八年级数学上册知识点:平面直角坐标系

合集下载

北师大八年级数学上册《平面直角坐标系》课件(共18张PPT)

北师大八年级数学上册《平面直角坐标系》课件(共18张PPT)
3.2平面直角坐标系
第一课时
什么是数轴?
在直线上规定了原点、正方向、单位长度 就构成了数轴。
单位长度
B
· 原点 A
C
-3 -2 -1 0 1 2 3 4
数轴上的点与实数之间 存在着一一对应关系。
我帮老师解决问题
如果课上老师要点一名同学回答问 题,但不知道同学们的姓名,我想根据同 学们所在的位置来确定,你能帮我解决吗?
3、能适当建立直角坐标系,写出直角坐标 系 中有关点的坐标。
作业:
新课堂 P51 第一课时
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年4月21日星期四2022/4/212022/4/212022/4/21 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年4月2022/4/212022/4/212022/4/214/21/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/4/212022/4/21April 21, 2022
高荣荣
朱奕菲
讲台

10
8
m(4,6)
6
·
4
2
0 1 2 3 4 5列
课本58页做一做
情景问题
问题1
问题2
1平. 面平直面角上坐标两系条,互相水垂平直的且数有轴公共叫原x点轴的(数横轴轴组)成, 取向 右为正方向, 铅直的数轴 叫y轴(纵轴), 取向 上为正方向。 两轴的交点是 原点 。 这个平面叫 坐标 平面。
谢谢观赏
You made my day!
我们,还在路上……

数学平面直角坐标系知识点介绍

数学平面直角坐标系知识点介绍

数学平面直角坐标系知识点介绍数学平面直角坐标系知识点介绍上学的时候,不管我们学什么,都需要掌握一些知识点,知识点就是掌握某个问题/知识的学习要点。

掌握知识点是我们提高成绩的关键!下面是店铺整理的数学平面直角坐标系知识点介绍,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学平面直角坐标系知识点介绍11、坐标平面内的点和有序实数对一一对应已知点P(x,y),它的横坐标x和纵坐标y的顺序是不能任意交换的,A(3,2)和B(2,3)表示两个不同的点。

对于坐标平面内的任意一点P,存在唯一的一对有序实数(x,y)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内有唯一的P点和它对应。

这里,(x,y)称为点P的坐标,x是横坐标,y是纵坐标,x写在前,y写在后。

2、特殊点的坐标x轴上点的纵坐标为零,即(x,0),如果某点的坐标为(x,0),则它在x轴上。

y轴上点的横坐标为零,即(0,y),如果某点的坐标为(0,y),则它在y轴上。

第一、三象限角平分线上点的横坐标和纵坐标相等,即(x,x),如果点的坐标为(x,x),则它必定在一、三象限角平分线上。

第二、四象限角平分线上点的横坐标和纵坐标互为相反数,即(x,—x),如果点的坐标为(x,—x),则它在二、四象限角平分线上。

原点的坐标是(0,0),反之,坐标是(0,0)的点是原点。

3、对称点关于x轴对称的两个点的横坐标相等,纵坐标互为相反数。

关于y轴对称的两点的横坐标互为相反数,纵坐标相等。

关于原点对称的两点的横坐标纵坐标都互为相反数。

如果一个点的坐标为(a,b),那么这个点关于x轴、y轴、原点的对称点分别是(a,—b)、(—a,b)、(—a,—b)。

它的逆命题亦成立。

4、点P(x,y)到两坐标轴的距离点P(x,y)到x轴和y轴的距离分别是|y|和|x|。

5、点P(x,y)的平移在平面直角坐标系中:将点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x—a,y),将点(x,y)向上(或向下)平移b个单位长度,可得对应点(x,y+b)或(x,y—b)6、图形的平移对一个图形的'平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的某种变化也可以看出对这个图形进行了怎样的平移。

