ,n S 成等差数列,所以2n n S n a +=,① 所以()()11122n n S n a n --+-=≥.②①-②,得1122n n n a a a -+=-,所以()()11212n n a a n -+=+≥. 又当1n =时,1112S a +=,所以11a =,所以112a +=, 故数列{}1n a +是首项为2,公比为2的等比数列, 所以11222n n n a -+=⋅=,即21n n a =-(2)根据(1)求解知,()22log 12121n n b n =+-=-,11b =,所以12n n b b +-=, 所以数列{}n b 是以1为首项,2为公差的等差数列又因为11a =,23a =,37a =,531a =,663a =,7127a =,8255a =,64127b =,106211b =,107213b =,所以()()1210012107127c c c b b b a a a +++=+++-+++()()127107121322272⨯+⎡⎤=-+++-⎣⎦()72121072147212-⨯=-+-281072911202=-+=21.(Ⅰ)见解析;(Ⅱ)k ,,1 解析:(Ⅰ)()()21ln 1x xf x x e x +'=++,易知()f x '在()0,e 上为正,因此()f x 在区间()0,1上为增函数,又1210xe ef e e -⎛⎫=< ⎪⎝⎭,()0f I e =>因此()10f f I e ⎛⎫< ⎪⎝⎭,即()f x 在区间()0,1上恰有一个零点, 由题可知()0f x >在()1,+∞上恒成立,即在()1,+∞上无零点, 则()f x 在()1,+∞上存在唯一零点(Ⅱ)设()f x 的零点为0x ,即000ln 0x x x e x +=,原不等式可化为ln 1x xe x k x--≥, 令()ln 1xxe x g x x--=,则()ln x xxe x g x x+'=,由(Ⅰ)可知()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,00x x e t =故只求()0g x ,设00x x e t =,下面分析0000ln 0x x x e x +=,设00x x e t =,则0ln x t x =-, 可得0000ln ln ln x tx x x t =-⎧⎨+=⎩,即()01ln x t t -=若1t >,等式左负右正不相等,若1t <,等式左右负不相等,只能1t =因此()0000000ln 1ln 1x x e x x g x x x --==-=,即k ,,1求所求 22.(1)S 的普通方程为:2240x y x +-=()04,0x y ≤≤≥或()0,0x y >≥或()0,0x y ≠≥方程写标准式也可S 的极坐标方程为:4cos 02πρθθ⎛⎫=≤< ⎪⎝⎭(不写范围扣2分) (2)0,3πα⎡⎤∈⎢⎥⎣⎦23.(1)见证明;(2)35,22⎡⎤-⎢⎥⎣⎦【详解】解:(1)由柯西不等式得)2222211x x ⎡⎤⎛⎡⎤++≥⋅+⎢⎥ ⎢⎥⎣⎦⎝⎢⎥⎣⎦ ∴()()222433x y x y +⨯≥+,当且仅当3x y =时取等号. ∴22334x y +≥;(2)()1111224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 要使得不等式1121a a x y+≥-++恒成立,即可转化为214a a -++≤, 当2a ≥时,214a -≤,可得522a ≤≤, 当12a -<<,34≤,可得12a -<<, 当1a ≤-时,214a -+≤,可得312a -≤≤-, ∴a 的取值范围为:35,22⎡⎤-⎢⎥⎣⎦。

高三理科数学上学期期中试卷

高三理科数学上学期期中试卷

高三理科数学上学期期中试卷把主要精力放在基础知识、基本技能、基本方法这三个方面上,今天小编就给大家分享一下高三数学,欢迎阅读学习高三数学上学期期中试卷理科第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合 ,则集合且为( )A. B. C. D.2. 若复数满足 ,则的虚部为( )A. B. C. D.3.三角形内,a>b是cosAA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4. 若是的一个内角,且 ,则的值为( )A. B. C. D.5. 两个非零向量满足则向量与夹角为( )A. B. C. D.6. 如果位于第三象限,那么角所在的象限是( )A.第一象限B.第二象限C.第一或三象限D.第二或四象限7. 函数的图象可能是( )A. B.C. D.8. 已知数列满足: , ,设数列的前项和为 ,则 ( )A.1007B.1008C.1009.5D.10109. 在平面直角坐标系中,角与角均以为始边,它们的终边关于x轴对称,若 ,则 ( )A. 或B. 或C.D.10.已知函数的图象向左平移个单位后,得到函数的图象,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于点中心对称.C.图象关于轴对称D.图象关于轴对称11. 已知函数的图象关于点对称,若函数有四个零点则 ( )A.2B.4C.6D.812. 已知是定义在上的单调递减函数, 是其导函数,若 ,则下列不等关系成立的是( )A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上).13. 已知若 ,则实数 __________14. __________15. 在中, ,其面积为 ,则的取值范围是__________16. 关于函数 ,有下列命题:①由可得必是的整数倍;② 的表达式可改写为 ;③ 的图象关于点对称;④ 的图象关于直线对称.其中不正确的命题的序号是__________.三、解答题(本大题共6小题,满分共70分)17.(本小题满分10分) 在中,角、、的对边分别为、、 ,向量 , ,且 .(1)求锐角的大小;(2)若 ,求面积的最大值.19.(本小题满分12分)某经销商计划经营一种商品,经市场调查发现,该商品每日的销售量(单位:千克)与销售价格 (单位:元/千克, ),满足:当时, ( 为常数);当时, .已知当销售价格为元/千克时,每日可售出该特产千克;当销售价格为元/千克时,每日可售出千克.(1)求的值,并确定关于的函数解析式;(2)若该商品的销售成本为元/千克,试确定销售价格的值,使店铺每日销售该特产所获利润最大20.(本小题满分12分)设各项均为正数的数列的前项和为 ,满足 , 且构成等比数列.(1)求数列的通项公式;(2)若对一切正整数都有 ,求实数的最小值.21.(本小题满分12分)已知 .(1)讨论的单调性(2)若在上有且仅有一个零点,求的取值范围.22.(本小题满分12分)已知函数(1)若 ,求曲线在点处的切线方程(2)若在上恒成立,求实数的取值范围(3)若数列的前项和 , ,求证:数列的前项和数学试题答案(理科)1--12 B DCBC CCDCB BA13. -1 14. 15.(-1,0) 16. (1)(4)17.解:(1)∵ ,∴ , +1分∴ . +3分又∵ 为锐角,∴ ,∴ ,∴ . +5分4. ∵ , ,由余弦定理 ,得 . +7分又 ,代入上式,得 ,当且仅当时等号成立. +9分故 ,当且仅当时等号成立,即的最大值为 . +10分+4分+6分+8分+10分+12分19.解:(1)由题意: 时 ,∴ ,又∵ 时 ,∴ ,可得 , +2分∴ +4分(2)由题意: +5分当时,由得或由得所以在上是增函数,在上是减函数因为所以时, 的最大值为 +8分当时,当且仅当 ,即时取等号,∴ 时有最大值. ∵ , +11分∴当时有最大值 ,即当销售价格为元的值,使店铺所获利润最大. +12分20.解:(1) 即且∴ ,∴ ,∵ ,∴ ,∴当时, 是公差为的等差数列. +4分∵ ,构成等比数列,∴ ,解得 , +5分又由已知,当时, ,∴ ∵ ,∴ 是首项 ,公差的等差数列.∴数列的通项公式 . +6分(2)由(1)可得式+10分解得∴ 的最小值为 +12分21.解:(1)由已知的定义域为 ,又 , +1分当时, 恒成立; +2分当时,令得 ;令得 . +4分综上所述,当时, 在上为增函数;当时, 在上为增函数,在上为减函数. +5分(2)由题意 ,则 , +6分当时,∵ , +7分∴g在上为增函数,又 ,不符合题意.当时, , +8分令 ,则 .令的两根分别为且 ,则∵ ,∴ ,当时, ,∴ ,∴ 在上为增函数;当时, ,∴ ,∴ 在上为减函数;当时, ,∴ ,∴ 在上为增函数.∵g=0,∴ 在上只有一个零点 1,且 >0, <0.∴ ,∴g在上必有一个零点.∵ ,当时,g<0,∴ .∴ 在上必有一个零点.综上所述,a的取值范围为 +12分22.解:(1)因为 ,所以 , ,切点为 .由 ,所以 ,所以曲线在处的切线方程为 ,即 +2分(2)由 ,令 ,则 (当且仅当取等号).故在上为增函数.①当时, ,故在上为增函数,所以恒成立,故符合题意;②当时,由于 , ,根据零点存在定理,必存在 ,使得 ,由于在上为增函数,故当时, ,故在上为减函数, 所以当时, ,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为 +6分(3)证明:由由2知当时, ,故当时, , 故 ,故 .下面证明:因为而,所以, ,即: +12分关于高三上学期数学期中试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知则等于( )A. B. C. D.2.命题“”的否定是( )A. B.C. D.3.“ ”是“ ”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知函数y=f(x),其导函数y=f′(x)的图像如图所示,则y=f(x)( )A.在(-∞,0)上为减少的B.在x=0处取极小值C.在(4,+∞)上为减少的D.在x=2处取极大值5. ( )A.0B.C.D.16.下列求导运算正确的是( )A.(cos x)′=sin xB.(ln 2x)′=1xC.(3x)′=3xlog3eD.(x2ex)′=2xex7 .将函数y=sinx-π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A.y=sin 12xB.y=sin12x-π2C.y=sin12x-π6D.y=sin2x-π68.三次函数的图象在点处的切线与轴平行,则在区间上的最小值是( )A. B. C. D.9.函数错误!未找到引用源。

