2020年北京初三数学一模分类汇编:几何综合 27题 (学生版);
2020年北京初三上学期期末几何综合教师版

2020年北京初三各区上学期期末几何综合学生版1西城27. △ABC是等边三角形,点P在BC的延长线上,以P为中心,将线段PC逆时针旋转n°(0 <n<180)得线段PQ,连接AP,BQ.(1)如图1,若PC=AC,画出当BQ∥AP时的图形,并写出此时n的值;(2)M为线段BQ的中点,连接PM. 写出一个n的值,使得对于BC延长线上任意一点P,总有并说明理由.图1 备用图解:(1)如图.当BQ∥AP时,n = 60.(2)n = 120.证明:延长PM至N,使得MN=PM,连接BN,AN,QN,如图.∵ M为线段BQ的中点,∴ 四边形BNQP是平行四边形.∴ BN∥PQ,BN=PQ.∴∠NBP=60°.∵ △ABC是等边三角形,∴ AB=AC,∠ABC =∠ACB = 60°.∴∠ABN=∠ACP =120°.∵ 以P 为中心,将线段PC 逆时针旋转120°得到线段PQ , ∴ PQ =PC . ∴ BN =PC . ∴△ABN ≌△ACP . ∴∠BAN =∠CAP ,AN=AP . ∴∠NAP =∠BAC = 60°. ∴ △ANP 是等边三角形. ∴ PN =AP .又 MP =PN ,∴ MP. ············································································ 7分2东城区27.在△ABC 中,∠BAC =45°,CD ⊥AB 于点D ,AE ⊥BC 于点E ,连接DE . (1)如图1,当△ABC 为锐角三角形时,①依题意补全图形,猜想∠BAE 与∠BCD 之间的数量关系并证明; ②用等式表示线段AE ,CE ,DE 的数量关系,并证明;(2)如图2,当∠ABC 为钝角时,依题意补全图形并直接写出线段AE ,CE ,DE 的数量关系.图1图2解:(1)①依题意,补全图形,如图1所示. 猜想:∠BAE =∠BCD. 理由如下:12∵CD⊥AB,AE⊥BC,∴∠BAE﹢∠B=90°,∠BCD﹢∠B=90°.∴∠BAE=∠BCD.…………………………2分图1②证明:如图2,在AE上截取AF=CE.连接DF.∵∠BAC=45°,CD⊥AB,∴△ACD是等腰直角三角形.∴AD=CD.又∠BAE=∠BCD,∴△ADF≌△CDE(SAS).∴DF=DE,∠ADF=∠CDE.∵AB⊥CD, 图2 ∴∠ADF﹢∠FDC=90°.∴∠CDE﹢∠FDC=∠EDF=90°.∴△EDF是等腰直角三角形.∴EF∵AF+EF=AE,∴CE+DE=AE. …………………………5分(3)依题意补全图形,如图3所示.线段AE,CE,DE的数量关系:CE-DE=AE.……………………………7分3朝阳27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B 重合),连接CA. 将射线CA绕点C逆时针旋转120°得到射线CA´,将射线BO绕点B逆时针旋转150°与射线CA´交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.(1)解:补全图形,如图.(2)证明:①根据题意∠ACD=120°.∴∠DCB+∠ACO=60°.∵∠MON=120°,∴∠OAC +∠ACO=60°.∴∠OAC=∠DCB.②在OA上截取OE=OC,连接CE.∴∠OEC=30°.∴∠AEC=150°.∴∠AEC=∠CBD.∵OA=OB,∴AE=BC.∴△AEC≌△CBD.∴CD=AC.(3) OH-OC= OA.证明:在OH上截取OF=OC,连接CF,∴△OFC 是等边三角形,FH=OA.∴CF=OC,∠CFH=∠COA=120°.∴△CFH≌△COA.∴∠H=∠OAC.∴∠BCH =60°+∠H =60°+∠OAC . ∴∠DCH =60°+∠H +∠DCB=60°+2∠OAC .∵CA =CD ,∠ACD =120°, ∴∠CAD =30°. ∴∠DCH =2∠DAH .4大兴区27.已知:如图,B,C,D 三点在 上,︒=∠45BCD ,PA 是钝角 △ABC 的高线,PA 的延长线与线段CD 交于点E. (1) 请在图中找出一个与∠CAP 相等的角,这个角是 ; (2) 用等式表示线段AC ,EC ,ED 之间的数量关系, 并证明.5石景山区27.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于 直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF . (1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示); (2)求证:BF DF ⊥;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间 的数量关系,并证明. (1)………………………… 2分(21.4分 (3FEP DC BA图1NMA………………………… 5分 2.,………………………… 7分6丰台区26.如图,∠90MAN =︒,B ,C 分别为射线AM ,AN 上的两个动点,将线段AC 绕点A 逆时针...旋转30︒到AD ,连接BD 交AC 于点E .(1)当∠ACB =30°时,依题意补全图形,;(2)写出一个∠ACB 的度数,并证明.解:(1)正确补全图形;………………1分………………3分(2 ……………………………………………………4分图2……………………………………………………………5分∠…………………………………………………………7分7顺义区27.已知:如图,在正方形ABCD 中,点E 在AD 边上运动,从点A 出发向点D 运动,到达D 点停止运动.作射线CE ,并将射线CE 绕着点C 逆时针旋转45°,旋转后的射线与AB 边交于点F ,连接EF . (1) 依题意补全图形;(2) 猜想线段DE ,EF ,BF 的数量关系并证明;(3) 过点C 作CG ⊥EF ,垂足为点G ,若正方形ABCD 的边长是4,请直接写出点G 运动的路线长.CCF BC D E A(备用图)解:(1)补全图形如图1. …………………………………………… 1分图1 图2(2)线段DE ,EF ,BF 的数量关系是 EF=DE+BF .……… 2分 证明:延长AD 到点H ,使DH=BF ,连接CH (如图2). 易证△CDH ≌△CBF .∴CH= CF ,∠DCH =∠BCF . ∵∠ECF =45°,∴∠ECH =∠ECD +∠DCH= ∠ECD +∠BCF =45°. ∴∠ECH =∠ECF =45°. 又∵CE= CE , ∴△ECH ≌△ECF . ∴EH= EF .∴EF=DE+BF . …………………………………………… 6分(3)点G 运动的路线长为 2π . ……………………… 7分8平谷区27.如图,正方形ABCD ,将边BC 绕点B 逆时针旋转60°,得到线段BE ,连接AE ,CE . (1)求∠BAE 的度数;(2)连结BD ,延长AE 交BD 于点F . ①求证:DF=EF ;②直接用等式表示线段AB ,CF ,EF 的数量关系.(1)解:∵AB=BE ,∴∠BAE =∠BEA . ······································································· 1 ∵∠ABE =90°-60°=30°∴∠BAE =75°. (2)(2)证明:∴∠DAF =15°. (3)连结CF .由正方形的对称性可知,∠DAF =∠DCF =15°. ······························· 4 ∵∠BCD =90°,∠BCE =60°, ∴∠DCF =∠ECF =∠DAF =15°. ∵BC=EC ,CF=CF ,∴△BCF ≌△ECF . ···································································· 5 ∴BF=EF . ··············································································· 6 (3 (7)9昌平区27.已知等边△ABC ,点D 为BC 上一点,连接AD .(1)若点E 是AC 上一点,且CE =BD ,连接BE ,BE 与AD 的交点为点P ,在图(1)中根据题意补全图形,直接写出∠APE 的大小;(2)将AD 绕点A 逆时针旋转120°,得到AF ,连接BF 交AC 于点Q ,在图(2)中根据题意补全图形,用等式表示线段AQ 和CD 的数量关系,并证明.(1)补全图形. ………………………………………………………… 1分 ∠APE =60° ……………………………………………………………… 2分(2)补全图形.………………………………………………………………3分ABDCDCBA..………………………………………………………………4分证明:在△ABD 和△BEC 中, ⎪⎩⎪⎨⎧=︒=∠=∠=CEBD C ABD BC AB 60∴△ABD ≌△BEC (SAS )∴∠BAD =∠CBE .∵∠APE 是△ABP 的一个外角,∴∠APE =∠BAD +∠ABP =∠CBE +∠ABP =∠ABC =60°.∵AF 是由AD 绕点A 逆时针旋转120°得到,∴AF =AD ,∠DAF =120°. ∵∠APE =60°, ∴∠APE +∠DAP =180°.