2019-2020学年江苏省淮安市洪泽区八年级下学期期末数学试卷 (解析版)

合集下载

2019-2020学年江苏省淮安市淮安区八年级下学期期末数学试卷 (解析版)

2019-2020学年江苏省淮安市淮安区八年级下学期期末数学试卷 (解析版)

2019-2020学年淮安市淮安区八年级第二学期期末数学试卷一、选择题(共8小题).1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查重庆全市中小学生的课外阅读时间C.调查我市初中学生的视力情况D.调查“神州十一号”飞船零部件的安全性能3.下列二次根式中,与是同类二次根式的是()A.B.C.D.4.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个5.正方形ABCD中,对角线AC、BD交于点O,则∠CBO等于()A.30°B.45°C.60°D.75°6.正方形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角7.代数式有意义时,x应满足的条件是()A.x≠8B.x<8C.x>8D.x≥88.如图,Rt△ABC的一个顶点B在原点,BC在y轴上,直角边AC=1,BC=2,把Rt △ABC绕点B逆时针旋转90°,顶点A的对应点为A′.若反比例函数y=的图象经过点A′,则m的值为()A.﹣2B.﹣1C.1D.2二、填空题(本大题共8小题.每小题3分,共计24分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.若分式有意义,则x的取值范围是.10.某市有6万名学生参加初中毕业考试,要想了解这6万名学生的数学成绩,从中抽取了4000名学生的数学成绩进行统计分析,在这个问题中,样本容量是.11.某校对120名初二女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为.12.已知菱形ABCD的对角线AC=10,BD=8,则菱形ABCD的面积为.13.如果反比例函数y=的图象在第一、三象限,那么m的取值范围是.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.15.关于x的分式方程+=1的解为正数,则a的取值范围是.16.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.三、解答题(本大题共9小题,共计52分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)17.(1)解方程:+=4;(2)计算:×+.18.先简化,再求值:﹣,其中a=﹣1.19.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.20.某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.时间(小时)频数(人数)频率0≤t<0.540.10.5≤t<1a0.31≤t<1.5100.251.5≤t<28b2≤t<2.560.15合计1(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校800名初中学生中,约有多少学生在1.5小时以内完成家庭作业.21.等腰三角形的一边长为,周长为,求这个等腰三角形的腰长.22.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?23.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t =,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?24.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.25.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案一.选择题(本大题共8小题.每小题3分,共计24分在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,也是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选:A.2.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查重庆全市中小学生的课外阅读时间C.调查我市初中学生的视力情况D.调查“神州十一号”飞船零部件的安全性能【分析】直接利用利用全面调查与抽样调查的意义进而分析得出答案.解:A、调查一批新型节能灯泡的使用寿命,适合抽样调查,故此选项错误;B、调查重庆全市中小学生的课外阅读时间,适合抽样调查,故此选项错误;C、调查我市初中学生的视力情况,适合抽样调查,故此选项错误;D、调查“神州十一号”飞船零部件的安全性能,适合全面调查,故此选项正确;故选:D.3.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】直接利用同类二次根式的定义分别化简二次根式求出答案.解:A、=3,与不是同类二次根式,故此选项错误;B、=,与,是同类二次根式,故此选项正确;C、=2,与不是同类二次根式,故此选项错误;D、==,与不是同类二次根式,故此选项错误;故选:B.4.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A.16个B.15个C.13个D.12个【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.5.正方形ABCD中,对角线AC、BD交于点O,则∠CBO等于()A.30°B.45°C.60°D.75°【分析】正方形中对角线分别平分一组对角,根据对角线即角平分线的性质可以解题.解:正方形的对角线即角平分线,AC、BD交于点O,则∠CBO==45°,故选:B.6.正方形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角【分析】正方形具有矩形和菱形的性质,故根据正方形和菱形的性质即可解题.解:(1)平行四边形的对角线互相平分,所以菱形和正方形对角线均互相平分,故本选项错误;(2)菱形和正方形的对角线均互相垂直,故本选项错误;(3)正方形对角线相等,而菱形对角线不相等,故本选项正确;(4)对角线即角平分线是菱形的性质,正方形具有全部菱形的性质,所以本选项错误.故选:C.7.代数式有意义时,x应满足的条件是()A.x≠8B.x<8C.x>8D.x≥8【分析】直接利用二次根式有意义的条件以及分式有意义的条件分析得出答案.解:代数式有意义时,x﹣8>0,解得:x>8.故选:C.8.如图,Rt△ABC的一个顶点B在原点,BC在y轴上,直角边AC=1,BC=2,把Rt △ABC绕点B逆时针旋转90°,顶点A的对应点为A′.若反比例函数y=的图象经过点A′,则m的值为()A.﹣2B.﹣1C.1D.2【分析】根据图形旋转的性质求出A′点的坐标,再代入反比例函数函数的解析式即可得出结论.解:∵Rt△ABC的直角边AC=1,BC=2,∴A′(﹣2,1),∴m=1×(﹣2)=﹣2.故选:A.二、填空题(本大题共8小题.每小题3分,共计24分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上)9.