2022-2023学年江西省高三上学期理科数学期中考试试卷及答案

2022-2023学年江西省高三上学期理科数学期中考试试卷及答案

丰城中学2022-2023学年上学期高三期中考试试卷数学(理科)本试卷总分值为150分考试时长为120分钟考试范围:集合、逻辑、函数、三角、向量一、选择题(本题包括12小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的)1.设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B = ð()A .{1,3}B .{0,3}C .{2,1}-D .{2,0}-2.设x ∈R ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.函数2π2sin tan()16y x x =+-+的最小正周期为()A.2π B.πC.32πD.2π4.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图像大致为()A. B. C. D.5.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x ⎛⎫=+ ⎪⎝⎭图象上所有的点()A.向左平移π5个单位长度 B.向右平移π5个单位长度C .向右平移π15个单位长度 D.向左平移π15个单位长度6.ABC ∆的内角A,B,C 所对的边分别为a,b,c,已知43cos ,47===B c b ,则ABC ∆的面积等于()73.A 273.B 9.C 29.D7.沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图, AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在 AB 上,CD AB ⊥.“会圆术”给出 AB 的弧长的近似值s 的计算公式:2CD s AB OA=+.当2,60OA AOB =∠=︒时,s =()A.112-B.112-C.92-D.92-8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A.3- B.2- C.0D.19.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎡⎫⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤⎥⎝⎦10.已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c >>C .a b c>>D .a c b>>11.已知O 是三角形ABC 的外心,若()2||||2||||AC AB AB AO AC AO m AO AB AC ⋅+⋅=,且2sin sin B C +=数m 的最大值为()A .34B .35C .23D .1212.已知函数22()2(2)e (1)x x f x a a xe x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3123122)(2(2x x x x x x e e e ---的值为()A .3B .6C .9D .36二、填空题(本大题共4小题,每小题5分,共20分。