∴AF ∥BE...……………………………………………………………………………………………5分 ∴∠1=∠2∵△ABD ≌△BEC , ∴AD =BE . ∴AF =BE .在△AQF 和△EQB 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BEAF EQB AQF 21△AQF ≌△EQB (AAS )∴AQ =QE ..……………………………………………………………………………………………6分∵AE=AC-CE,CD=BC-BD,且AE=BC,CD=BD.∴AE=CD...……………………………………………………………………………………………7分10通州11门头沟27.如图,∠MON =60°,OF 平分∠MON ,点A 在射线OM 上, P ,Q 是射线ON 上的两动点,点P 在点Q 的左侧,且PQ=OA ,作线段OQ 的垂直平分线,分别交OM ,OF ,ON 于点D ,B ,C ,连接AB ,PB . (1)依题意补全图形;(2)判断线段 AB ,PB 之间的数量关系,并证明;(3)连接AP ,当P 和Q 两点都在射线ON 上移动时,k 是否存在最小值?若存在,请直接写出k 的最小值,备用图(本小题满分7分)(1)补全图形正确.………………………………1分 (2)AB =PB .………………………………………2分证明:如图,连接BQ .∵BC 的垂直平分OQ ,∴ OB =BQ ,……………………3分 ∴∠BOP =∠BQP . 又∵ OF 平分∠MON , ∴∠AOB = ∠BOP .∴∠AOB = ∠BQP .…………4分 又∵PQ=OA ,∴ △AOB ≌△PQB ,…………………………………………………………5分 ∴AB =PB .(37分12房山区27.在△ABC中,∠ACB=90°,AC=BC以点B为圆心、1为半径作圆,设点M为⊙B 上一点,线段CM绕着点C顺时针旋转90°,得到线段CN,连接BM、AN.(1)在图27-1中,补全图形,并证明BM=AN .(2)连接MN,若MN与⊙B相切,则∠BMC的度数为________________.(3)连接BN,则BN的最小值为___________;BN的最大值为___________27-1 备用图备用图(1)如图27-1,补全图形…………1分证明:⸪∠ACB=∠MCN=90°∴∠MCB=∠NCA …………2分⸪CM=CN,CB=CA∴△MCB≌△NCA∴BM=AN…………3分图27-1(2) 45°或135°…………4分(3) 1 ; 3 …………6分13密云区27. 已知:在Rt △ABC 中,∠BAC=90°,AB=AC ,点D 为BC 边中点.点M 为线段B C 上的一个动点(不与点C ,点D 重合),连接AM ,将线段AM 绕点M 顺时针旋转90°,得到线段ME ,连接EC . (1)如图1,若点M 在线段BD 上. ① 依据题意补全图1;② 求∠MCE 的度数.(2)如图2,若点M 在线段CD 上,请你补全图形后,直接用等式表示线段AC 、CE 、CM 之间的数量关系 .(1) ① 补全图1:………………………………2分② 解:过点M 作BC 边的垂线交CA 延长线于点F ∴ ∠FMC =90° ∴ ∠FMA+∠AMC=90°∵将线段AM 绕点M 顺时针旋转90°,得到线段ME ∴∠AME=90°∴ ∠CME+∠AMC=90°∴∠FMA= ∠CME ………………………………3分在Rt △FMC 中,∠FCM=45°∴∠F=∠FCM=45°图1∴FM=MC ………………………………4分在△FMA和△CME中∴∴∠MCE=∠F=45°……………5分(2……………7分14海淀27.在Rt△ABC中,∠ACB=90°,AC=1, 记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA 绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,① 依题意补全图1;② PQ 的长为_____________;(2)如图2,当α=45°,, 求证:PD =PQ ;(3)设BC = t , 当PD =PQ 时,直接写出BD 的长.(用含t 的代数式表示)(1)解:①补全图形如下图所示.② PQ =2.(2)作PF BQ ⊥于F ,AH PF ⊥于H .∵PA AD ⊥, ∴∠PAD =90°.由题意可知∠1=45°. ∴2901451∠=︒-∠=︒=∠. ∴PA AD =. ∵90ACB ∠=︒, ∴90ACD ∠=︒∵AH PF ⊥,PF BQ ⊥, ∴90AHP AHF PFC ∠=∠=∠=︒. ∴四边形ACFH 是矩形.∴90,CAH AH CF ∠=︒=.图 121 ∵90,CAH DAP ∠=∠=︒∴3490DAH DAH ∠+∠=∠+∠=︒. ∴34∠=∠.又∵90,ACD AHP ∠=∠=︒∴ACD AHP ≌△△.∴1AH AC ==.∴1CF AH ==.B ,Q 关于点D 对称,∴F 为DQ 中点.∴PF 垂直平分DQ .∴PQ =PD .(3。
2020北京各区一模数学试题分类汇编--解析几何(原卷版)

1 / 122020北京各区一模数学试题分类汇编—解析几何(2020海淀一模)已知双曲线2221(0)y x b b-=>则b 的值为( )A. 1B. 2C. 3D. 4(2020海淀一模) 已知点P (1,2)在抛物线C 2:2y px =上,则抛物线C 的准线方程为___.(2020西城一模) 设双曲线2221(0)4x y b b -=>的一条渐近线方程为y x =,则该双曲线的离心率为____________.(2020西城一模) 设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A. 22(3)2x y -+=B. 22(3)8x y -+=C. 22(3)2x y ++=D. 22(3)8x y ++=(2020东城一模) 若顶点在原点的抛物线经过四个点(1,1),1(2,)2,(2,1),(4,2)中的2个点,则该抛物线的标准方程可以是________.(2020东城一模) 已知圆C 与直线y x =-及40x y +-=的相切,圆心在直线y x =上,则圆C 的方程为( )2 / 12A. ()()22112x y -+-= B. ()()22112x y -++= C. ()()22114x y ++-= D. ()()22114x y +++=(2020东城一模) 已知曲线C 的方程为221x y a b-=,则“a b >”是“曲线C 为焦点在x 轴上的椭圆”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(2020东城一模) 抛物线24x y =的准线与y 轴的交点的坐标为( )A. 1(0,)2-B. (0,1)-C. (0,2)-D. (0,4)-(2020丰台一模) 已知双曲线M :2213y x -=的渐近线是边长为1的菱形OABC 的边OA ,OC 所在直线.若椭圆N :22221x y a b+=(0a b >>)经过A ,C 两点,且点B 是椭圆N 的一个焦点,则a =______.(2020丰台一模) 过抛物线C :22y px =(0p >)的焦点F 作倾斜角为60︒的直线与抛物线C 交于两个不同的点A ,B (点A 在x 轴上方),则AFBF的值为( ) A.13B.43D. 33 / 12(2020丰台一模) 圆()2212x y -+=的圆心到直线10x y ++=的距离为( )A. 2C. 1D.2(2020朝阳区一模) 已知抛物线C :22(0)y px p =>的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD l ⊥于D .若4AF =,60DAF ∠=︒,则抛物线C 的方程为( )A. 28y x =B. 24y x =C. 22y x =D. 2y x =(2020朝阳区一模) 在ABC 中,AB BC =,120ABC ∠=︒.若以A ,B 为焦点的双曲线经过点C ,则该双曲线的离心率为( )A.B.2C.12D.(2020朝阳区一模) 数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).4 / 12给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;的正方形,使得曲线C 在此正方形区域内(含边界). 其中,正确结论的序号是________.(2020石景山一模) 圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =( )A. 43-B. 34-C.D. 2(2020石景山一模)已知F 是抛物线C :24y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =______.(2020怀柔一模) 已知抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则抛物线的焦点坐标为__________;准线方程为___________.(2020怀柔一模)6.已知圆C 与圆(x -1)2+y 2=1关于原点对称,则圆C 的方程为( ) A. x 2+y 2=1 B. x 2+(y +1)2=1 C. x 2+(y -1)2=1 D. (x +1)2+y 2=15 / 12(2020密云一模) 如果直线1ax by +=与圆22:1C x y +=相交,则点(),M a b 与圆C 的位置关系是( )A. 