复变函数的积分习题与解答
复变函数与积分变换课后习题答案详解

…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系?【答案 单连通 无关,复连通 有关】3.2 计算积分 3||2d 1z z z =-⎰的值【答案 0】 3.3 计算积分22d L z z a -⎰:其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+=【答案 (1)0;(2)πia ; (3)πia -】 3.4 计算积分 Im d C z z ⎰,其中积分曲线C 为(1)从原点到2i +的直线段;(2)上半圆周 ||1z =,起点为1,终点为1-;(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)【答案 2(1)1i /2;(2)π/2;(3)πR +--】3.5 计算积分 d ||C z zz ⎰的值,(1)||2; (2)||4;z z ==【答案(1)4πi;(2)8πi 】3.6 计算积分的值 π2i 0cos d 2z z +⎰【答案 1/e e +】3.7计算下列积分的值 (1) ||1d cos z z z =⎰;(2)2||2d z ze z =⎰21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰ 【答案(1)0;(2) 0;(3) 0;(4) 4πi4i +】3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z zz z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】3.9 计算积分(1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --⎰⎰⎰【答案 13(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】3.10 计算复数 123cos (1)d C C z z z +⎰,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.(2)3||1d ()zz e z z a =-⎰,其中复常数||1a ≠【答案 (1) 0;(2)当||1,0;||1,πi a a a e ><】 3.11 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.d ()()L z I z z b z b =+-⎰【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi b I =;L 含b -,πi b I =-;(3)两点在内部 0I =】3.12 已知 π3||2()d e h z z ξξξξ==-⎰,试求(i),(i)h h -,以及当||2z >时,()h z '的值.【 ()π(i);(i)i);||2,()0h i h z h z '=-=>=】3.13 计算积分 3d ()zC ze z z a -⎰,其中 常数a 在闭曲线C 内部 【答案 1(2)2aa e +】3.14 设 C 为正向圆周1=z ,且||1a ≠,证明:积分222π1||22π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰ 3.15 利用积分 ||1d 2z z z =+⎰的值,证明2π012cos d 054cos θθθ+=+⎰3.16 计算积分 2|||d |,(||)||z r z a r z a =≠-⎰(提示:令i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r a a 是关于圆周||z r =的对称点)3.17.已知 2πsin 4()d f z z ζζζζ==-⎰求(12i),(1),(1)f f f '-. 3.18 计算积分(2)2||1cos d z z z z e z =⎰本章计算机仿真编程3.19 计算机仿真编程验证3.15的积分结果2π012cos d 054cos θθθ+=+⎰3.20 计算机仿真计算下列积分的值 (沿非闭合路径的积分)π63πi i i 2123πi 00(1)d ; (2)ch3d ; (3)(1)d ;z z I e z I z z I z e z --===-⎰⎰⎰i4211tan (4)d ,cos z I z z +=⎰其积分的路径为沿1到i 的直线段. (说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。
复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数积分习题与解答

第三章复变函数的积分习题与解答假如函数f (z)是在【 1】单连通地域; 【 2】复通地域中的分析函数,问其积分值与路径有 没关系 【答案 单连通 没关,复连通 有关】idz计算积分 |z| 2z 3 1 的值【答案 0 】idz计算积分L z2a 2 : 此中 a 0.