高三期中理科试题参考答案及评分标准

高三期中理科试题参考答案及评分标准

高三期中理科试题1. {5,9}2. 四3.4.匚1,2] 5.28. 纟9. cosx 10. f-oc,2] 11. 125 212. n 13. 【0,2] 14. (111 -oC , —13 1 2」-t T15. 解:(1)v m =(b ,cosB ),n = (2a —c ,cosC ),m //n ,6. 8…bcosC =(2a —c posB .7. 216.••• sin BcosC =2sin AcosB -sinCcosB ,即 sin BcosC +sinC cosB =2sin AcosB , sin(B + C )=2sin AcosB ,• - sin A =3sinAcosB ,1 又sin A 工0cosB=-.2又 B 忘(0 ,n \ B =—3sin A +sin C =sin A+sin (互一A )=sin A + — cos A +-sin A=3sin A +色cosA = 73 !国sin A +-cosA〕=73sin (A +n\2 2 V2 2 丿' 6兀J 2 n n J n 5 n.••• B=—,•••0,-^ , A+——,—...... ..............3 3 6 6 6•- sin (A + n户(-,1 ]6 2」- sin A + sinC的取值范围是f弓,73]证明:(1)v三棱柱ABC-AB I G的侧棱垂直于底■面,--AA i 丄面 A i BiG . — AA i 丄A iB i .•••在三棱柱 ABC —AB’G 中,N BAC =90° ,••• N B1AC1 =90^ , AC」A1B1 .•/ AA1CAC1=A , A AU 面 ACC1A1, A1C^ 面 ACC1A1,••• A i B i 丄面 ACCiA .•/ AC S面 ACGA ,10分12分14分二 AB i 丄 AG .5分(2)取AC 的中点D ,连结ND , A i D .•••点 N , D 分别是 BC , AC 的中点,••• ND //AB , 1且 ND =—AB .2在三棱柱ABC—AB i C 中,M 是AB i 的中点,•- AM / /AB , 且 A i M =1AB .2 B i/A iMC i•- ND//AM ,且 ND =AM ,•••四边形A i MND 是平行四边形.•/ A i D U 面 ACC i A i , MN<t 面 ACC i A i , ••• MN //平面 ACGA . i0分 解:(3)以点A为空间直角坐标系原点, 建立如图所示的空 间直角坐标系. 由题,A(0,0, 0 ), M(1,0, 2 ), N(1,2,0 ), AM =(1,0, 2 ), AN =(1, -,0 ). 设;=(x,y ,z 堤平面MAN 的法向量,则 £丽0,即 r"2^0[01 AN =0 [X +2 yI则 €0=(2 , -4 , -1 )是平=0,取 一1,面MAN 的一个法向 量. 12分由题,AA 丄面ABC ,故e 2 =AA =(0,0 2 )是平面 严%? 02-2…cos 01 , ◎/ 硏妬 X 221由图可知,二面角M - AN - B 的余弦值为姮2i17(i )由 S n = (t myN(第i6题(2)图)_>D z A iC iM B i//仇\\! VI / 认/洋一DyC(第16题(3)图)xNBAN 的一个法向量.a i =S i =2t 中114分a 2 =S —S =(6t +1 )—(2t)=4t +1.因为等差数列{an }的公差d =1,故a 2 -a 1 =1, 即(4t +2 )—(2t +; )=1,解得 t=2 . 所以首项a 1 =2t +2=3 . 所以 a n 諾+(n — 1)X 1= n +1 . (2)由(1)知 t =;,故 Sn =2 n 2+n .故bl =2 —n +2n n 所以T n (n +2)n +2 丄2+片—4)+—5 鬥>6^+( 3-22n +3 (n 则n +2)-—2^^3— >1,即 k 2-k -4 >0 , (k +V (k +2 n+1叫一n+211分<7^或2凹口 . 2 2 "N* , k 33,即k 的最小值为3 . _ a_5 所以,f (X )=a x +374 -X ,5 5解得因为 所以 18.解:(1) 13分15分据题意可知,X 、=- X +3 J 4 -x . 5定义域为0,4 ]. (2 )令 t =4^X ,则 t 壬 10,2 ], X=4—t 2.故f (X )=旦X 5 +_ J 4 -x 5 +3t+4a ,5 5记 y = —a t 25W 0,2 ].由a :>0可知,二次函数y =—a t 25 5 5①当0 C 3 <2时,即2a亠「3、j a '丿 a 》3时,二次函数 4+_^4a 开口向下,对称轴t=2 .2a+ 4a 在! O,"3]上递增 5 I 2a 丿a t 2+3t 5 5 在! — ,2 1上递减,故当时, ~ 2a y max 4 =-a5 +2, 20a 即当x=4-上i 时, 4af (X max =754a+旦; 20a10分 ②当—>2时,2a即0 caW 3时,二次函数 4 y=—-t 2 +mt+4a 在(0,2 )上递增,故 5 5 56,即当 X=0时,f (X h ax £ .5 5综上所述,当0 c a 兰-时,全部投资乙种商品 4万兀时,所得总利润最高,最高值为f13分当 t =2 时,y max万元;当 最高值为 a 》?时,投资甲种商品4-2 万元,乙种商品 2 万元时,所得总利润最高, 4 4a4a 4a +2万元;520a 15分佃.解:(1) 当a =0时,f (x )=xl nx,定义域为(0 , +处).1 f'(x )=lnx +1,令 f'(x ) = 0,可得 x=-所以,函数f (x )的最小值为f (' )=-1.e e(2 )◎ 由题意可知,导函数 f'(x 在 (0,+比)上有两个不同的零点 X i , X 2 .即f '(X )=ln X —2ax +1在(0, +处)上有两个不同的零点 x i , X 2 . 记 y =f'(x ) = lnx-2ax+1 , ^(0,+比),y'=-—2a, x(i )当a 兰0时,y' >0, y =「(x )在(0,+处)上单调递增, 故 f ,(x 在 0,+比)上至多有一个零点,不符题意; (1)(ii )当a:>0时,令y'=0,可得x=—,列表:1所以,当x=—时,y = f'(x 取最大值.2a要使得f'(x ) = l nx —2ax +1在(0,+乂)上有两个不同的零点 为,x ?, 1则 y (—)>0,2a"45列表:1 1 1 1 1即 In — -2a ——+1〉0, In 一 >0 , 一>1 , O c a..2a 2a 2a 2a 21综上(i) (ii),实数a的取值范围是0c a c1...... ...........210分②由题意,k =f0F f(X 2)= X1(In 一込宀。