点M 在圆C 上B. 点M 在圆C 外C. 点M 在圆C 内D. 上述三种情况都有可能(2020密云一模) 已知斜率为k 的直线l 与抛物线2:4C y x =交于A ,B 两点,线段AB 的中点为()()1,0M m m >,则斜率k 的取值范围是( )A. (,1)-∞B. (,1]-∞C. (1,)+∞D. [1,)+∞(2020密云一模) 双曲线221y x -=的焦点坐标是_______________,渐近线方程是_______________.(2020顺义区一模) 直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =________.(2020顺义区一模) 抛物线()220y px p =>的焦点是双曲线22x y p -=的一个焦点,则p =( )A. B. 8 C. 4 D. 1(2020延庆一模) 已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF 的面积为( )6 / 12A.B.C.32D.92(2020延庆一模) 经过点()2,0M -且与圆221x y +=相切的直线l 的方程是____________.(2020海淀一模) 已知椭圆C :22221(0)x y a b a b+=>>12(,0),(,0),(0,)A a A a B b -,12A BA ∆的面积为2.(I)求椭圆C 的方程;(II)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线1A M 与直线2A B 交于点Q .求证:△BPQ 为等腰三角形.(2020西城一模) 设椭圆22:12x E y +=,直线1l 经过点()0M m ,,直线2l 经过点()0N n ,,直线1l 直线2l ,且直线12l l ,分别与椭圆E 相交于A B ,两点和C D ,两点.7 / 12(Ⅰ)若M N ,分别为椭圆E 的左、右焦点,且直线1l x ⊥轴,求四边形ABCD 的面积;(Ⅱ)若直线1l 的斜率存在且不为0,四边形ABCD 为平行四边形,求证:0m n +=; (Ⅲ)在(Ⅱ)的条件下,判断四边形ABCD 能否为矩形,说明理由.(2020东城一模) 已知椭圆22:36C x y +=的右焦点为F . (1)求点F 的坐标和椭圆C 的离心率;(2)直线():0l y kx m k =+≠过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为'P ,判断直线'P Q 是否经过x 轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.8 / 12(2020丰台一模) 已知椭圆C :22221y x a b +=(0a b >>)的离心率为2,点1,0P 在椭圆C 上,直线0y y =与椭圆C 交于不同的两点A ,B. (1)求椭圆C 的方程;(2)直线PA ,PB 分别交y 轴于M ,N 两点,问:x 轴上是否存在点Q ,使得2OQN OQM π∠+∠=?若存在,求出点Q 的坐标;若不存在,请说明理由.9 / 12(2020朝阳区一模) 已知椭圆2222:1(0)x y C a b a b+=>>,圆222:O x y r +=(O 为坐标原点).过点(0,)b 且斜率为1的直线与圆O 交于点(1,2),与椭圆C 的另一个交点的横坐标为85-. (1)求椭圆C 的方程和圆O 的方程;(2)过圆O 上的动点P 作两条互相垂直的直线1l ,2l ,若直线1l 的斜率为(0)k k ≠且1l 与椭圆C 相切,试判断直线2l 与椭圆C 的位置关系,并说明理由.(2020石景山一模) 已知椭圆C :22221x y a b +=(0a b >>)的右焦点为()1,0F,离心率为2.直线l 过点F 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)求椭圆C 的方程;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值;(3)延长线段OM 与椭圆C 交于点P ,若四边形OAPB 为平行四边形,求此时直线l 的斜率.10 / 12(2020怀柔一模)已知椭圆()222210x y a b a b +=>>,离心率为2.(1)求椭圆的方程;(2)设,A B 是椭圆上关于坐标原点对称的两点,且点A 在第一象限,AE x ⊥轴,垂足为E ,连接BE 并延长交椭圆于点D ,证明:ABD ∆是直角三角形.(2020密云一模)已知椭圆2222:1(0)x y C a b a b +=>>()0,1A .11 / 12 (1)求椭圆C 的标准方程;(2)点P 是椭圆上异于短轴端点A ,B 的任意一点,过点P 作PQ y ⊥轴于Q ,线段PQ 的中点为M .直线AM 与直线1y =-交于点N ,D 为线段BN 的中点,设O 为坐标原点,试判断以OD 为直径的圆与点M 的位置关系.(2020顺义区一模)已知椭圆C :223412x y +=.(1)求椭圆C 的离心率;(2)设,A B 分别为椭圆C 的左右顶点,点P 在椭圆C 上,直线AP ,BP 分别与直线4x =相交于点M ,N .当点P 运动时,以M ,N 为直径的圆是否经过x 轴上的定点?试证明你的结论.(2020延庆一模)已知椭圆22221(0)x ya ba bG+=>>:的左焦点为(),F且经过点(),,C A B分别是G的右顶点和上顶点,过原点O的直线l与G交于,P Q两点(点Q在第一象限),且与线段AB交于点M.(1)求椭圆G的标准方程;(2)若3PQ=,求直线l的方程;(3)若BOP△的面积是BMQ的面积的4倍,求直线l的方程.12/ 12。
2023年北京市初三二模数学试题汇编:几何综合(第27题)

2023北京初三二模数学汇编 几何综合(第27题)一、解答题1.(2023·北京东城·统考二模)如图,在菱形ABCD 中,60BAD ∠=︒,E 是AB 边上一点(不与A ,B 重合),点F 与点A 关于直线DE 对称,连接DF .作射线CF ,交直线DE 于点P ,设ADP α∠=.(1)用含α的代数式表示DCP ∠;(2)连接AP AF ,.求证:APF 是等边三角形;(3)过点B 作BG DP ⊥于点G ,过点G 作CD 的平行线,交CP 于点H .补全图形,猜想线段CH 与PH 之间的数量关系,并加以证明. 2.(2023·北京西城·统考二模)如图,在ABC 中,边AB 绕点B 顺时针旋转α(0180α︒<<︒)得到线段BD ,边AC 绕点C 逆时针旋转180α︒−得到线段CE ,连接DE ,点F 是DE 的中点.(1)以点F 为对称中心,作点C 关于点F 的对称点G ,连接BG DG ,. ①依题意补全图形,并证明AC DG =; ②求证:DGB ACB ∠=∠; (2)若60α=︒,且FHBC ⊥于H ,直接写出用等式表示的FH 与BC 的数量关系.3.(2023·北京海淀·统考二模)如图,在ABC 中,边AB 绕点B 顺时针旋转α(0180α︒<<︒)得到线段BD ,边AC 绕点C 逆时针旋转180α︒−得到线段CE ,连接DE ,点F 是DE 的中点.(1)以点F 为对称中心,作点C 关于点F 的对称点G ,连接BG DG ,. ①依题意补全图形,并证明AC DG =; ②求证:DGB ACB ∠=∠; (2)若60α=︒,且FHBC ⊥于H ,直接写出用等式表示的FH 与BC 的数量关系.4.(2023·北京朝阳·统考二模)在ABC 中,AC BC =,90ACB ∠=︒,点D 在BC 边上(不与点B ,C 重合),将线段AD 绕点A 顺时针旋转90︒,得到线段AE ,连接DE .(1)根据题意补全图形,并证明:EAC ADC ∠=∠;(2)过点C 作AB 的平行线,交DE 于点F ,用等式表示线段EF 与DF 之间的数量关系,并证明.5.(2023·北京房山·统考二模)如图,∠BAC = 90°,AB = AC ,点D 是BA 延长线上一点,连接DC ,点E 和点B 关于直线DC 对称,连接BE 交AC 于点F ,连接EC ,ED ,D F 。
2020年中考数学压轴题-专题28几何证明综合复习(判定四边形形状)(解析版)

专题28 几何证明综合复习(判定四边形形状)教学重难点1.培养学生通过探索和证明,发展推理意识和能力2.通过证明举例的学习和实践,懂得演绎推理的一般规则,并掌握规范表达的格式;了解证明之前进行分析的基本思路;3.体会用“分析综合法”探求解题思路;4.学习添置辅助线的基本方法,会添置常见的辅助线;5.会用文字语言、图形语言、符号语言三种数学语言进行证明说理。
【说明】:本部分为知识点方法总结性梳理,目的在于让学生能从题目条件和所证明结论,去寻找证明思路,用时大概 5-8 分钟左右。
【知识点、方法总结】:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的" 因为"、"所以 " 逻辑将条件一步步转化为所要证明的结论。
这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。
所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。
一、证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