平面直角坐标系——点的坐标北师大版八年级数学上册

平面直角坐标系——点的坐标北师大版八年级数学上册
5. (例3)写出图中点A,B,C,D,E,F,O的坐标. 解:观察图,得A(2,3), B(3,2),C(-2,1), D(-1,-2),E(2.5,0), F(0,-2),O(0,0).
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
(2)如图2,在平面直角坐标系中,两条坐标轴将坐 标平面分成了四部分. 右上方的部分叫做第一象限, 其他三部分按逆时针方向依次叫做 第二象限 、
第三象限 和 第四象限 .坐标轴上的点不 在任何一个象限内.
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
第n步的走法是:当n能被3整除时,则向上走1个单位长
度;当n被3除,余数为1时,则向右走1个单位长度;当
n被3整除,余数为2时,则向右走2个单位长度.当走完
第100步时,棋子所处位置的坐标是( C )
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册 平面直角坐标系——点的坐标北师大 版八年 级数学 上册
平面直角坐标系——点的坐标北师大 版八年 级数学 上册
解:如图,在直角坐标系中,由4棵橡树的坐标描出对应 的点A(3,5),B(-2,7),C(-3,4),D(3,1). 连接AC,BD,AC与BD相交于点P,点P即为宝藏的位置.
A. (66,34)
B. (67,33)
C. (100,33)
D. (99,34)
平面直角坐标系——点的坐标北师大 版八年 级数学 上册

苏科版八年级上册数学第五章平面直角坐标系复习课件

苏科版八年级上册数学第五章平面直角坐标系复习课件
数学(苏科版)
第五章平面直角坐标系
01 揭标 引学
学习目标
学习目标
1.理解平面直角坐标系相关概念. 2.会运用平面直角坐标系相关概念. 3.体会用合情推理探索数学结论,运用演绎推理进行证明的过程,发展合情推理于 演绎推理的能力. 重点 会运用平面直角坐标系相关概念. 难点
会运用平面直角坐标系相关概念.
自学反馈
4.贵阳电视塔位于贵阳市云岩区扶风路仙鹤山森林公园内,是贵 阳市内海拔最高的标志性建筑物,能在360度旋转观光大厅里俯瞰 贵阳全景.小高将位于扶风山麓的阳明祠的位置记为原点建立如 图所示的平面直角坐标系,则下列哪个坐标可以表示贵阳电视塔 的位置( )
自学反馈
5.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐 标 是 ( ﹣ 2 , 3 ) , 先 把 △ ABC 向 右 平 移 4 个 单 位 长 度 得 到 △A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1, 则点A的对应点A2的坐标是( )
(1)建立适当的坐标系,即选择适当的点作为原点,确定x轴、y轴的正方向;(注 重寻找最佳位置) (2)根据具体问题确定恰当的比例尺,在数轴上标出单位长度; (3)在坐标平面上画出各点,写出坐标名称。
知识回顾
7.一个图形在平面直角坐标系中进行平移:
一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化,可以 简单地理解为:左、右平移纵坐标不变,横坐标变,变化规律是左减右加, 上下平移横坐标不变,纵坐标变,变化规律是上加下减。例如:当P(x,y) 向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a,y+b)。
补充习题
在平面直角坐标系中,已知点A(4,0),B(﹣6,0),点C是y 轴上一个动点,当∠BCA=45°时,点C的坐标为多少?

八年级上册数学第三章知识点

八年级上册数学第三章知识点

八年级上册数学第三章知识点八年级上册数学第三章知识点一、平面直角坐标系:在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

二、知识点与题型总结:1、由点找坐标:A 点的坐标记作A( 2,1 ),规定:横坐标在前, 纵坐标在后。

2、由坐标找点:例找点B( 3,-2 ) ?由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

3、各象限点坐标的符号:① 若点P(x,y)在第一象限,则x 0,y 0 ;② 若点P(x,y)在第二象限,则x 0,y 0 ;③ 若点P(x,y)在第三象限,则x 0,y 0 ;④ 若点P(x,y)在第四象限,则x 0,y 0 。

典型例题:例1、点P的坐标是(2,-3),则点P在第四象限。

例2、若点P(x,y)的坐标满足xy0,则点P在第一或三象限。

例3、若点A 的坐标为(a^2+1, -2–b^2) ,则点A在第四象限。

4、坐标轴上点的坐标符号:坐标轴上的点不属于任何象限。

① x 轴上的点的纵坐标为0,表示为(x,0),② y 轴上的点的横坐标为0,表示为(0,y),③ 原点(0,0)既在x轴上,又在y轴上。

例4、点P(x,y ) 满足xy = 0, 则点P 在x 轴上或y 轴上。

.5、与坐标轴平行的两点连线:① 若AB‖ x 轴,则A、B 的纵坐标相同;② 若AB‖ y 轴,则A、B 的横坐标相同。

例5、已知点A(10,5),B(50,5),则直线AB 的位置特点是(A )A、与x 轴平行B、与y 轴平行C、与x 轴相交,但不垂直D、与y 轴相交,但不垂直6、象限角平分线上的点:① 若点P 在第一、三象限角的平分线上, 则P( m, m );② 若点P 在第二、四象限角的平分线上,则P( m, -m )。