高三数学(理)期中试卷及答案

高三数学(理)期中试卷及答案

第一学期期中考试高三数学试题(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分;满分150分.考试时间120分钟.考试结束后;将本试卷和答题卡一并收回. 注意事项:1.答第I 卷前;考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后;用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动;用橡皮擦干净后;再选涂其它答案;不能答在试卷上.第I 卷(选择题 共75分)一、选择题(本大题共15 小题;每小题5 分;共75 分. )1. 集合(){}lg 10M x x =-<;集合{}11N x x =-≤≤;则M N ⋂= A. ()0,1B. [)0,1C. []1,1-D. [)1,1-2.设(3,1),(,3)a b x ==-;且a b ⊥;则向量a b -与向量b 夹角为A. 30B. 60C. 120D.150 3.下列各式中错误的是A . 330.80.7>B . 0..50..5log 0.4log 0.6>C . 0.10.10.750.75-<D . lg1.6lg1.4> 4.若5cos sin 3θθ+=-;则cos(2)2πθ-的值为 A49 B 29 C 29- D 49- 5.函数)(x f 是定义在)2,2(-上的奇函数;当)2,0(∈x 时;,12)(-=xx f 则)31(log 2f 的值为 A .2- B .32-C .7D .123- 6. 已知命题:p 对于x R ∈恒有222xx-+≥成立;命题:q 奇函数()f x 的图像必过原点;则下列结论正确的是( )A .p q ∧为真B .()p q ⌝∨为真C .()q ⌝为假D . ()p q ∧⌝为真7.函数()xx x f 2log 12-=定义域为A. ()+∞,0B. ()+∞,1C. ()1,0D. ()()+∞,11,0 8.要得到函数的图像;只需将函数的图像A.向左平移12π个单位 B.向右平移12π个单位C.向左平移6π个单位 D.向右平移6π个单位9. 函数的一个零点落在下列哪个区;间A. (0;1)B. (1;2)C. (2;3)D. (3;4) 10.函数2cos )(xxx f π=的图象大致是ABCD11.若圆O 的半径为3;直径AB 上一点D 使3AB AD =;E F 、为另一直径的两个端点;则DE DF ⋅=A.3-B.4-C. 8-D. 6-12.下列四个结论中正确的个数是yO12 3 1- 2- 3- x 121-2-3yO12 3 1- 2- 3- x 121-2-3yO12 3 1- 2- 3- x 1 2 1-2-33- x O12 3 1- 2- 12 1-2-3y(1) 2"20"x x +->是"1"x >的充分不必要条件;(2)命题:",sin 1"x R x ∀∈≤的否定是00",sin 1"x R x ∀∈>;(3)"若4x π=则tan 1"x =的逆命题为真命题;(4)若()f x 是R 上的奇函数;则32(log 2)(log 3)0f f +=A. 0B. 1C. 213.()cos()f x A x ωϕ=+(0,0,0)A ωϕπ>><<为奇函数;该函数的部分图象如图所示;EFG ∆是边长为2的等边三角形;则(1)f 的值为A .32-B .62- C .3 D .3-14. 在ABC 中;,P Q 分别是,AB BC 的三等分点;且1,3AP AB =1,3BQ BC =若,AB a AC b ==;则PQ = A. 1133a b - B. 1133a b -+ C. 1133a b + D.1133a b --15. 已知函数)(x f 是定义在R 上的可导函数;)('x f 为其导函数;若对于任意实数x ;都有)()('x f x f >;其中e 为自然对数的底数;则( )A )2016()2015(e f f >B )2016()2015(e f f <C )2016()2015(e f f =D )2015(e f 与)2016(f 大小关系不确定二、填空题(本大题共5小题;每小题5分;共25分) 16.2{4,21,}A a a =--;B={5,1,9},a a --且{9}AB =;则a 的值是17. 已知sin π 0()(-1)+1 >0x x f x f x x ≤⎧=⎨⎩;则5()6f 的值为18. 若曲线x y ln =的一条切线与直线y x =-垂直;则该切线方程为 19.已知||||||2a b a b ==-=;则|32|a b -= . 20. 计算定积分121(sin )x x dx -+=⎰___________三、解答题(本大题共4小题;共50分;解答应写出文字说明;证明过程或推演步骤) 21..(本题满分12分)已知向量()()2sin ,cos m x x π=--;3cos ,2sin()2n x x π⎛⎫=- ⎪⎝⎭;函数()1f x m n =-⋅.(1)求函数()f x 的解析式;(2)当[]0,x π∈时;求()f x 的单调递增区间;22.(本题满分12分)已知函数()f x xlnx =; (1)求()f x 的最小值;(2)若对所有1x ≥都有()1f x ax ≥-;求实数a 的取值范围.23.(本题满分12分)已知函数()22sin sin 6f x x x πωω⎛⎫=--⎪⎝⎭(,x R ω∈为常数且112ω<<);函数()f x 的图象关于直线x π=对称. (I )求函数()f x 的最小正周期;(II )在ABC ∆中;角A ;B ;C 的对边分别为,,a b c ;若311,54a f A ⎛⎫== ⎪⎝⎭;求ABC ∆面积的最大值.24.(本题满分14分)已知函数)0(21ln )2()(≤++-=a ax xx a x f . (Ⅰ)当0=a 时;求)(x f 的极值; (Ⅱ)当0<a 时;讨论)(x f 的单调性;高三阶段性测试数学(理科)二、选择题(本大题共15 小题;每小题5 分;共75 分. ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A BCDADDDBBCADCA二、填空题(本大题共5小题;每小题5分;共25分) 16. -3 17.12 18. 10x y --= 19. 723三、解答题(本大题共4小题;共50分;解答应写出文字说明;证明过程或推演步骤)21. 【解】(1)∵(2sin 32cos sin 2m n x x x x ππ⎛⎫⋅=--+-⎪⎝⎭223cos 2cos 32cos 21x x x x x =-+=++∴()1f x m n =-⋅32cos 2x x =-∴()f x =2sin 26x π⎛⎫- ⎪⎝⎭(2)由222()262k x k k Z πππππ-+≤-≤+∈;解得()63k x k k Z ππππ-+≤≤+∈;∵取k =0和1且[]0,x π∈;得03x π≤≤和56x ππ≤≤; ∴()f x 的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦和5,6ππ⎡⎤⎢⎥⎣⎦ 法二:∵[]0,x π∈;∴112666x πππ-≤-≤;∴由2662x πππ-≤-≤和3112266x πππ≤-≤; 解得03x π≤≤和56x ππ≤≤;∴()f x 的单调递增区间为0,3π⎡⎤⎢⎥⎣⎦和5,6ππ⎡⎤⎢⎥⎣⎦22.解:(1)()f x 的定义域为()0,+∞; ()f x 的导数()1ln f x x '=+.令()0f x '>;解得1x e >;令()0f x '<;解得10x e<<. 从而()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减;在1,e⎛⎫+∞ ⎪⎝⎭单调递增. 所以;当1x e =时;()f x 取得最小值11()f e e=-. (2)依题意;得()1f x ax ≥-在[)1,+∞上恒成立;即不等式1ln a x x≤+对于[)1,x ∈+∞恒成立 . 令1()ln g x x x=+; 则21111()1g x x x x x ⎛⎫'=-=- ⎪⎝⎭.当1x >时;因为11()10g x x x ⎛⎫'=-> ⎪⎝⎭; 故()g x 是()1,+∞上的增函数; 所以()g x 的最小值是(1)1g =; 所以a 的取值范围是(],1-∞.23.24.【解】(Ⅰ)当0=a 时;xx x f 1ln 2)(+=;定义域为),0(+∞; )(x f 的导函数22'1212)(xx x x x f -=-=.分 当210<<x 时;0)('<x f ;)(x f 在)21,0(上是减函数;当21>x 时;0)('>x f ;)(x f 在),21(+∞上是增函数.分∴当21=x 时;)(x f 取得极小值为2ln 22)21(-=f ;无极大值.(Ⅱ)当0<a 时;ax xx a x f 21ln )2()(++-=的定义域为),0(+∞;)(x f 的导函数为2222')1)(12(1)2(2212)(x ax x x x a ax a x x a x f +-=--+=+--=.由0)('=x f 得0211>=x ;012>-=a x ;aa a x x 22)1(2121+=--=-. (1)当02<<-a 时;)(x f 在)21,0(上是减函数;在)1,21(a -上是增函数;在),1(+∞-a上是减函数;(2)当2-=a 时;)(x f 在),0(+∞上是减函数; (3)当2-<a 时;)(x f 在)1,0(a -上是减函数;在)21,1(a -上是增函数; 在),21(+∞上是减函数. 综上所述;当2-<a 时;)(x f 在),21(),1,0(+∞-a 上是减函数;在)21,1(a -上是增函数; 当2-=a 时;)(x f 在),0(+∞上是减函数; 当02<<-a 时;)(x f 在),1(),21,0(+∞-a 上是减函数;在)1,21(a-上是增函数. (Ⅲ)由(Ⅱ)知;当)2,(--∞∈a 时;)(x f 在]3,1[上是减函数. ∴3ln )2(432)3()1(|)()(|21-+-=-≤-a a f f x f x f . ∵对于任意的)2,(],3,1[,21--∞∈∈a x x 都有3ln 2)3ln (|)()(|21-+<-a m x f x f ;∴3ln 2)3ln (3ln )2(432-+<-+-a m a a 对任意2-<a 恒成立; ∴am 324+-<对任意2-<a 恒成立.当2-<a 时;4324313-<+-<-a ;∴313-≤m .∴实数m 的取值范围为]313,(--∞.;。