、证明两角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等;7.相似三角形的对应角相等;8.等于同一角的两个角相等。
2020初三数学一模分类汇编 27.几何综合(含答案)

2020初三数学一模分类汇编 几何综合(27题)1.(2020东城一模27题)27.如图,在正方形ABCD 中,AB =3, M 是CD 边上一动点(不与D 点重合),点D 与点E 关于AM 所在的直线对称,连接AE ,ME ,延长CB 到点F ,使得BF =DM ,连接EF ,AF . (1) 依题意补全图1; (2) 若DM =1,求线段EF 的长;(3) 当点M 在CD 边上运动时,能使△AEF 为等腰三角形,直接写出此时tan ∠DAM的值.图1DM备用图DCBA27.解:(1)补全图形如图1所示.-----------------1分(2)如图2,连接BM.∵点D与点E关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABF=90°.又∵DM = BF,图1∴△ADM≌△ABF.∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE.∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.图2∵DM=1,∴CM=2.∴在Rt△BCM中,BM2213CM BC+=∴EF13-----------------5分(3)当点M在CD边上运动时,若使△AEF为等腰三角形,则tan∠DAM=1或12. …………………………………7分2.(2020西城一模27题)27. 如图,在等腰直角△ABC 中,∠ACB =90°. 点P 在线段BC 上,延长BC 至点Q ,使得CQ =CP ,连接AP ,AQ . 过点B 作BD ⊥AQ 于点D ,交AP 于点E ,交AC 于点F .K 是线段AD 上的一个动点(与点A ,D 不重合),过点K 作GN ⊥AP 于点H ,交AB 于点G ,交AC 于点M ,交FD 的延长线于点N . (1)依题意补全图1; (2)求证:NM =NF ;(3)若AM =CP ,用等式表示线段AE ,GN 与BN 之间的数量关系,并证明.图1 备用图C B AP Q D F E C AP QDFE27.(1)补全图形,如图1.证明:(2)∵ CQ =CP ,∠ACB = 90°,∴ AP =AQ . ∴ ∠APQ =∠Q . ∵ BD ⊥AQ ,∴∠QBD +∠Q =∠QBD +∠BFC = 90°. ∴ ∠Q =∠BFC . ∵∠MFN =∠BFC , ∴∠MFN =∠Q .同理,∠NMF =∠APQ . ∴ ∠MFN =∠FMN . ∴ NM =NF . (3) 连接CE ,如图2.由(1)可得 ∠P AC =∠FBC , ∵ ∠ACB =90°,AC =BC , ∴ △APC ≌ △BFC . ∴ CP =CF . ∵ AM =CP , ∴ AM =CF .∵ ∠CAB =∠CBA =45°. ∴ ∠EAB =∠EBA . ∴ AE =BE . 又 ∵ AC =BC ,∴ CE 所在直线是AB 的垂直平分线. ∴ ∠ECB =∠ECA =45°. ∴ ∠GAM =∠ECF =45°. 由(1)可得 ∠AMG =∠CFE , ∴ △AGM ≌ △CEF . ∴ GM =EF .∵ BN =BE + EF + FN =AE +GM + MN . ∴ BN =AE + GN .··························································································· 7分图2图1CBAP N DM GHKFECBAP QN DM GHKFE3.(2020朝阳一模27题)27.四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转2α(045)α︒︒<<,得到线段CE ,连接DE ,过点B 作BF ⊥DE 交DE 的延长线于F ,连接BE . (1)依题意补全图1; (2)直接写出∠FBE 的度数;(3)连接AF ,用等式表示线段AF 与DE 的数量关系,并证明.图1备用图27.解:(1)①补全图形,如图所示.②∠FBE =45︒;(2)2=.DE AF证明:如图,作AH⊥AF,交BF的延长线于点H,设DF与AB交于点G,根据题意可知,CD= CE,∠ECD =2α,∠ABC =∠BCD =∠CDA=∠DAB=90︒.∴∠EDC=90︒-α, CB= CE,∠BCE =90︒-2α.∴∠CBE =45︒+α,∠ADF=α.∴∠ABE =45︒-α.∵BF⊥DE,∴∠BFD=90︒.∵∠AGD =∠FGB,∴∠FBG =α.∴∠FBE =∠FEB =45︒.∴FB = FE .∵AH⊥AF,∠BAD=90︒,∴∠HAB =∠F AD.∴△HAB≌△F AD.∴HB= FD, AH=AF.∴HF= DE,∠H =45︒.∴2=.HF AF∴2=.DE AF3.(2020朝阳一模27题)27.已知∠MON=α,A为射线OM上一定点,OA=5,B为射线ON上一动点,连接AB,满足∠OAB,∠OBA均为锐角.点C在线段OB上(与点O,B不重合),满足AC=AB,点C关于直线OM的对称点为D,连接AD,OD.(1)依题意补全图1;(2)求∠BAD的度数(用含α的代数式表示);(3)若tanα=3,点P在OA的延长线上,满足AP=OC,连接BP,写出一个AB的值,使得4BP//OD,并证明.5.(2020丰台一模27题)27. 已知∠AOB =120°,点P 为射线OA 上一动点(不与点O 重合),点C 为∠AOB 内部一点,连接CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,且点Q 恰好落在射线OB 上,不与点O 重合. (1)依据题意补全图1;(2)用等式表示∠CPO 与∠CQO 的数量关系,并证明;(3)连接OC ,写出一个OC 的值,使得对于任意点P ,总有OP+OQ =4,并证明.OABOAB 图1备用图27. 解:(1)正确补全图1:……………………………………………2分(2) ∠CQO +∠CPO =180°. …………………………………3分 理由如下:∵四边形内角和360°,且∠AOB =120°,∠PCQ =60°,∴∠CQO +∠CPO =∠1+∠2=180°. ………………………4分(3)OC =4时,对于任意点P ,总有OP+OQ =4. ………………………5分证明:连接OC ,在射线OA 上取点D ,使得DP=OQ ,连接CD . ∴OP+OQ =OP+DP =OD . ∵∠1+∠2=180°,∵∠2+∠3=180°, ∴∠1=∠3. ∵CP =CQ∴△COQ ≌△CDP (SAS ). ………………………………………6分 ∴∠4=∠6,OC=CD. ∵∠4+∠5=60°, ∴∠5+∠6=60°.即∠OCD =60°. ∴△COD 是等边三角形.∴OC =OD=OP+OQ =4. ……………………………………………7分654321O D PC BA Q6.(2020石景山一模27题)27.如图,点E 是正方形内一动点,满足90AEB ∠=°且45BAE ∠<°,过点D 作DF BE ⊥交BE 的延长线于点F . (1)依题意补全图形;(2)用等式表示线段EF ,DF ,BE 之间的 数量关系,并证明.(3)连接CE,若AB = 段CE 长度的最小值.ABCD EDCBA27.(1)依题意补全图形,如图1. ……… 1分 (2)线段EF ,DF ,BE 的数量关系为:EF DF BE =+. ……………… 2分 证明:过点A 作AM FD ^交FD 的延长线于 点M ,如图2. ……………… 3分 ∵90AEFF M °???,∴四边形AEFM 是矩形. ∴3290°??.∵四边形ABCD 是正方形, ∴1290°??,AB AD =,∴13??. 又∵90AEBM °??,∴AEB AMD △≌△. …………… 5分 ∴BE DM =,AE AM =. ∴矩形AEFM 是正方形.∴EF MF =. ∵MF DF DM =+,∴EF DF BE =+. ………………………………… 6分 (3)5 ………………………………… 7分图2图1MF321EDCBA8.(2020通州一模27题)27.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.(1)当点N与点M重合,且点P不是AB中点时,①据题意在图中补全图形;②证明:以A,M,E,D为顶点的四边形是矩形.(2)连接EM,若AB=4,从下列3个条件中选择1个:①BP=1,②PN=1,③BN=√2,当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.9.(2020顺义一模27题)27.已知,如图,△ABC 是等边三角形.(1)如图1,将线段AC 绕点A 逆时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交BD 于点E ,连接CE . ①求∠AED 的度数;②用等式表示线段AE 、CE 、BD 之间的数量关系(直接写出结果).(2)如图2,将线段AC 绕点A 顺时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交DB 的延长线于点E ,连接CE . ①依题意补全图2;②用等式表示线段AE 、CE 、BD 之间的数量关系,并证明.