若分式有意义,则x的取值范围是x≠5.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵分式有意义,∴x﹣5≠0,解得:x≠5.故答案为:x≠5.10.某市有6万名学生参加初中毕业考试,要想了解这6万名学生的数学成绩,从中抽取了4000名学生的数学成绩进行统计分析,在这个问题中,样本容量是4000.【分析】根据样本容量:一个样本包括的个体数量叫做样本容量即可得.解:这个问题中的样本容量是4000名学生的数学成绩,故答案为:4000.11.某校对120名初二女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为30人.【分析】根据频率=频数÷总数,得频数=总数×频率.解:根据题意,得该组的人数为120×0.25=30(人).故答案为:30人.12.已知菱形ABCD的对角线AC=10,BD=8,则菱形ABCD的面积为40.【分析】根据菱形的面积等于对角线乘积的一半列式计算即可得解.解:∵菱形ABCD的对角线AC=10,BD=8,∴菱形的面积S=AC•BD=×10×8=40,故答案为:40.13.如果反比例函数y=的图象在第一、三象限,那么m的取值范围是m<2.【分析】根据反比例函数y=的图象在第一、三象限,可知2﹣m>0,从而可以求得m的取值范围.解:∵反比例函数y=的图象在第一、三象限,∴2﹣m>0,解得,m<2,故答案为:m<2.14.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为2a.【分析】由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案.解:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α,由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α,∴∠BCD=180°﹣∠B﹣∠CDB=2α.即旋转角的大小为2α.故答案为:2α.15.关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.16.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为1.【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△POA=×4=2,S△BOA =×2=1,然后利用S△POB=S△POA﹣S△BOA进行计算即可.解:∵PA⊥x轴于点A,交C2于点B,∴S△POA=×4=2,S△BOA=×2=1,∴S△POB=2﹣1=1.故答案为1.三、解答题(本大题共9小题,共计52分.请在答题卡指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)17.(1)解方程:+=4;(2)计算:×+.【分析】(1)直接去分母进而利用分式的方程的解法得出答案;(2)直接化简二次根式,进而利用分式的混合运算法则法则计算得出答案.解:(1)方程两边同乘以(x﹣1)得:x﹣2=4(x﹣1),去括号得:x﹣2=4x﹣4,解得:x=,检验:当x=时,x﹣1≠0,故x=是原方程的根;(2)原式=+2=+2=3.18.先简化,再求值:﹣,其中a=﹣1.【分析】先对题目中的式子化简,再将a的值代入即可解答本题.解:===,当a=时,原式==.19.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB ∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.20.某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.时间(小时)频数(人数)频率0≤t<0.540.10.5≤t<1a0.31≤t<1.5100.251.5≤t<28b2≤t<2.560.15合计1(1)a=12,b=0.2;(2)补全频数分布直方图;(3)请估计该校800名初中学生中,约有多少学生在1.5小时以内完成家庭作业.【分析】(1)根据0≤t<0.5这一组的频数和频率,可以求得本次调查的人数,然后即可计算出a和b的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以计算出约有多少学生在1.5小时以内完成家庭作业.解:(1)本次调查的学生有:4÷0.1=40(人),a=40×0.3=12,b=8÷40=0.2,故答案为:12,0.2;(2)由(1)知,a=12,补全的频数分布直方图如右图所示;(3)800×(0.1+0.3+0.25)=520(名),即约有520名学生在1.5小时以内完成家庭作业.21.等腰三角形的一边长为,周长为,求这个等腰三角形的腰长.【分析】分2是腰长和底边两种情况讨论求解即可.解:2是腰长时,底边是4+7﹣2×2=7,∵2+2=4<7,∴此时不能组成三角形;2是底边时,腰长为(4+7﹣2)=+,能组成三角形,综上所述,这个等腰三角形的腰长+.22.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【分析】设原计划每小时检修管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.23.一辆汽车匀速通过某段公路,所需时间t(h)与行驶速度v(km/h)满足函数关系:t =,其图象为如图所示的一段曲线且端点为A(40,1)和B(m,0.5).(1)求k和m的值;(2)若行驶速度不得超过60km/h,则汽车通过该路段最少需要多少时间?【分析】(1)将点A(40,1)代入t=,求得k,再把点B代入求出的解析式中,求得m的值;(2)求出v=60时的t值,汽车所用时间应大于等于这个值.解:(1)由题意得,函数经过点(40,1),把(40,1)代入t=,得k=40,故可得:解析式为t=,再把(m,0.5)代入t=,得m=80;(2)把v=60代入t=,得t=,∴汽车通过该路段最少需要小时.24.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.【分析】(1)根据平行四边形的性质得到AB∥CD,AB=CD,然后根据CE=DC,得到AB=EC,AB∥EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE =FB=FC,AE=BC,得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.25.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点A、C,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【分析】(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),∴AB=5,∵四边形ABCD为正方形,∴点C的坐标为(5,﹣3).∵反比例函数y=的图象经过点C,∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积,∴×OA•|x|=52,∴×2•|x|=25,解得x=±25.当x=25时,y=﹣=﹣;当x=﹣25时,y=﹣=.∴P点的坐标为(25,﹣)或(﹣25,).。