例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A 的坐标。

解:由条件可知:2a+1 +(2+a)=0 ,解得a = -1 ,∴ A(-1,1)。

沪科版数学八年级上册 平面直角坐标系及点的坐标

沪科版数学八年级上册  平面直角坐标系及点的坐标

G(0,0)
原点处
拓展练习 1. 已知 a < b < 0,那么点 P(a,-b)在第 二 象限.
2. 已知 P 点坐标为(a + 1,a-3) ①点 P 在 x 轴上,则 a = 3 ; ②点 P 在 y 轴上,则 a = -1 ;
3. 若点 P(x,y)在第四象限,| x | = 5,| y | = 4,则 P 点的坐标为 (5,-4) .
y
3F
E
2
A1
D
-2 -1-O1 1 2 3 4
x
-2
-3 B
C
【答案】 A(-2,0) B(0,-3) C(3,-3) D(4,0) E(3,3) F(0,3)
练一练
y
在直角坐标系中描出 5
下列各点:
4
· B
3
·A
A(4,3),
2
B(-2,3),
1
C(-4,-1),-4
· · D(2,-2). C
4; 3.
2. 在平面直角坐标系中
y
找点 A (3,-2)
2
由坐标找点的方法: (1)先找到表示横坐标 与纵坐标的点;
1 -3 -2 -1 O
-1
(2)然后过这两点分别作
-2
x 轴与 y 轴的垂线;
-3
12
3x A
(3)这两条垂线相交于点 A, 则点 A 就是坐标为A (3,-2)
典例精析
例1 写出下图中的多边形 ABCDEF 各个顶点的坐标.
【解析】点 A(m+3,m+1) 在 x 轴上,根据 x 轴上点的 坐标特征知 m+1=0,求出 m 的值代入 m+3 中即可.
【方法总结】坐标轴上的点的坐标特点:x 轴上的点 的纵坐标为 0,y 轴上的点的横坐标为 0.根据点所在 坐标轴确定字母取值,进而求出点的坐标.

初中数学人教版 八年级上册 4.3.平面直角坐标系人教版

初中数学人教版  八年级上册 4.3.平面直角坐标系人教版

初 中 数 学
八 上
通过上面的讨论,你有什么发现? 在直角坐标系内,点与有序实数对 具有怎样的关系?
在直角坐标系中,一对有序实数 可以确定一个点的位置;反之,任意 一点都可以用一对有序实数表示.
我们称这样的有序实数对叫做点的 坐标.
下面来认识点的坐标
初 中 数 学
八 上
例如,图中点P的坐标为(a,b),其中
的序变实化数而 对变(a,化b!)可以确定一-4 个点P的位置!
初 中 数 学
八 上
“中山北路西边50 m,北京西路北边30 m”
B(-50,30)
50 m
中 山 北

30 m
10
北京西路 -10 O 10
-10
北京东路
中 山 (-音50,乐3喷0)泉B的位置南路对应着一对有序实数
初 中 数 学
构成平面直角坐标系,简称为直角坐标系.
如图,水平
y4
方向的数轴称为
3
x 轴或横轴,竖
2
直方向的数轴称
1
为y 轴或纵轴, 它们统称为坐标
-4-3-2-1OO 1 -1
2
3
4x
轴.公共原点O
-2
称为坐标原点.
-3
-4
初 中 数 学
八 上
平面直角坐标系有什么样的特征呢?
①两条数轴互相垂 直且原点重合;
4y
八 上
一般地,如果Q是直角坐标系中一点,你
能找到与之对应的一对有序实数(m,n)吗?
你是怎样找的?
4y
3
2
m
1
-4-3-2-1OO -1
1
2
3
4x
想一想:

八上数学平面直角坐标系与三角形结合的问题

八上数学平面直角坐标系与三角形结合的问题

平面直角坐标系与三角形是初中数学八年级上册的重要内容,学生在学习过程中常常会遇到一些问题。

本文将分为以下几个部分,分别探讨平面直角坐标系和三角形的基本概念、平面直角坐标系与三角形结合的问题及解决方法等。

一、平面直角坐标系的基本概念1.1 直角坐标系的引入在平面直角坐标系中,我们将平面划分为四个象限,并引入x轴和y 轴,用来表示平面上的点的位置。

其中,x轴和y轴的交点为原点O,横坐标轴为x轴,纵坐标轴为y轴。

1.2 点的坐标在平面直角坐标系中,每个点都有唯一确定的坐标,用(x, y)表示,其中x为横坐标,y为纵坐标。

通过坐标,我们可以唯一地确定平面上的一个点。

1.3 距离公式在平面直角坐标系中,两点之间的距离可以通过距离公式来求解,距离公式为:AB的距离=√((x2-x1)²+(y2-y1)²)。

二、三角形的基本概念2.1 三角形的定义在平面几何中,三条线段两两连接成一个封闭图形,这个封闭图形就是三角形。

三角形是几何图形中的基本概念,其性质和定理在数学中具有重要的地位。

2.2 三角形的分类根据三角形的边和角的性质,我们可以将三角形分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等不同类型。