图2图1ABCEDCBA图1EDCB A654321F CBA图3E D27.(1)解:①∵△ABC 是等边三角形,∴AB=AC ,∠BAC =60°. ∵AE 平分∠BAC ,∴∠BAE =12∠BAC = 30°. 由旋转可知:AD=AC ,∠CAD =90°. ∴AB=AD ,∠BAD =150°.∴∠ABD =∠D =15°.∴∠AED =∠ABD +∠BAE =45°.……………………………………2分②用等式表示线段AE 、CE 、BD………………………………………………………………………3分 (2)解:①依题意补全图2.……………………………………………………4分②用等式表示线段AE 、CE 、BD 之间的数量关系为2BD CE =-.………………………………………………………………………5分 证明:过点A 作AF ⊥AE ,交ED 的延长线于点F (如图3).∵△ABC 是等边三角形, ∴AB=AC ,∠BAC =60°. ∵AE 平分∠BAC , ∴∠1=12∠BAC = 30°.由旋转可知:AD=AC ,∠CAD =90°. ∴AB=AD ,∠2=∠CAD -∠BAC =30°. ∴∠3=∠4=75°. ∴∠5=∠4-∠1=45°. ∵AF ⊥AE ,∴∠F =45°=∠5.∴AF=AE . ∴AE .DE 图2ABC∵∠6=∠EAF-∠1-∠2=30°,∴∠6=∠1=30°.又∵∠F=∠5=45°,AD=AB,∴△ADF≌△ABE.∴DF=BE.∵AB=AC,AE平分∠BAC,∴AE垂直平分BC.∴CE=BE.∵BD=EF-DF-BE,∴BD AE-2CE.……………………………………………7分10.(2020大兴一模27题)27. 已知:如图,QAN ∠为锐角, H 、B 分别为射线AN 上的点, 点H 关于射线AQ 的对称点为C, 连接AC ,CB. (1)依题意补全图;(2) CB 的垂直平分线交AQ 于点E ,交BC 于点F .连接CE ,HE ,EB. ①求证:△EHB 是等腰三角形.②若2AC AB AE +=,求cos ∠EAB 的值.27.(1)1分(2)①证明:∴△ACE≌△AHE.∴CE=EH. ··········································································2分∵ EF垂直平分BC,∴CE=EB.∴EB=EH.∴△EHB是等腰三角形……………………………………………………3分②作EM⊥AB于点M由①可知△EHB是等腰三角形.11.(2020房山一模27题)27.如图27-1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点M为BC中点. 点P为AB 边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90°,得到线段PE,连接EC.(1)当点P与点A重合时,如图27-2.①根据题意在图27-2中完成作图;②判断EC与BC的位置关系并证明.(2)连接EM,写出一个BP的值,使得对于任意的点D总有EM EC,并证明.27.(1)①如右图……………………………………1分②判断:EC ⊥BC.………………………………2分 证明:∵PD 绕点P 逆时针旋转90°,得到PE. ∴∠DPE=90°,PD=PE. ∵AB=AC ,∠BAC=90°.∴∠B=∠ACB=45°,∠BPD=∠EPC ∴△PBD ≌△PCE ………………3分 ∴∠PCE=∠B=45°∴∠ECB=90°,即EC ⊥BC.………………4分 (2)23=BP ……………………………………5分 证明:如图,过点P 作PS ⊥BC 于点S,过P 作PS 的垂线PN ,并使PN=PS ,……………6分连接NE 并延长交BC 于点Q.∵PD=PE ∠DPE=90°∴∠DPS=∠NPE.∴①DPS ≌①EPN.∴PN=PS ,∠N=90°,∠SPN=90°. ∴四边形PSQN 是正方形。
2020年北京密云区九年级中考数学一模试卷带讲解

评价数量
APP
五星
四星
三星
二星
一星
合计
甲
562
286
79
48
25
1000
乙
517
393
52
21
17
1000
丙
504
210
136
116
34
1000
(说明:网上对于口语APP的综合评价从高到低依次为五星、四星、三星、二星和一星).
小明选择________(填“甲”、“乙”或“丙”)款英语口语APP,能获得良好口语辅助练习(即评价不低于四星)的可能性最大.
5.实数 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )
A. B. C. D.
【5题答案】
C
【分析】根据数轴判断出 的正负情况以及绝对值的大小,然后解答即可.
【详解】由图可知, ,且 ,
∴ , , , ,
∴关系式不成立的是选项C.
故选C.
【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.
选择丙款口语APP获得良好口语辅助练习(即评价不低于四星)的可能ቤተ መጻሕፍቲ ባይዱ为 ,
∵0.91>0.848>0.714,
∴选择乙款英语口语APP,能获得良好口语辅助练习(即评价不低于四星),乙的可能性最大.
故答案为:乙.
【点睛】本题考查简单概率的计算及比较可能性大小注意掌握可能性等于所求情况数与总情况数之比.
16.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和1D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2F2,如图(3)中阴影部分;如此下去…,则正六角星形AnFnBnDnCnEnFn的面积为_______.
2023北京初三一模数学汇编:几何综合(第27题)

2023北京初三一模数学汇编 几何综合(第27题)一、解答题1.(2023·北京西城·统考一模)如图,直线AB ,CD 交于点O ,点E 是BOC ∠平分线的一点,点M ,N 分别是射线OA ,OC 上的点,且ME =NE . (1)求证:MEN AOC ∠=∠;(2)点F 在线段NO 上,点G 在线段NO 延长线上,连接EF ,EG ,若EF =EG ,依题意补全图形,用等式表示线段NF ,OG ,OM 之间的数量关系,并证明.2.(2023·北京东城·统考一模)如图,在ABC △中,AB AC =,BAC α∠=,点D 在BC 边上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接BE.(1)求证:BA 平分EBC ∠;(2)连接DE 交AB 于点F ,过点C 作CG AB ∥,交ED 的延长线于点G .补全图形,用等式表示线段EF 与DG 之间的数量关系,并证明.3.(2023·北京朝阳·统考一模)如图,∠MON=α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平 分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得 到线段AD ,连接BD.(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB=∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F. 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.4.(2023·北京海淀·统考一模)如图,正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE=CF ,AE ,BF 交于点G .(1)求∠AGF 的度数;(2)在线段AG 上截取MG=BG ,连接DM ,∠AGF 的角平分线交DM 于点N .① 依题意补全图形;② 用等式表示线段MN 与ND 的数量关系,并证明.备用图5.(2023·北京房山·统考一模)如图,正方形ABCD 中,点E 是边BC 上的一点,连接AE ,将射线AE 绕 点A 逆时针旋转90°交CD 的延长线于点F ,连接EF ,取EF 中点G ,连接DG . (1)依题意补全图形;用等式表示∠ADG 与∠CDG 的数量关系,并证明; (2)若DG,用等式表示线段BC 与BE 的数量关系,并证明.6.(2023·北京丰台·统考一模)在正方形ABCD 中,点O 为对角线AC 的中点,点E 在对角线AC 上,连接EB ,点F 在直线AD 上(点F 与点D 不重合),且EF = EB. (1)如图1,当点E 在线段AO 上(不与端点重合)时,①求证:∠AFE = ∠ABE ;②用等式表示线段AB ,AE ,AF 的数量关系并证明;(2)如图2,当点E 在线段OC 上(不与端点重合)时,补全图形,并直接写出线段AB ,AE ,AF 的数量关系.G FED CBA G FEDCBA ABCD E图1 图27.(2023·北京门头沟·统考一模)已知正方形ABCD和一动点E,连接CE,将线段CE绕点C顺时针旋转90°得到线段CF,连接BE,DF.(1)如图1,当点E在正方形ABCD内部时,①依题意补全图1;=;②求证:BE DF(2)如图2,当点E在正方形ABCD外部时,连接AF,取AF中点M,连接AE,DM,用等式表示线段AE 与DM的数量关系,并证明.8.