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷(含解析)

2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。

2020年江苏省淮安市初二下期末综合测试数学试题含解析

2020年江苏省淮安市初二下期末综合测试数学试题含解析
20.(6分)先化简 ÷ ,然后从1、2、3中选取一个你认为合适的数作为a的值代入求值.
21.(6分)关于x的一元二次方程 有两个不等实根 , .
(1)求实数k的取值范围;
(2)若方程两实根 , 满足 ,求k的值.
22.(8分)为了落实党的“精准扶贫”政策,A、B两城决定向C,D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨:从B城往C,D两乡运肥料的费用分别为15元/吨和24元/吨,现C乡需要肥料240吨,D乡需要肥料260吨.
A. B. C. D.
9.如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是()
A.图1中BC的长是4厘米
B.图2中的a是12
C.图1中的图形面积是60平方厘米
2020年江苏省淮安市初二下期末综合测试数学试题
一、选择题(每题只有一个答案正确)
1.下列函数关系式:①y=2x;②y=2x+11;③y=3﹣x;④y= .其中一次函数的个数是( )
A.1个B.2个C.3个D.4个
2.已知二次根式 与 是同类二次根式,则a的值可以是()
A.5B.6C.7D.8
3.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )
(1)求证: 是等腰三角形.
(2)若 的周长是 , ,求 的周பைடு நூலகம்.(用含 , 的代数式表示)
19.(6分)如图,在平面直角坐标系中,直线 与 轴、 轴分别交于 , 两点.