设 L 分别为(1) (1)| z |a / 2;| z a | a;(3) | z a |a【答案 (1)0πiπi;( 2) a ; (3) a】计算积分CIm zdz,此中积分曲线C 为(1)从原点到 2 i 的直线段;(2)上半圆周 | z| 1,起点为 1,终点为1;(3)圆周| za | R (R0)的正方向(逆时针方向)【答案(1)1 i / 2;(2) π/ 2;(3) πR 2 】izdz计算积分C | z | 的值,(1)| z | 2;(2) | z| 4;【答案 (1)4πi;(2)8 πi 】π 2i zdzcos计算积分的值2【答案 e 1/ e 】计算以下积分的值( 1)idz2(3)i |z|dz 4;(4)i |z| 1( zdz|z| 1cosz ;( 2) i|z| 2ze dz1z 22 z2i 1)(z 2)4πi【答案( 1) 0;( 2) 0 ;( 3) 0 ;( 4) 4 i 】计算e z(2)iz(1)i |z| 2z3 dz;|z| 2( z 1)2 (2 z 1) dz;(3)i|zcos zdz;(4)i |z|e zdz i| 1( z i) 31z 2(z2) (5)i |z|ez(6)idz1 z5dz;|zi| 2z 2 ( z 2 4)【答案 ( ) ;( ) ;( ) π icosi ;( )3πiπiπ 0 0 42;( )12 ( )8 】1 2 35 6计算积分(1)(1)1 6πi i 1)e z dzzsin zdz; (2) 0 ch3zdz; (3) 0 ( z 【答案(1)sin1 cos1; (2) 1 i;(3)1 cos1 i[sin(1) 1]】3计算复数(1)cos 3z dz ,此中 C 1:| z | 2顺时针方向;C 2:| z | 3逆时针方向.CC( 2)i|z|e zdz,此中复常数 | a | 11 ( z a)3【答案 ( 1) 0 ;( 2)当 | a | 1,0;| a | 1,πe ai 】设 L 为不经过点 b 和 b 的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与 b 的各种可能计算积分的值.Ii L( z zb)dzb)( z(1) Lb ,则 I=0; ( 2)L 含 b , Iπi b ,Iπi【答案 不含 b; L 含 b;( 3)两点在内部 I0 】πh( z)i |e 3d已知 | 2,试求 h(i), h( i) ,以及当 | z | 2 时, h ( z) 的值 .z【h(i)π( 3 i); h( i) π(3 i);| z | 2, h ( z)0 】ize z计算积分C ( za)3dz,此中 常数 a 在闭曲线 C 内部1(2 a) e a【答案 2】设 C 为正向圆周z1,且 | a |1,证明:积分|dz |2 π(| a | 1)1 |a|222 π(| a | 1)i |z| 1 | z a |21|a|利用积分计算积分iidz|z| 1 z 2 的值,证明|dz | ,(| a | r ) |z| r| z a |22π1 2cosd 05 4cos(提示 :令 c : z re i|dz | i r z dz, 注意到点 a, r2a 是关于圆周| z |r的对称点). 已知sinπf ( z)4 d2z求 f (1 2i), f (1), f (1) .cos z计算积分(2) i |z| 1e z z 2dz本章计算机仿真编程2π1 2cos5d计算机仿真编程考据的积分结果 4cos计算机仿真计算以下积分的值(沿非闭合路径的积分)(1)I 13 πi (2) I 2 6πich3zdz;(3) I 3i zdz;e 2 zdz;0 ( z 1)eπii1tan z(4) I 4cos 2 dz,1 到 i 的直线段.1z 其积分的路径为沿( 说明: 沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程 Matlab 直接求解 )。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
(完整版)第三章复变函数的积分(答案)
复变函数练习题 第三章 复变函数的积分系 专业 班 姓名 学号§1 复变函数积分的概念 §4 原函数与不定积分一.选择题1.设为从原点沿至的弧段,则[]C 2y x =1i +2()Cx iy dz +=⎰(A )(B ) (C ) (D )1566i -1566i -+1566i --1566i +2. 设是,从1到2的线段,则 []C (1)z i t =+t arg Czdz =⎰(A )(B )(C )(D )4π4i π(1)4i π+1i+3.设是从到的直线段,则[]C 012i π+z Cze dz =⎰(A )(B ) (C ) (D )12e π-12e π--12ei π+12eiπ-4.设在复平面处处解析且,则积分[]()f z ()2iif z dz i πππ-=⎰()iif z dz ππ--=⎰(A ) (B )(C )(D )不能确定2i π2i π-0二.填空题1.设为沿原点到点的直线段,则2。
C 0z =1z i =+2Czdz =⎰2.设为正向圆周,则C |4|1z -=2232(4)A Cz z dz z -+=-⎰10.i π三.解答题1.计算下列积分。
(1)323262121()02iziiz i i i edzee e ππππππ---==-=⎰(2)22222sin 1cos2sin 2224sin 2.244iiiii i zdzz z z dz i e e e e i i i i ππππππππππππππ------⎛⎫==- ⎪⎝⎭⎛⎫--=-=-=+⎪⎝⎭⎰⎰(3)110sin (sin cos )sin1cos1.z zdzz z z =-=-⎰(4)20222cos sin 1sin sin().222iiz z dzz i ππππ==⋅=-⎰2.计算积分的值,其中为正向圆周:||C z dz z ⎰A C (1)2200||22,022224.2i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =(2)2200||44,024448.4i i i z Cz e e ie d id i θθππθθπθθπ-==≤≤⋅==⎰⎰积分曲线的方程为则原积分I =3.分别沿与算出积分的值。
复变函数与积分变换练习题带答案(1)
f (t) = 1 + F () eitd 建立的 F () 与 f (t) 之间的对应称作傅里叶逆变换。
2π −
22.傅里叶逆变换是指由表达式 f (t) = 1 + F () eitd 建立起来的 F () 到 f (t) 之间
2π −
的对应.
23.若
f
(t)
= 3t2
+ tet
+ sint ,则函数
z2 − 3z + (z − 4)2
2dz
=
10πi
.