高三期中数学(理)试题及答案

高三期中数学(理)试题及答案

高三年级期中考试数学试题(理科)第I 卷(选择题 共60分)一、选择题:本大题共12小题;每小题5分;共60分;在每小题给出的四个选项中;只有一项是符合题目要求的. 1.若集合{|0}1xA x x =≤-;2{|2}B x x x =<;则A B = ( ) A.{|01}x x << B.{|01}x x ≤< C.{|01}x x <≤ D.{|01}x x ≤≤ 2.已知复数12312z bi z i =-=-,;若12z z 是实数;则实数b 的值为 ( ) A .0B .32-C .6-D .6 3.以下判断正确的是 ( )A .函数()y f x =为R 上可导函数;则0()0f x '=是0x 为函数()f x 极值点的充要条件[来源:学§科§网]B .命题“2000,10x R x x ∃∈+-<”的否定是“2,10x R x x ∀∈+->”C.“()2k k Z πϕπ=+∈”是“函数()sin()f x x ωϕ=+是偶函数”的充要条件 D. 命题“在ABC ∆中;若A B >;则sin sin A B >”的逆命题为假命题4.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm);则该几何体的体积为 ( )A .120 cm 3B .100 cm 3C .80 cm 3D .60 cm 35.由曲线21y x =+;直线3y x =-+及坐标轴所围成图形的面积为( )A . 73B .83 C . 103D . 36.设等差数列}{n a 的前n 项和为n S ;若21-=-m S ;0=m S ;31=+m S ;则=m ( )A.3B.4C.5D. 6学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今 有垣厚十尺;两鼠对穿;初日各一尺;大鼠日自倍;小鼠日自半;问几何日相逢?”现用程序框图描述;如图所示;则输出的结果n( )A. 4 B . 5 C . 2 D . 3 8.设123log 2,ln 2,5a b c -===;则 ( )A. a b c << B . b c a << C . c a b << D . c b a <<9.已知函数()ln f x x x =-;则()f x 的图象大致为 ( )A B C D10.函数cos(2)()y x ϕπϕπ=+-≤<的图象向右平移2π个单位后;与函数sin(2)3y x π=+的 图象重合;则ϕ的值为 ( ) A . 56π-B . 56πC . 6π D . 6π-11.椭圆C : 22221(0)+=>>x y a b a b的左、右焦点分别为12,F F ;焦距为2c . 若直线y=()3+x c 与椭圆C 的一个交点M 满足12212MF F MF F ;则该椭圆的离心率等于 ( )A .22B . 21-C .3D . 31-R 上的函数()f x 满足:222,[0,1)()2,[1,0)x x f x x x ⎧+∈=⎨-∈-⎩且(2)()f x f x +=;25()2x g x x +=+;则方程()()f x g x =在区间[5,1]-上的所有实根之和为 ( )A. 6- B .7- C. 8- D. 9- 第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共4小题;每小题5分;共20分.13.已知向量()()()()1,1,2,2,,==+=++⊥-m n m n m n λλλ若则 .O yxO yx O yx O yx14.已知1sin 23α=;则2cos ()4πα-= . 15.已知0,,a x y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩若2z x y 的最小值为1;则a .ABC ∆中;内角,,A B C 的对边分别为,,a b c ;已知cos sin a b C c B ;2b ;则ABC ∆面积的最大值为 .三、解答题:本大题共6小题;共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数2()2sin 23sin cos 1f x x x x =-++.(Ⅰ)求()f x 的最小正周期及对称中心; (Ⅱ)若[,]63x ππ∈-;求()f x 的最大值和最小值. 18.(本小题满分12分)如图;在直三棱柱111ABC A B C -中;12,1BC AB AC AA ====;D 是棱1CC 上的一点;P 是AD 的延长线与11A C 的延长线的交点;且1PB ∥平面1BDA . (Ⅰ)求证:D C CD 1=;(Ⅱ)求二面角11A B D P --的平面角的正弦值.19.(本小题满分12分)随着苹果7手机的上市;很多消费者觉得价格偏高;尤其是一部分大学生可望而不可及;因此“国美在线”推出无抵押分期付款的购买方式;某店对最近100位采用分期付款的购买者进行统计;统计结果如下表所示.付款方式 分1期 分2期 分3期分4期 分5期频数3525a10b已知分3期付款的频率为;并且销售一部苹果7手机;顾客分1期付款;其利润为1000元;分2期或3期付款;其利润为1500元;分4期或5期付款;其利润为2000元;以频率作为概率.BA C DP1A 1B 1C(Ⅰ)求a ;b 的值;并求事件A :“购买苹果7手机的3位顾客中;至多有1位分4期付款”的概率; (Ⅱ)用X 表示销售一部苹果7手机的利润;求X 的分布列及数学期望EX . 20.(本小题满分12分)已知抛物线C :22y x =;直线:2l y kx =+交C 于,A B 两点;M 是线段AB 的中点;过点M 作x 轴的垂线交C 于点.N(Ⅰ)证明:抛物线C 在点N 的切线与AB 平行;(Ⅱ)是否存在实数k ;使以AB 为直径的圆M 经过点N ?若存在;求k 的值;若不存在;说明理由.21.(本小题满分12分) 已知函数()2ln ()2a f x x x x x a a R =--+∈. (Ⅰ)当0a =时;求()f x 的单调区间;(Ⅱ)若函数()f x 在其定义域内有两个不同的极值点. (ⅰ)求a 的取值范围;(ⅱ)设两个极值点分别为12,x x ;证明:212x x e ⋅>.请考生在第22、23题中任选一题做答;如果多做;则按所做的第一题记分.做答时;用2B 铅笔在答题卡上把所选题目对应的题号涂黑.22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中;以原点O 为极点;x 轴的正半轴为极轴;建立极坐标系;曲线1C 的参数方程为22sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数);曲线 2C 的极坐标方程为cos 2sin 40ρθρθ-=.(Ⅰ)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(Ⅱ)设P 为曲线1C 上一点;Q 为曲线2C 上一点;求PQ 的最小值. 23.(本小题满分10分)选修4—5:不等式选讲已知函数()|2|,f x m x m R =--∈;且(2)0f x +≥的解集为[]1,1-. (Ⅰ)求m 的值; (Ⅱ)若,,a b c R +∈;且11123m a b c++=;求证:239a b c ++≥.高三数学试题参考答案(理科)一、选择题(本题共12小题;每小题5分;共60分。