苏科版2019-2020学年度八年级数学第二学期期末考试试题 含答案

苏科版2019-2020学年度八年级数学第二学期期末考试试题 含答案

2019-2020学年度八年级数学第二学期期末考试试题一、选择题(本大题共6小题,每小题3分,共18分,在每小题所给出的四个选项中,恰有一项符合题目要求,请将正确选项的字母代号填图在答题卡相应位置上)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形2.下列二次根式中,最简二次根式是()A.B.C.D.3.下列调查中,适宜采用普查的是()A.了解某班学生校服的尺码B.了解2019年“3•15”晚会的收视率C.检测一批灯泡的使用寿命D.了解长江中现有鱼的种类4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球5.设一元二次方程2x2+3x﹣2=0的两根为x1、x2,则x1+x2的值为()A.﹣B.C.﹣2 D.﹣16.如图,直线y1=3x+4交x轴、y轴于点A、C,直线y2=﹣x+4交x轴、y轴于点B、C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.B.6 C.D.二、填空题(本大题共有10小题,每小题3分,共30分)7.若二次根式在实数范围内有意义,则x的取值范围是.8.一元二次方程x2﹣5x=0的解为.9.若要了解某校八年级2000名学生的数学成绩,从中抽取100名学生的数学成绩进行分析,则在该调查中,样本容量是.10.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是.11.若+|y+2|=0,则=.12.若关于x的分式方程=2有增根,则m=.13.点(a,y1)(a+2,y2)都在反比例函数y=(k<0)的图象上,若y1>y2,则a的取值范围是.14.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于.15.如图,在△ABC中,AB=8,点D、E分别是AB、AC的中点,点F在DE上,且DF=2FE,当AF⊥BF时,BC的长是.16.如图,菱形ABCD的边BC绕点C逆时针旋转90°到CE,连接AC、DE、BE,AC与DE相交于F,则∠AFD=.三、解答题(共10小题,满分102分)17.(1)计算:①﹣12+﹣﹣20190×|﹣2|②3﹣()×(2)解方程:=×18.先化简:再求值(1﹣)÷,其中a是一元二次方程x2﹣2x﹣2=0的正实数根.19.某校准备在大课间开设A、B、C、D四个社团,为了解学生最喜欢哪一社团,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人;(2)请将统计图2补充完整;(3)统计图1中B社团对应的扇形的圆心角是度;(4)已知该校共有学生1000人,根据调查结果估计该校喜欢A社团的学生有人.20.如图,已知△ABC的三个顶点坐标为A(3,4),B(2,0),C(8,0).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.如图,在四边形ABCD中,AD∥BC(1)作对角线AC的垂直平分线与边AD、BC分别相交于点E、F(尺规作图,保留作图痕迹,不写作法);(2)连接AF、CE,判断四边形AFCE的形状,并说明理由.22.某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?23.如图,在△ABC中,D、E、F分别是各边的中点,BH是AC边上的高.(1)求证:四边形DBEF是平行四边形;(2)求证:∠DFE=∠DHE.24.如图,函数y1=的图象与函数y2=kx+b的图象交于点A(﹣1,a)B(﹣8+a,1)(1)求函数y=和y=ka+b的表达式;(2)观察图象,直接写出不等式<kx+b的解.25.如图,将矩形ABCD沿对角线BD折叠,点C的对应点为点C′,连接CC′交AD于点F,BC′与AD交于点E.(1)求证:△BAE≌△DC′E;(2)写出AE与EF之间的数量关系,并说明理由;(3)若CD=2DF=4,求矩形ABCD的面积.26.如图,在直角坐标系xOy中,矩形ABCD的DC边在x轴上,D点坐标为(﹣6,0)边AB、AD的长分别为3、8,E是BC的中点,反比例函数y=的图象经过点E,与AD边交于点F.(1)求k的值及经过A、E两点的一次函数的表达式;(2)若x轴上有一点P,使PE+PF的值最小,试求出点P的坐标;(3)在(2)的条件下,连接EF、PE、PF,在直线AE上找一点Q,使得S△QEF=S△PEF直接写出符合条件的Q点坐标.参考答案与试题解析一.