(2023·北京顺义·统考一模)已知:如图,△ABC中,AC=BC,∠ACB=90°,点D在AB边上,点A关于直线CD的对称点为E,射线BE交直线CD于点F,连接AF.(1)设∠ACD=α,用含α的代数式表示∠CBF的大小,并求∠CFB的度数;(2)用等式表示线段AF,CF,BF之间的数量关系,并证明.9.(2023·北京通州·统考一模)直线MO是线段AB的垂直平分线,垂足为点O,点C是直线OM上一点,△,连接OD.连接AC.以AC为斜边作等腰直角ACD(1)如图1,若CO AB =,求AOD ∠的度数;(2)如图2所示,点E 是直线MO 上一点,且CE AB =,连接DE ,延长DO 至点F ,使得OF OD =, 连接AF .根据题意补全图2,写出线段,DE AF 之间的关系,并证明.10.(2023·北京延庆·统考一模)如图,在△ABC 中,∠BAC =90°,AB=AC ,AD 是BC 边上的高,点E 是边 AB 上的一动点(不与点A ,B重合),连接CE 交AD 于点F .将线段CF 绕点C 顺时针旋转90°得到线段CG ,连接AG . (1)如图1,当CE 是∠ACB 的角平分线时,①求证:AE=AF ;②直接写出∠CAG= °.(2)依题意补全图2,用等式表示线段AF ,AC ,AG 之间的数量关系,并证明.图1 图2 11.(2023·北京燕山·统考一模)如图,△ABC 中,∠ACB =90°,AC =BC ,D 为边BC 上一点(不与点B , C 重合),连接AD ,过点C 作CE ⊥AD 于点E ,过点B 作BF ⊥CE , 交直线CE 于点F .(1) 依题意补全图形;用等式表示线段CE 与BF 的数量关系,并证明; (2) 点G 为AB 中点,连接FG ,用等式表示线段AE ,BF ,FG 之间的数量关系,并证明.DBDB12.(2023·北京平谷·统考一模)在ABC ∆中,BD ⊥AC 于点D ,E 为AB 边中点,连接CE ,BD 与CE 相交于点F ,过E 作EM ⊥EF ,交线段BD 于点M ,连接CM.(1)依题意补全图形; (2)求证:∠EMF=∠ACF ;(3)判断BM 、CM 、AC 的数量关系,并证明.13..(2023·北京石景山·统考一模)在△ABC 中,90ACB ∠=°,CA CB =,点D 为射线CA 上一点,过点D 作DE CB ∥且DE CB =(点E 在点D 的右侧),射线ED 交射线BA 于点F ,点H 是AF 的中点, 连接HC ,HE .(1)如图1,当点D 在线段CA 上时,判断线段HE 与HC 的数量关系及位置关系;(2)当点D 在线段CA 的延长线上时,依题意补全图2.用等式表示线段CB ,CD ,CH 之间的数量关系,并证明.DC BAFH ACBE D 图 1图2图1图2 参考答案1. (1)证明:作EH ⊥CD ,EK ⊥AB ,垂足分别是H ,K ,如图1. ∵ OE 是∠BOC 的平分线, ∴ EH =EK . ∵ ME =NE ,∴ Rt △EHN ≌Rt △EKM . ∴ ∠ENH =∠EMK . 记ME 与OC 的交点为P ,∴ ∠EPN =∠OPM .∴ ∠MEN =∠AOC . ····························································· 3分 (2)OM = NF +OG .证明:在线段OM 上截取OG 1=OG ,连接EG 1,如图2.∵ OE 是∠BOC 的平分线,∴ ∠EON =∠EOB . ∵ ∠MOF =∠DOB , ∴ ∠EOM =∠EOD . ∵ OE =OE ,∴ △EOG 1≌△EOG .∴ EG 1=EG ,∠EG 1O =∠EGF .∵ EF =EG ,∴ EF =EG 1EFG =∠EGF . ∴ ∠EFG =∠EG 1O . ∴ ∠EFN =∠EG 1M . ∵ ∠ENF =∠EM G 1.∴ △ENF ≌△EM G 1. ∴ NF =M G 1. ∵ OM =M G 1+O G 1,∴ OM =NF +OG . ······························································· 7分2.(1)证明:∵将线段AD 顺时针旋转α得到线段AE , ∴,EAD a AD AE ∠==. ∵BAC a ∠=,∴BAC EAD ∠=∠.∴BAC BAD EAD BAD ∠−∠=∠−∠,即DAC EAB ∠=∠, 在ACD 和ABE 中,,,.AC AC DAC EAB AD AE =⎧⎪∠=∠⎨⎪=⎩∴()ACD ABE SAS ≅. ∴ABE C ∠=∠. ∵AB =AC ,∴ABC C ∠=∠. ∴ABE ABC ∠=∠. ∴BA 平分EBC ∠·········3分(2)解:补全图形如图,EF =CG .理由如下: 在AB 上取一点M ,使得BM =CG ,连接EM . ∵CG ∥AB ,∴,ABC DCG BFG CGD ∠=∠∠=∠. ∴EBM DCG ∠=∠. 由(1)知ACD ABE ≅, ∴EB =CD .在EBM 和DCG 中,,.EB DC EBM DCG BM CG =⎧⎪∠=∠⎨⎪=⎩∴()EBM DCG SAS ≅,∴EM =DG ,EBM DCG ∠=∠.∵180,180EMB EMF EFM DFM ∠+∠=︒∠+∠=︒, ∴EMF EFM ∠=∠.∴EM =EF . ∴EF =DG . ·········7分3.解:(1)AO =AB.证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB , ∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB.根据题意,得AC=AD ,∠OAB=∠CAD.∴∠CAO=∠DAB.∴△OAC ≌△BAD. ∴∠COA=∠DBA. ∴∠MOB=∠DBA.(2)EF =.证明:如图,在OM 上截取OH=BE ,连接CH.∵△OAC ≌△BAD , ∴OC=BD. 又OH=BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED , ∵OM//AB , ∴∠MFC=∠BED. ∴∠MFC=∠OHC. ∴CF=CH. ∴CF=DE. ∴CD=EF. ∵α=60°,∴∠CAD=180°-α=120°, 作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK=30°,1.2CK CD =∴.CK AC =∴CD .∴EF =.4.(本题满分7分)(1)∵ 四边形ABCD 是正方形, ∴ AB =BC ,∠ABE =∠BCF =90°. 又∵ BE =CF ,∴ △ABE ≌△BCF (SAS ). ………………………………………………………1分 ∴ ∠BAE =∠FBC . ∵ ∠FBC +∠ABG =90°, ∴ ∠BAE +∠ABG =90°.∴ ∠AGF =90°. …………………………………………………………………2分 (2)① 依题意补全图形.…………………………………………………………………………………3分 ② 线段MN 与ND 的数量关系为MN =ND . …………………………………4分M NG F EDC BA证明:过点A 作AH ⊥AE 交GN 延长线于点H ,连接DH . ∵ ∠AGF =90°,GN 平分∠AGF , ∴ ∠AGN =12∠AGF =45°. ∵ AH ⊥AE , ∴ ∠GAH =90°. ∴ ∠AHG =∠AGH =45°. ∴ AG =AH .∵ 四边形ABCD 是正方形, ∴ ∠BAD =90°,AB =AD .∵ ∠GAH =90°,∴ ∠BAG =∠DAH .∴ △BAG ≌△DAH (SAS ). ∴ BG =DH ,∠AHD =∠AGB =90°. ∵ BG =GM ,∠AHG =45°, ∴ GM =DH ,∠DHN =∠NGM =45°.∵ ∠HND =∠GNM ,∴ △HND ≌△GNM (AAS ).∴ MN =ND . ……………………………………………………………7分5.(1)补完图形如下:……………………1分∠ADG =∠CDG . ……………………2分证明:如图,连接AG 、CG ∵∠EAF =90° ,点G 是EF 中点, ∴AG =12EF ∵正方形ABCD ,∠ECF =90° ,∴CG =12EF∴AG =CG ……………………3分H M NG F EDCBA∵AD=CD,DG=DG∴△ADG≌△CDG∴∠CDG=∠ADG ……………………4分(2)BC=3BE ……………………5分过点G作GH⊥CD于点H,易证GH是△CEF的中位线,∴CE=2GH.……………………6分易证△GDH是等腰直角三角形,∴DG .又∵DG=DF,∴DF=GH.易证△ADF≌△ABE∴DF=BE,∴BE=GH.∵CE=2GH,∴CE=2BE∴BC=3BE ……………………7分(其它证法酌情给分)6.(1)①证明:连接DE.∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵点E在对角线AC上,∴∠BAC=∠DAC=45°.∵AE=AE,∴△ABE≌△ADE.∴BE=DE,∠ABE=∠ADE.∵EF=BE,∴DE=EF.∴∠F=∠ADE.∴∠F=∠ABE. ……2分②AB=AF+2AE; ……3分证明:过点E作EG⊥AE交AB于点G.