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

河南省南阳市2022-2023学年高三上学期期中考试数学(理科)试题(含答案)

南阳市2022年秋期高中三年级期中质量评估数学试题(理)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生做题时将答案答在答题卡的指定位置上,在本试卷上答题无效.2.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上.3.选择题答案使用2B 铅笔填涂,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.5.保持卷面清洁,不折叠、不破损.第Ⅰ卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合40,{54}1x A x B x x x -⎧⎫=≤=-<<⎨⎬+⎩⎭∣∣, 则()R A B ⋂=ðA. (,1](4,)-∞-⋃+∞B. (,1)(4,)-∞-⋃+∞C. (-5,-1)D. (-5,-1]2. 若||||2z i z i +=-=, 则||z = A. 1D. 23. 若,x y 满足3020x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩ 则2y -的最小值是A. -1B. -3C. -5D. -74. 已知数列{}n a 的前n 项和211n S n n =-. 若710k a <<, 则k = A. 9B. 10C. 11D. 125.已知sin 12x π⎛⎫-= ⎪⎝⎭, 则cos 26x π⎛⎫-= ⎪⎝⎭A. 58-B. 58C. 4-D.46. 在ABC 中,30,C b c x ︒===. 若满足条件的ABC 有且只有一个, 则x 的可能取值是 A.12B.2C. 17. 若函数()(sin )x f x e x a =+在点(0,(0))A f 处的切线方程为3y x a =+, 则实数a 的值为 A. 1B. 2C. 3D. 48. 在ABC 中, 角,,A B C所对的边分别为,,cos ),a b c c b A a b -==则ABC 的外接圆面积为A. 4πB. 6πC. 8πD. 9π9. 函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像如图所示, 将该函数图像上各点的横坐标缩短到原来的一半 (纵坐标不变), 再向右平移(0)θθ>个单位长度后, 所得到的图像关于点7,024π⎛⎫⎪⎝⎭对称, 则θ的最小值为A.76π B. 6πC. 8πD. 724π10. 已知定义在R 上的函数()f x 满足:(3)(3),(6)(6)f x f x f x f x +=-+=--, 且当[0,3]x ∈时,()21()x f x a a =⋅-∈R , 则(1)(2)(3)(2023)f f f f ++++=A. 14B. 16C. 18D. 2011. 已知:2221tan log 38,21tan 8a b c ππ-===+, 则 A. a b c << B. a c b << C. c a b << D. c b a <<12. 已知正数,a b 满足221ln(2)ln 1a a b b +≤-+, 则22a b +=A.52C.32第Ⅱ卷 非选择题(共 90 分)二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分) 13. 已知2()lg5lg(10)(lg )f x x x =⋅+, 则(2)f =_____.14. 在ABC 中,3,4,8AB BC CA CB ==⋅=, 则AB 边上中线CD 的长为_____.15. 已知函数sin ,sin cos ,()cos ,sin cos ,x x x f x x x x ≤⎧=⎨>⎩则1()2f x <的解集是_____.16. 若方程2ln 1x x e ax x -=--存在唯一实根,则实数a 的取值范围是_____.三、解答题(本大题共 6 小题,共 70 分. 解答应写出文字说明、证明过程或演算步骤)17. (本题满分 10 分)已知函数22()2cos sin 3f x x x π⎛⎫=-+- ⎪⎝⎭.(1)求函数()y f x =的单调递增区间;(2) 若函数()()02g x f x πϕϕ⎛⎫=+<< ⎪⎝⎭的图像关于点,12π⎛⎫ ⎪⎝⎭中心对称,求()y g x =在,63ππ⎡⎤⎢⎥⎣⎦上的值域.18. (本题满分 12 分)已知数列{}n a 和{}n b 满足:)*121,2,0,n n a a a b n ==>=∈N ,且{}n b 是以 2 为公比的等比数列. (1) 证明: 24n n a a +=;(2) 若2122n n n c a a -=+, 求数列{}n c 的通项公式及其前n 项和n S . 19. (本题满分 12 分)已知函数()ln ,()(1)f x x x g x k x ==-. (1) 求()f x 的极值;(2) 若()()f x g x ≥在[2,)+∞上恒成立, 求实数k 的取值范围. 20. (本题满分 12 分)数列{}n a 中,n S 为{}n a 的前n 项和,()()*24,21n n a S n a n ==+∈N . (1)求证: 数列{}n a 是等差数列,并求出其通项公式;(2) 求数列12n S n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .21. (本题满分 12 分)已知,,a b c 分别是ABC 的内角,,A B C 所对的边, 向量(sin ,sin ),(cos ,cos )A B B A ==m n(1)若234,cos 3a b C ==, 证明: ABC 为锐角三角形; (2)若ABC 为锐角三角形, 且sin 2C ⋅=m n , 求ba的取值范围.22. (本题满分 12 分)已知函数21()12x f x e x ax =---, 若()()()2g x h x f x +=, 其中()g x 为偶函数,()h x 为奇函数.(1)当1a =时,求出函数()g x 的表达式并讨论函数()g x 的单调性;(2) 设()f x '是()f x 的导数. 当[1,1],[1,1]a x ∈-∈-时,记函数|()|f x 的最大值为M , 函数()f x '的最大值为N . 求证:M N <.高三(理)数学参考答案第1页(共6页)2022年秋期高中三年级期中质量评估数学试题(理)参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案DCDBBDBDCABA二、填空题(本大题共4小题,每小题5分,共20分)13.114.215.13(2,2)()36k k k Z ππππ++∈16.(]1,01e ⎧⎫-∞⋃+⎨⎬⎩⎭三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.【解析】(1)211cos 21cos 221cos 21cos 2322()2222x x x x x f x π⎛⎫-++ ⎪++⎝⎭=+=+31sin 2cos 21sin 24423x x x π⎛⎫=++=++ ⎪⎝⎭.………………………………3分令5222,,2321212k x k k k x k πππππππππ-+≤+≤+∈-+≤≤+Z,∴()y f x=的单调递增区间为5,,1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ……………………5分(2)()12()12233g x x x ππϕϕ⎡⎤⎛⎫=+++=+++ ⎪⎢⎥⎣⎦⎝⎭.