选择题(共6小题)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.2.下列二次根式中,最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=3,故A错误;(B)原式=,故B错误;(D)原式=,故D错误;故选:C.3.下列调查中,适宜采用普查的是()A.了解某班学生校服的尺码B.了解2019年“3•15”晚会的收视率C.检测一批灯泡的使用寿命D.了解长江中现有鱼的种类【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解某班学生校服的尺码查,适合普查,故A正确;B、了解2019年“3•15”晚会的收视率,调查范围广,适合抽样调查,故B错误;C、检测一批灯泡的使用寿命,具有破坏性,适合抽样调查,故C错误;D、了解长江中现有鱼的种类,调查范围广,适合抽样调查,故D错误;故选:A.4.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球【分析】由于只有2个白球,则从中任意摸出3个球中至少有1个球是黑球,于是根据必然事件的定义可判断A选项正确.【解答】解:一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,至少有1个球是黑球是必然事件;至少有1个球是白球、至少有2个球是黑球和至少有2个球是白球都是随机事件.故选:A.5.设一元二次方程2x2+3x﹣2=0的两根为x1、x2,则x1+x2的值为()A.﹣B.C.﹣2 D.﹣1【分析】由于一元二次方程2x2+3x﹣2=0的两根为x1、x2,直接利用一元二次方程的根与系数的关系即可求解.【解答】解:∵一元二次方程2x2+3x﹣2=0的两根为x1、x2,∴x1+x2=﹣.故选:A.6.如图,直线y1=3x+4交x轴、y轴于点A、C,直线y2=﹣x+4交x轴、y轴于点B、C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.B.6 C.D.【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解∵点P(m,2)是△ABC内部(包括边上)的一点,故点P在直线y=2上,如图所示,观察图象得:当P为直线y=2与直线y2的交点时,m取最大值;当P为直线y=2与直线y1的交点时,m取最小值;∵y2=﹣x+4中令y=2,则x=6,y1=3x+4中令y=2,则x=﹣,∴m的最大值为6,m的最小值为﹣.则m的最大值与最小值之差为:6﹣(﹣)=.故选:D.二、填空题(本大题共有10小题,每小题3分,共30分)7.若二次根式在实数范围内有意义,则x的取值范围是x≥1 .【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.8.一元二次方程x2﹣5x=0的解为x1=0,x2=5 .【分析】利用因式分解法解方程.【解答】解:x(x﹣5)=0,x=0或x﹣5=0,所以x1=0,x2=5.故答案为x1=0,x2=5.9.若要了解某校八年级2000名学生的数学成绩,从中抽取100名学生的数学成绩进行分析,则在该调查中,样本容量是100 .【分析】根据样本容量是指样本中个体的数目,进而判断即可.【解答】解:要了解某校八年级2000名学生的数学成绩,从中抽取100名学生的数学成绩进行分析,则在该调查中,样本容量是:100.故答案为:100.10.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是20 .【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n 的值.【解答】解:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故答案为20.11.若+|y+2|=0,则=2.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣6=0,y+2=0,解得x=6,y=﹣2,所以,x﹣y=6﹣(﹣2)=6+2=8,所以==2.故答案为:2.12.若关于x的分式方程=2有增根,则m= 1 .【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:m﹣1=2x﹣2,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入得:m﹣1=0,解得:m=1,故答案为:113.点(a,y1)(a+2,y2)都在反比例函数y=(k<0)的图象上,若y1>y2,则a的取值范围是﹣2<a<0 .