8. 设 C 为单位圆周 z = 1,则 d z 2 Cz
9. 设 C 为从 z = 0到 z =1+ i 的直线段,则 z d z = i 。 C
10. 设 C 为从 (0,1) 到 (1,1) 的直线段,则 z Re(z) d z = 1 + 1 i
|z
+i|=
(√)
3. 设 C 是一条简单正向闭曲线, f (z) 在以 C 为边界的有界闭区域 D 上解析, z0 为 D 内任
一点,那么
C
f (z) z − z0
d
z
=
2 if
( z0
)
;
(√)
4. 设 f (z) 在简单正向闭曲线 C 及其所围区域 D 内处处解析, 那么 f (z) 在 D 内具有 2 阶
解:
C
的方程为
x y
= =
t, t,0
t
1
,即,
z
=
t
+ it,0
t
1
,
dz =(1+i)dt
于是,原式= 1t(1+ i)dt = 1+ i .
(完整版)复变函数与积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 复变函数的积分习题与解答
如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系
【答案 单连通 无关,复连通 有关】
计算积分
||z ⎰i
【答案 0】 计算积分
22d L z z a -⎰i :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+=
【答案 (1)0;(2)πi
a ; (3)πi
a -】 计算积分 Im d C z z ⎰,其中积分曲线C 为
(1)从原点到2i +的直线段;
(2)上半圆周 ||1z =,起点为1,终点为1-;
(3)圆周|| (0)z a R R -=>的正方向(逆时针方向)
【答案 2
(1)1i /2;(2)π/2;(3)πR +--】 计算积分 d ||C z z z ⎰i 的值,
(1)||2; (2)||4;z z ==
【答案(1)4πi;(2)8πi 】
计算积分的值 π2i 0
cos d 2z z +⎰
【答案 1/e e +】
计算下列积分的值 (1) ||1d cos z z z =⎰i ;(2)2||2d z ze z =⎰i
21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++⎰⎰i i 【答案(1)0;(2) 0;(3) 0;(4) 4πi
4i +】
计算
2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z
z z z z z e z z z z z z z e z z
z z z e z z z z z ==-===-=--+--+⎰⎰⎰⎰⎰⎰i i
i i i i
【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】
计算积分
(1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --⎰⎰⎰
【答案 1
3(1)sin1cos1; (2)i; (3)1cos1i[sin(1)1]--+-】
计算复数 123cos (1)d C C z z z +⎰Ñ,其中1:||2C z =顺时针方向;2:||3C z =逆时针方向.
(2)3||1d ()z
z e z z a =-⎰i ,其中复常数||1a ≠
【答案 (1) 0;(2)当
||1,0;||1,πi a a a e ><】 设L 为不经过点b 和b -的简单正向(逆时针)曲线,b 为不等于零的任何复数,试就曲线L 与b 的各种可能计算积分的值.
d ()()L z I z
z b z b =+-⎰i
【答案 (1)L 不含b ±,则I=0;(2)L 含b ,πi b I =
;L 含b -,πi b I =-;(3)两点在内部 0I =】
已知 π3||2()d e h z z ξξξ
ξ==-⎰i ,试求(i),(i)h h -,以及当||2z >时,()h z '的值.
【
()π(i);(i)i);||2,()0h i h z h z '=-=>=】
计算积分 3d ()z
C ze z z a -⎰i ,其中 常数a 在闭曲线C 内部
【答案 1(2)2a
a e +】
设 C 为正向圆周1=z ,且||1a ≠,证明:积分
222π1||22
π||1||1 (||1)|d ||| (||1)a z a a z z a a -=-<⎧⎪=⎨->⎪⎩⎰i
利用积分 ||1d 2z z z =+⎰i 的值,证明2π012cos d 054cos θθθ+=+⎰
计算积分 2|||d |,(||)||z r z a r z a =≠-⎰i
(提示:令
i i :|d |d ,r z c z re z z θ=⇒=注意到点2,r a a 是关于圆周||z r =的对称点)
.已知
2πsin 4()d f z z ζζζζ==-⎰
求(12i),(1),(1)f f f '-. 计算积分(2)2||1cos d z z z z e z =⎰i
本章计算机仿真编程
计算机仿真编程验证的积分结果2π0
12cos d 054cos θθθ+=+⎰
计算机仿真计算下列积分的值 (沿非闭合路径的积分) π63πi i i 2123πi 00(1)d ; (2)ch3d ; (3)(1)d ;z z I e z I z z I z e z --===-⎰⎰⎰
i
4211tan (4)d ,cos z I z z +=⎰其积分的路径为沿1到i 的直线段. (说明:沿闭合路径的积分可以利用留数的定义,留数定理来计算;而留数可以利用计算机仿真编程Matlab 直接求解)。