………………6分∵()y g x =关于点,12π⎛⎫⎪⎝⎭中心对称,高三(理)数学参考答案第2页(共6页)∴222,,2332k k k ππππϕπϕ⋅++=∈=-+Z ,……………………………………7分∵02πϕ<<,∴3πϕ=.∴()1)1sin 222g x x x π=++=-………………………………………8分当2,,2,6333x x ππππ⎡⎤⎡⎤∈∈⎢⎢⎥⎣⎦⎣⎦∴sin 2x ⎤∈⎥⎣⎦…………………………………9分所以1()1,24g x ⎡⎤∈-⎢⎥⎣⎦.………………………………………………………10分18.【解析】(1)由n b =得,2211==a a b ,故211222--=⋅=n n n b …………………………………………………………2分则12212)(-+==n n n n b a a ①所以,12212+++=n n n a a ②………………………………………………………4分由①②得,n n a a 42=+.…………………………………………………………6分(2)由(1)知数列}{2n a 和数列}{12-n a 均为公比为4的等比数列,…………8分所以,1212224--=⋅=n n n a a ,22111-224--=⋅=n n n a a 2122n n n c a a -=+=1122245222---⨯=⋅+n n n .…………………………………10分所以,)14(3541455-=-⨯-=nn n S ………………………………………………12分高三(理)数学参考答案第3页(共6页)19.【解析】(1)()f x 的定义域是(0,)+∞,()ln 1f x x '=+,令()0,f x '=则1x e=,……………………………………………………………2分当1(0,)x e∈,()0,f x '<()f x 单调递减,当1(,)x e∈+∞,()0,f x '>()f x 单调递增,所以()f x 在1x e=处取得极小值,………………………………………………4分故()f x 有极小值1e-,无极大值.…………………………………………………5分(2)(法一)由()()f x g x ≥在[)2,+∞上恒成立,即ln 1x x k x ≤-在[)2,+∞上恒成立,只需min ln ()1x xk x ≤-…………………………7分令ln ()1x xh x x =-,则2ln 1()(1)x x h x x --'=-,………………………………………9分令()ln 1x x x ϕ=--,则1()x x xϕ-'=,………………………………………10分易知当(1,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,所以()(0)0x ϕϕ≥=,所以ln 10x x -->,即()0h x '>,即()h x 单调递增,故min ()(2)2ln 2h x h ==.…………………………………………………………11分所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分(法二)由题(ln 1)k x x x -≥,即(n 1)l k x x x -≥,令(1)()ln h x x k x x=--………6分则22(11())kx k x x kh x xx x '=--=--,…………………………………………………7分高三(理)数学参考答案第4页(共6页)当2k ≤时,0x k ->,()0f x '>,()f x 递增,所以min ()(2)ln 202kh x h ==-≥,所以2ln 2k ≤;…………………………………9分当2k >时,有x k >时,()0f x '>,()f x 递增,x k <时,()0f x '<,()f x 递减,即min ()()ln (1)h x h k k k ==--,可证ln (1)0k k --<,显然不合题意,舍去.…11分综上,所以k 的取值范围是(],2ln 2-∞.…………………………………………………12分20.【解析】(1)当1n =时,则1121a a =+,所以11a =,因为)1(2+=n n a n S ①所以,当2n ≥时,)1(1-21-1-+=n n a n S )(②…………………………2分①-②得:()()()1211,2n n n a n a n --=--≥,③故,()()()12321,3n n n a n a n ---=--≥,④③-④得:()1223n n n a a a n --=+≥,所以{}n a 为等差数列,…………………………5分又213d a a =-=,所以,()13132n a n n =+-=-;…………………………6分(2)由()()21n n S n a n N *=+∈得2)13(-=n n S n ,故1221211(2(33)3(1)31n S n n n n n n n ==⋅=-++++,.………………………9分故1231111211111...)()...()]246232231n n T S S S S n n n =++++=-+-+++++++212(1313(1)nn n =-=++…………………………………………………………12分21.【解析】高三(理)数学参考答案第5页(共6页)(1)令3412(0)a b k k ==>,由2222222(4)(3)cos ,32243a b c k k c C ab k k +-+-===⨯⋅3c k ∴=.………………………………………………………………………………2分即4,3,3a k b k c k ===,从而a 边最大,…………………………………………3分又222222(3)(3)(4)21cos 02233189b c a k k k A bc k k +-+-====>⋅⋅,即A 为锐角,………5分∴ABC ∆为锐角三角形.……………………………………………………………6分(2)因为sin cos sin cos sin()A B B A A B ⋅=⋅+⋅=+m n ,而在ABC △中,π,0πA B C C +=-<<,所以sin()sin A B C +=,又sin 2C ⋅=m n ,所以sin 2sin ,C C =得1cos 2C =,所以π3C =.……………………………………7分又ABC ∆为锐角三角形,1022π1032A A ππ⎧<<⎪⎪∴⎨⎪<-<⎪⎩,解得,tan 623A A ππ<<>, (8)分1sin sin sin 1322sin sin sin 2A A Ab B a A A A π⎛⎫+ ⎪⎝⎭==== ,………………………10分结合3tan 3A >12+∈1,22⎛⎫⎪⎝⎭.…………………………………………11分所以1,22b a ⎛⎫∈ ⎪⎝⎭.………………………………………………………………………12分22.【解析】(1)当1=a 时,21()12xf x e x x =---,由题()()()2g x h x f x +=,其中)(x g 为偶函数,)(x h 为奇函数,易知()()()g x f x f x =+-,从而得2()2x x g x e e x -=+--.………2分所以'()2x x g x e e x -=--.令()'()x g x ϕ=,则'()2x x x e e ϕ-=+-.因为'()220x x x e e ϕ-=+-≥=,当且仅当0x =时等号成立,高三(理)数学参考答案第6页(共6页)所以'()g x 在R 上单调递增.………………………………………………………………4分注意到()'00g =,当(,0)x ∈-∞时,'()0g x <,(0,)x ∈+∞时,'()0g x >.所以()g x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.………………………………5分(2)由()f x 的定义域是R .'()x f x e x a =--,设函数()x h x e x a =--,则'()1x h x e =-.