∴ ∠AEG =90°. ∵∠BAE =45°, ∴ ∠AGE =∠BAE =45°. ∴AG =2AE ,∠EGB =135°. ∵∠F AE =∠F AB +∠BAE =135°, ∴ ∠EGB =∠F AE . ∵∠F =∠ABE ,EF=EB , ∴△AEF ≌△GEB . ∴BG=AF . ∴AB=BG+GA=AF +2AE . ……5分 (2)正确补全图形;AB+AF=2AE . ……7分 7.(本小题满分7分)解:(1)① 图1;……………………………………………1分②∵正方形ABCD ,∴BC =DC ,∠BCD =90°. ……………………2分∵线段CE 绕点C 顺时针旋转90°得到线段CF ,∴CE =CF ,∠ECF =90°. ∴∠BCE+∠ECD =∠DCF+∠ECD =90°.∴∠BCE =∠DCF . ……………………………3分 图1 ∴△BCE ≌△DCF .∴BE =DF . …………………………………………………………………………4分(2)猜想:AE =2DM .证明:如图2,延长AD 到N ,使得DN =AD .∵M 是AF 中点,∴NF =2DM .………………………5分 ∵由(1)得△BCE ≌△DCF , ∴∠EBC =∠FDC ,EB =FD .又∵正方形ABCD , ∴AB =AD ,∠ABC =∠ADC = 90°. ∵DN =AD ,∠ADC +∠CDN =180°,∴AB =DN ,∠CDN = 90°.NEADBM∴EBC ABC FDC CDN ∠−∠=∠−∠, 图2即:∠ABE =∠NDF .∴△ABE ≌△NDF . ……………………………………………………………6分 ∴AE =NF .∴AE =2DM .……………………………………………………………………7分8.(1)解:∵A 、E 关于直线CD 对称,∴∠ACF =∠ECF =α,AC =CE . ∵∠ACB =90°,∴∠BCE =90°-2α. …………………………………………… 1分 ∵AC =CE , ∴CB =CE . ∴∠CBF =∠CEB =12(180°-∠BCE )=45°+α. …………………… 2分 ∠CFB =∠CEB -∠ECF =45°+α-α=45°. …………………… 3分(2)线段AF ,CF ,BF 之间的数量关系AF +BF CF . ……………… 4分证明:过C 作MC ⊥CF 于C 交F A 的延长线于点M . ∵A 、E 关于FC 对称 ∴∠AFC =∠CFE =45°. ∵MC ⊥CF∴∠M =∠AFC =45°. ∴MC =FC .∵∠ACB =∠MCF =90° ∴∠MCA =∠BCF . 又∵AC =BC ∴△MCA ≌△FCB . ∴MA =FB .∴MF =AF +MA =AF +BF .∵MC =FC ,∠MCF =90° ∴MF.∴AF +BF . …………………………………………………… 7分 9.【答案】(1)135︒(2)见解析;DE AF ⊥,DE AF = 【解析】【分析】(1)先证明全等三角形,得到等角,然后直接计算角度即可;(2)先按要求画图,然后证明两组全等三角形,即可得到边相等且平行的关系.【小问1详解】∵直线MO 是线段AB 的垂直平分线,垂足为点O , ∴MO AB ⊥,∵ACD 是等腰直角三角形, ∴90ADC ∠=︒,CD AD =,∵ADC DAB O O D M A C ∠=∠+∠∠+, ∴B OCD DA =∠∠, ∵在CDO 和ADB 中,CD AD OCD DAB CO AB =⎧⎪∠=∠⎨⎪=⎩∴(SAS)CDO ADB ≌, ∴,OD BD DBO DOC =∠=∠, ∴DOB DBO ∠=∠, ∴DOB DOC ∠=∠, ∵MO AB ⊥,∴45DOB DOC ∠=∠=︒, ∴135AOD ∠=︒; 【小问2详解】 如图,连接BD ,与(1)同理可得:(SAS)CDE ADB ≌, ∴DE DB =,EDC BDA ∠=∠, ∴90CDA BDE ∠=∠=︒, ∴DE DB ⊥,∵在ODB △和OFA 中,OD OF DOB AOF OB OA =⎧⎪∠=∠⎨⎪=⎩∴(SAS)ODB OFA ≌, ∴AF DB =,B BAF ∠=∠, ∴DB AF ∥,DE AF =, ∴DE AF ⊥.【点睛】此题考查全等三角形的判定与性质、三角形的外角性质、等腰直角三角形的性质,解题关键是通过已知条件判定全等三角形,得到边和角的关系. 10.(本小题满分7分)(1)①证明:∵在△ABC 中,∠BAC =90°,AB=AC , ∴∠ACB =∠B = 45°. ∵AD 是BC 边上的高,∴∠BAD =∠CAD = 45°. ∵CE 是∠ACB 的角平分线, ∴∠ACE =∠BCE . ∵∠AFE =∠CAD +∠ACE , ∠AEF =∠B +∠BCE . ∴∠AFE =∠AEF . ∴AE = AF .②∠CAG = 45°. (2)依题意补全图形.AC =AF +AG .证明:过点C 作CM ⊥AC 于点C ,交AD 的延长线于点M .∵∠CAD = 45°, ∴∠M= 45°. ∴CA = CM . ∴AM. ∵∠ACM= 90°, ∴∠ACF +∠MCF = 90°. ∵∠FCG= 90°, ∴∠ACF +∠ACG = 90°. ∴∠MCF =∠ACG . ∵CF = CG , ∴△MCF ≌△ACG .GFEDCBAB………… 2分 ………… 3分∴MF = AG.∴AM =AF +AG.AC=AF+AG.11.(本题满分7分)解:(1)依题意补全图形,如图.线段CE与BF的数量关系:CE=BF.证明:∵∠ACB=90°,∴∠CAE+∠CDE=90°.∵CE⊥AD,∴∠CED=90°,∴∠DCE+∠CDE=90°,∴∠CAE=∠DCE.在△ACE和△CBF中,∠AEC=∠CFB=90°,∠CAE=∠BCF,AC=BC,∴△ACE≌△CBF,∴CE=BF.……………………………………………3分(2)线段AE,BF,FG之间的数量关系:AE-BF.证明:连接CG,EG,设CF与AB交于点H.∵∠ACB=90°,AC=BC,点G为AB中点,∴CG⊥AB,CG=BG=12 AB.∵∠CGH=∠BFH=90°,∠CHG=∠BHF,∴∠GCH=∠FBH.由(1)得△ACE≌△CBF,∴AE=CF,CE=BF.在△GCE和△GBF中,CG=BG,∠GCE=∠GBF,CE=BF,∴△GCE≌△GBF,∴GE=GF,∠CGE=∠BGF,∴∠EGF=∠EGB+∠BGF=∠EGB+∠CGE=∠CGB=90°,∴△GEF是等腰直角三角形,∴EF.∵CF-CE=EF,CF=AE,CE=BF,∴AE-BF.……………………………………………7分………… 7分GFEDCBAH12.(1)补全图形......................................................................1 (2) 证明:∵∠BDC=90°∴∠DCF+∠DFC=90°..................................2 ∵EM ⊥EF∴∠EMF+∠EFM=90° ∵∠EFM=∠DFC∴∠EMF=∠DCF (3)(3)222AC BM MC +=结论: .....................................4 延长ME 到G 使EG=EM ,连接AG 、CG ∵∠GEA=∠MEB ,EG=EM ,AE=BE∴△AGE ≌△BME (SAS )..................................................5 ∴BM=AG,BM ∥AG ∵BD ⊥AC∴∠GAC=∠BDA=90°.........................................................6 ∵CE ⊥EM ,EM=EG ∴CE 垂直平分MG ∴CG=CM在Rt △AGC 中,222AC AG GC +=222AC BM MC ∴+= (7)13.(1)数量关系:HE HC =;位置关系:HE HC ⊥. ………………………… 2分 (2)依题意补全图形,如图1.数量关系:2222CB CD CH +=. 证明:连接DH ,CE ,如图2.∵△ABC 中,90ACB ∠=°,CA CB =, ∴145B ∠=∠=°. ∵DE CB ∥,∴290ADF ACB ∠=∠=∠=°,345B ∠=∠=°.又∵145DAF ∠=∠=°∴DA DF =.∵点H 是AF 的中点, ∴AH DH FH ==,DH AF ⊥,14452ADF ∠=∠=°.∴14∠=∠.∴HAC HDE ∠=∠. 又∵AC CB DE ==, ∴HAC △≌HDE △. ∴HC HE =,65∠=∠.612435HF ED CBA图2图1HFED CBA∴90EHC DHA ∠=∠=°.∴CE =.在Rt CDE △中,由勾股定理,得222DE CD CE +=.∵DE CB =,CE ,∴2222CB CD CH +=. ………………………… 7分。
2020北京中考数学二模分类汇编27题几何综合

想法 2:过点 B 作 BG∥AF,交直线 FC 于点 G,构造□ABGF,然后可证△AFE≌△BG
C……
请你参考上面的想法,帮助小昊完成证明(一种方法即可).
A
E
BD
C
8
【2020 密云二模】
2020年北京中考 二模27几何综合
27.已知:MN 是经过点 A 的一条直线,点 C 是直线 MN 左侧的一个动点,且满足 60°<∠ CAN<120°,连接 AC,将线段 AC 绕点 C 顺时针旋转 60°,得到线段 CD,在直线 MN 上取一点 B,使∠DBN=60°.