2.3 三角形的面积公式三角形的面积公式为:S=1/2*底*高。

其中,S表示三角形的面积,底表示三角形的底边长,高表示三角形的高。

三、平面直角坐标系与三角形结合的问题3.1 平面直角坐标系与三角形的坐标关系当我们在平面直角坐标系中遇到三角形时,通常需要确定三角形的顶点坐标、中点坐标、重心坐标等。

通过坐标关系,我们可以推导出三角形的各种性质,如边长、角度、面积等。

3.2 平面直角坐标系与三角形的距离关系在平面直角坐标系中,我们可以利用距离公式来求解三角形的边长、高度、中位线等。

通过计算三角形的距离关系,可以更深入地理解三角形的性质,并解决相关问题。

3.3 平面直角坐标系与三角形的重心、外心、内心和垂心在平面直角坐标系中,三角形的重心、外心、内心和垂心都有具体的坐标表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册知识点:平面直角坐标系
一、平面直角坐标系
平面直角坐标系:在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。

建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫象限、第二象限、第三象限、第四象限,如图所示.
说明:两条坐标轴不属于任何一个象限。

点的坐标:
对于平面直角坐标系内任意一点P,过点P分别向x轴和y轴作垂线,垂足在x轴,y轴对应的数a,b分别叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。

点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。

常见考法
由点的位置确定点的坐标,由点的坐标确定点的位置;求某些特殊点的坐标。

误区提醒
求点的坐标时,容易将横、纵坐标弄反,还容易忽略坐标符号;思考问题不周,容易出现漏解。

【典型例题】点p关于x轴的对称点p1的坐标是,点p 关于原点o的对称点P2的坐标是。

【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故本题应当填,。

一、目标与要求
解有序数对的应用意义,了解平面上确定点的常用方法。

培养学生用数学的意识,激发学生的学习兴趣。

掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

发展学生的形象思维能力,和数形结合的意识。

坐标表示平移体现了平面直角坐标系在数学中的应用。

二、重点
掌握坐标变化与图形平移的关系;
有序数对及平面内确定点的方法。

三、难点
利用坐标变化与图形平移的关系解决实际问题;
利用有序数对表示平面内的点。

四、知识框架
五、知识点、概念总结
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作其中a表示横轴,b表示纵轴。

平面直角坐标系:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做X轴或横轴,竖直的数轴叫做y轴或纵轴,X轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P 的横坐标和纵坐标。

象限:两条坐标轴把平面分成四个部分,右上部分叫象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

特殊位置的点的坐标的特点
x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

点到轴及原点的距离。

点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点
关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律
象限:正正
第二象限:负正
第三象限:负负
第四象限:正负
x轴正方向:
x轴负方向:
y轴正方向:
y轴负方向:
x轴上的点的纵坐标为0,y轴上的点的横坐标为0.
原点:
注:以数对形式表示的坐标系中的点,"2"是x轴坐标,"-4"是y轴坐标。

坐标方法的简单应用:
用坐标表示地理位置
用坐标表示平移
0.平面直角坐标系其他公式
坐标平面内的点与有序实数一一对应。

一三象限角平分线上的点横纵坐标相等。

二四象限角平分线上的点横纵坐标互为相反数。

一点上下平移,横坐标不变,即平行于y轴的直线上的点横坐标相同。

y轴上的点,横坐标为0.
x轴上的点,纵坐标为0.
坐标轴上的点不属于任何象限。

六、经典例题
例1一个机器人从o点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米
到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5•点,如果A1求坐标为,求点A5•的坐标。

例2如图是在方格纸上画出的小旗图案,若用表示A点,表示B点,那么c点的位置可表示为
A、B、c、D、
例3如图2,根据坐标平面内点的位置,写出以下各点的坐标:
A,B,c。

例4如图,面积为12c2的△ABc向x轴正方向平移至△DEF的位置,相应的坐标如图所示,
求点D、E的坐标
求四边形AcED的面积。

例5过两点A,B作直线AB,则直线AB
A、经过原点
B、平行于y轴
c、平行于x轴D、以上说法都不对。

相关文档
最新文档