令'()0h x =,得0x =.……………………6分因为)'(h x 在R 上单调递增,所以当(,0)x ∈-∞时'()0h x <,当(0,)x ∈+∞时'()0h x >.因此()h x 在(,0)-∞上单调递减,在(0,)+∞上单调递增.于是()()010h x h a ≥=-≥,即'()0f x ≥,所以()f x 在R 上单调递增..………………………………………………………………7分注意到()00f =,所以在(),0-∞上()0f x <,在()0,∞+上()0f x >.所以函数(),0()(),0f x x y f x f x x -<⎧==⎨≥⎩,()y f x =在(),0-∞上单调递减,在()0,∞+上单调递增.故()(){}()-1,1max f x maxf f =,…………………………………………………8分又]1,1[-∈a ()()3313311,12222f e a e a f a a e e=--=---=-+=--|(1)||(1)|f f --=013<--e e ,因此max 3|()||(1)|2f x f e a ==--.……………9分又()max max 3|'()|111|()|2f x f e a e a e a f x '≥=--=-->--=,……………11分所以|()||'()|max max f x f x <,即M N <…………………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区-高三年级第一学期期中统一考试
数学试卷(理工类) .11
(考试时间120分钟 满分150分)
本试卷分为选择题(共40分)和非选择题(共110分)两部分
第一部分(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出
符合题目要求的一项.
1. 已知全集{}1,2,3,4,5,6U =, 集合{}1,3,5A =, {}1,2B =, 则A (U B )等于( )
A .∅
B .{}5
C .{}3
D .{}3,5
2. 已知数列{}n a 是各项均为正数的等比数列,若2342,216a a a =+=,则n a 等于( )
A .22-n
B .32n -
C .12-n
D .n
2 3.已知平面向量a ,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角为( )
A .
56π B .23π C . 3π D .6
π 4.曲线e ()1x
f x x =-在0x =处的切线方程为( ) A .10x y --= B .10x y ++= C .210x y --= D .210x y ++=
5.在ABC ∆中,M 是BC 的中点,3AM =,点P 在AM 上,且满足2AP PM =,则()PA PB PC ⋅+的值为( )
A .4-
B .2-
C .2
D .4
6.函数33,0,(),0x x f x x x --<⎧=⎨
≥⎩的图象与函数()ln(1)g x x =+的图象的交点个数是( ) A .1 B .2 C .3 D .4
7.函数()f x 是定义域为R 的可导函数,且对任意实数x 都有()(2)f x f x =-成立.若当
1x ≠时,不等式(1)()0x f x '-⋅<成立,设(0.5)a f =,4()3
b f =,(3)
c f =,则a ,b ,c 的大小关系是( )
A .
B .
C .
D .
8.已知数列{}n a 是各项均为正数且公比不等于1的等比数列.对于函数()y f x =,若数列{}ln ()n f a 为等差数列,则称函数()f x 为“保比差数列函数”.现有定义在(0,)+∞上的如
b a
c >>c b a >>a b c >>b c a >>
下函数: ①1()f x x
=, ②2()f x x =, ③()e x f x =,
④()f x = 则为“保比差数列函数”的所有序号为( )
A .①②
B .③④
C .①②④
D .②③④
第二部分(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.
9.设集合{|2}A x x =∈≤R ,B ={x ∈R ∣}1262
x <<,则A B = . 10.设n S 是等差数列{}n a 的前n 项和.若569108,24a a a a +=+=,则公差d = ,10S = .
11.已知角α的终边经过点(3,4)(0)a a a <,则sin α= ,tan(2απ-)= .
12. 在ABC ∆中,若4BA BC ⋅=,ABC ∆的面积为2,则角B = .
13. 已知函数()y f x =满足:(1)=f a (01a <≤),且()1,()1,()(1)2(),()1,f x f x f x f x f x f x -⎧>⎪+=⎨⎪≤⎩则
(2)=f (用a 表示),若1(3)=(2)
f f ,则a = . 14.已知函数()f x x x =.当[,1]x a a ∈+时,不等式(2)4()f x a f x +>恒成立,则实数a 的取值范围是 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题满分13分)
设△ABC 的内角,,A B C 所对的边分别为,,a b c ,已知12,3,cos 3
a b C ===
. (Ⅰ)求△ABC 的面积;
(Ⅱ)求sin()C A -的值.
16.(本小题满分14分)
设数列{}n a 的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N .
(Ⅰ)写出23,a a 的值,并求数列{}n a 的通项公式;
(Ⅱ)记n T 为数列{}n na 的前n 项和,求n T ;
(Ⅲ)若数列{}n b 满足10b =,12log (2)n n n b b a n --=≥,求数列{}n b 的通项公式.
17.(本小题满分13分)
函数()sin()(0,0,||)2
f x A x A ωϕωϕπ=+>><部分图象如图所示. (Ⅰ)求函数()f x 的解析式,并写出其单调递增区间; (Ⅱ)设函数()()2cos 2
g x f x x =+,求函数()g x 在区间[,]64
ππ-上的最大值和最小值. 18.(本小题满分13分)
已知函数2()243f x ax x a =+--,a ∈R .
(Ⅰ)当1a =时,求函数()f x 在[]1,1-上的最大值;
(Ⅱ)如果函数()f x 在区间[]1,1-上存在零点,求a 的取值范围.
19.(本小题满分14分)
设函数()ln f x a x x
1=+,a ∈R . (Ⅰ)求函数的单调区间;
(Ⅱ)当0a >时,若对任意0x >,不等式()2f x a ≥成立,求的取值范围; (Ⅲ)当0a <时,设10x >,20x >,试比较与的大小并说明理由.
20.(本小题满分13分)
给定一个n 项的实数列12,,,(N )n a a a n *∈,任意选取一个实数c ,变换()T c 将数列12,,,n a a a 变换为数列12||,||,,||n a c a c a c ---,再将得到的数列继续实施这样的变
换,这样的变换可以连续进行多次,并且每次所选择的实数c 可以不相同,第(N )k k *∈次
变换记为()k k T c ,其中k c 为第次变换时选择的实数.如果通过k 次变换后,数列中的各项均为0,则称11()T c ,
22()T c ,…,()k k T c 为 “k 次归零变换”. (Ⅰ)对数列:1,3,5,7,给出一个 “k 次归零变换”,其中4k ≤;
(Ⅱ)证明:对任意n 项数列,都存在“n 次归零变换”;
)(x f a )2(
21x x f +2)()(21x f x f +k
(Ⅲ)对于数列231,2,3,,n n ,是否存在“1n 次归零变换”?请说明理由. 新课标第一网系列资料 。

相关文档
最新文档