2020年北京中考 二模27几何综合
D
A
C
B
图2
7
【2020 顺义二模】
2020年北京中考 二模27几何综合
27.已知:在△ABC 中,∠ABC=90°,AB=BC,点 D 为线段 BC 上一动点(点 D 不与点
B、C 重合),点 B 关于直线 AD 的对称点为 E,作射线 DE,过点 C 作 BC 的垂线,交射线 DE
A
B
C
5
【2020 门头沟二模】
2020年北京中考 二模27几何综合
27.如图,在正方形 ABCD 中,点 E,F 分别是 AB,BC 上的两个动点(不与点 A,B,C 重合), 且 AE=CF,延长 BC 到 G,使 CG= CF,连接 EG, DF. (1)依题意将图形补全;
(2)小华通过观察、实验、提出猜想:在点 E,F 运动过程中【2020 丰台二模】
2020年北京中考 二模27几何综合
27.如图, 在Rt !':-,.ABC中, LABC = 90 ° , 将CA绕点C顺时针旋转45 ° ' 得到CP , 点A关于直线CP的对称点为D ,连接AD交直线CP 于点E ,连接CD. (1)根据题意补全图形; (2)判断1':-,.ACD的 形状, 并证明; (3)连接BE , 用等式表示线段 AB,BC,BE之间的数量关系, 并证明. 温馨提示:在解决笫(3)问的过程中, 如果你遇到困难, 可以参考下面几 种解法的主要思路. 解法1的主要思路: 延长BC至点F,使CF=AB, 连接EF, 可证!':-,.ABE 竺 1':-,.CFE, 再证1':-,.BEF 是等腰直角三角形. 解法2的主要思路: 过点 A 作 AM ..lBE 于 点 M, 可 证 !':-,.ABM是 等 腰 直 角 三 角 形, 再 证 l:-,.ABC�!':-,.AME. 解法3的主要思路: 过点A作AM..lBE于点M过 , 点C作CN..lBE于点N,设BN=a, EN=b, 用含a或b的式子表示AB, BC.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020中考一模汇编---27题几何综合教师版
(2020海淀一模)27.已知∠MON=α为射线OM上一定点,OA=5为射线ON上一动点,连接AB,满足∠OAB,∠OBA均为锐角.点C在线段OB上(与点O,B不重合),满足AC=AB,点C关于直线OM的对称点为D,连接AD,OD.
(1)依题意补全图1;
(2)求∠BAD的度数(用含α的代数式表示);
(3)若tanα=3
4
,点P在OA的延长线上,满足AP=OC,连接BP,写出一个AB的值,使得
BP∥OD,并证明.
(2020西城一模)27.如图,在等腰直角△ABC 中,∠ACB =90 点P 在线段BC 上,延长BC 至点Q ,使得CQ =CP ,连接AP ,AQ .过点B 作BD ⊥AQ 于点D ,交AP 于点E ,交AC 于点F .K 是线段AD 上的一个动点(与点A ,D 不重合),过点K 作GN ⊥AP 于点H ,交AB 于点G ,交AC 于点M ,交FD 的延长线于点N . (1)依题意补全图1; (2)求证:NM =NF ;
(3)若AM =CP ,用等式表示线段AE ,GN 与BN 之间的数量关系,并证明.
图1 备用图
C
B
A
P D
F
E
C
B
A
P D
F
E
(2020东城一模)27.如图,在正方形ABCD 中,AB =3,M 是CD 边上一动点(不与D 点重合),点D 与点E 关于AM 所在的直线对称,连接AE ,ME ,延长CB 到点F ,使得BF =DM ,连接EF ,AF . ⑴依题意补全图1;
⑵若DM =1,求线段EF 的长;
⑶当点M 在CD 边上运动时,能使△AEF 为等腰三角形,直接写出此时tan ∠DAM 的值.
图1
D
M
备用图
D
C
B
A
(2020朝阳一模)27.四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转2α (0°<α<45°),得到线段CE ,连接DE ,过点B 作BF ⊥DE 交DE 的延长线于F,连接BE . (1)依题意补全图1; (2)直接写出∠FBE 的度数;
(3)连接AF ,用等式表示线段AF 与DE 的数量关系,并证明.
图
1
备用图
(2020石景山一模)27.如图,点E是正方形ABCD内一动点,满足∠AEB=90°且∠BAE<45°,过点D 作DF⊥BE交BE的延长线于点F.
(1)依题意补全图形;
(2)用等式表示线段EF,DF,BE之间的数量关系,并证明.
(3)连接CE,若AB
,请直接写出线段CE长度的最小值.
E D C
B A
(2020丰台一模)27. 已知∠AOB =120°,点P 为射线OA 上一动点(不与点O 重合),点C 为∠AOB 内部一点,连接CP ,将线段CP 绕点C 顺时针旋转60°得到线段CQ ,且点Q 恰好落在射线OB 上,不与点O 重合. (1)依据题意补全图1;
(2)用等式表示∠CPO 与∠CQO 的数量关系,并证明;
(3)连接OC ,写出一个OC 的值,使得对于任意点P ,总有OP +OQ =4,并证明.
O
A
B
O
A
B 图1
备用图
(2020通州一模)27.已知线段AB,过点A的射线l⊥AB.在射线l上截取线段AC=AB,连接BC,点M为BC的中点,点P为AB边上一动点,点N为线段BM上一动点.以点P为旋转中心,将△BPN逆时针旋转90°得到△DPE,B的对应点为D,N的对应点为E.
(1)当点N与点M重合,且点P不是AB中点时,
①据题意在图中补全图形;
②证明:以A,M,E,D为顶点的四边形是矩形.
(2)连接EM,若AB=4,从下列3个条件中选择1个:
①BP=1,②PN=1,③BN=√2,
当条件(填入序号)满足时,一定有EM=EA,并证明这个结论.
(2020顺义一模)27.已知,如图,△ABC 是等边三角形.
(1)如图1,将线段AC 绕点A 逆时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交BD 于点E ,连接CE . ①求∠AED 的度数;
②用等式表示线段AE 、CE 、BD 之间的数量关系(直接写出结果).
(2)如图2,将线段AC 绕点A 顺时针旋转90°,得到AD ,连接BD ,∠BAC 的平分线交DB 的延长线于点E ,连接CE . ①依题意补全图2;
②用等式表示线段AE 、CE 、BD 之间的数量关系,并证明.
图2
图1
A
B
C
E
D
C
B
A
(2020密云一模)27. 已知∠MCN=45°,点B在射线CM上,点A是射线CN上的一个动点(不与点C重合). 点B关于CN的对称点为点D,连接AB、AD和CD,点F在直线BC上,且满足AF=AB. 小明在探究图形运动的过程中发现:AF⊥AD始终成立.
(1)如图1,当0°<∠BAC<90°时.
①求证:AF⊥AD
②用等式表示线段CF、CD与CA之间的数量关系,并证明;
(2)当90°<∠BAC<135°时,直接用等式表示线段CF、CD与CA之间的数量关系是.
(2020平谷一模)27.△ABC中,AB=BC,∠ABC=90°,将线段AB绕点A逆时针旋转α(0°<α<90°)得到线段AD.作射线BD,点C关于射线BD的对称点为点E.连接AE,CE.(1)依题意补全图形;
(2)若α=20°,直接写出∠AEC的度数;
,并证明.
(3)写出一个α的值,使AE=2时,线段CE的长为31
备用图
(2020延庆一模)27.如图1,在等腰直角△ABC中,∠A =90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE. 把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.
(1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;(2)请你在图3中,画出当α =45°时的图形,连接CE和BE,求出此时△CBE的面积;(3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是________________.
(2020房山一模)27.如图27-1,在等腰Rt△ABC中,∠BAC=90°,AB=AC=2,点M为BC 中点. 点P为AB边上一动点,点D为BC边上一动点,连接DP,以点P为旋转中心,将线段PD逆时针旋转90°,得到线段PE,连接EC.
(1)当点P与点A重合时,如图27-2.
①根据题意在图27-2中完成作图;
②判断EC与BC的位置关系并证明.
(2)连接EM,写出一个BP的值,使得对于任意的点D总有EM=EC,并证明.
(2020燕山一模)27.△ABC 中,∠ACB =90°,AC =BC =2,M 为BC 边上的一个动点(不与点B ,C 重合),连接AM ,以点A 为中心,将线段AM 逆时针旋转135°,得到线段AN ,连接BN . (1)依题意补全图1; (2)求证:∠BAN =∠AMB ;
(3)点P 在线段BC 的延长线上,点M 关于点P 的对称点为Q ,写出一个PC 的值,使得对于任意的点M ,总有AQ =BN ,并证明.
图1
M
C
B
A
A
B
C
备用图
(2020门头沟一模)27.在△ABC中,∠ACB=90°,∠CAB=30°,点D在AB上,连接CD,并将CD绕点D逆时针旋转60°得到DE,连接AE.
(1)如图1,当点D为AB中点时,直接写出DE与AE长度之间的数量关系;
(2)如图2,当点D在线段AB上时,
①根据题意补全图2;
②猜想DE与AE长度之间的数量关系,并证明.
∠为锐角,H、B分别为射线AN上的点,(2020大兴一模)27. 已知:如图,QAN
点H关于射线AQ的对称点为C, 连接AC,CB.
(1)依题意补全图;
(2) CB的垂直平分线交AQ于点E,交BC于点F.连接CE,HE,EB.
①求证:△EHB是等腰三角形.
②若AC AB AE
+=,求cos∠EAB的值.。