【分析】由反比例函数y=(k<0)的图象在第二、四象限,在每个象限内,y随x的增大而增大,而y1>y2,可以确定点(a,y1)在第二象限且点(a+2,y2)在第四象限,再根据坐标的特征列出不等式组求出解集即可.【解答】解:∵反比例函数y=(k<0),∴双曲线在二、四象限,且在每个象限内,y随x的增大而增大,∵a<a+2,y1>y2∴点(a,y1)(a+2,y2)不在同一个象限,因此点(a,y1)在第二象限且点(a+2,y2)在第四象限,∴a<0,且a+2>0,∴﹣2<a<0,故答案为:﹣2<a<0.14.已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于2 .【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解答】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2=﹣,则+c=2,故答案为:2.15.如图,在△ABC中,AB=8,点D、E分别是AB、AC的中点,点F在DE上,且DF=2FE,当AF⊥BF时,BC的长是12 .【分析】根据直角三角形的性质求出DF,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵AF⊥BF,∴∠AFB=90°,又D是AB的中点,∴DF=AB=4,∵DF=2FE,∴EF=2,∴DE=6,∵D、E分别是AB、AC的中点,∴BC=2DE=12,故答案为:12.16.如图,菱形ABCD的边BC绕点C逆时针旋转90°到CE,连接AC、DE、BE,AC与DE相交于F,则∠AFD=45°.【分析】由“SAS”可证△DCF≌△BCF,可得∠CDF=∠CBF,由旋转的性质可得CD=CE,∠CBE=45°,可得∠CDF=∠CED=∠CBF,可证点F,点C,点E,点B四点共圆,即可求解.【解答】解:连接BF,∵四边形ABCD是菱形,∴CD=BC,∠DCA=∠BCA,且CF=CF∴△DCF≌△BCF(SAS)∴∠CDF=∠CBF,∵BC绕点C逆时针旋转90°到CE∴BC=CE,∠BCE=90°∴CD=CE,∠CBE=45°∴∠CDF=∠CED=∠CBF∴点F,点C,点E,点B四点共圆∴∠CFE=∠CBE=45°∴∠AFD=45°故答案为:45°三、解答题(共10小题,满分102分)17.(1)计算:①﹣12+﹣﹣20190×|﹣2|②3﹣()×(2)解方程:=×【分析】(1)①利用乘方的意义、负整数指数、零指数幂的意义计算;②先根据二次根式的乘法法则运算,然后化简后合并即可;(2)方程两边都乘以x﹣2,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)①原式=﹣1+2﹣3﹣1×2=﹣4;②原式=6﹣+3=6﹣4+3=2+3;(2)去分母得x﹣3=2,解得x=3+2,经检验x=3+2是原方程的解.18.先化简:再求值(1﹣)÷,其中a是一元二次方程x2﹣2x﹣2=0的正实数根.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的正实数根得到a的值,代入计算即可求出值.【解答】解:原式=•=,把x=a代入方程得:a2﹣2a﹣2=0,即a2﹣2a+1=3,整理得:(a﹣1)2=3,即a﹣1=±,解得:a=1+或a=1﹣(舍去),则原式=.19.某校准备在大课间开设A、B、C、D四个社团,为了解学生最喜欢哪一社团,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有200 人;(2)请将统计图2补充完整;(3)统计图1中B社团对应的扇形的圆心角是108 度;(4)已知该校共有学生1000人,根据调查结果估计该校喜欢A社团的学生有100 人.【分析】(1)从两个统计图中可以得到C类的有80人,占调查人数的40%,可求出调查人数,(2)求出D类、A类的人数即可补全条形统计图,(3)用360°乘以样本中B类所占的百分比,(4)样本估计总体,用1000人乘以样本中A所占的百分比.【解答】解:(1)80÷40%=200人,故答案为:200.(2)200×20%=40人,200﹣40﹣60﹣80=20人,补全条形统计图如图所示:(3)360°×=108°,故答案为:108.(4)1000×=100人,故答案为:100人.20.如图,已知△ABC的三个顶点坐标为A(3,4),B(2,0),C(8,0).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标(﹣3,﹣4);(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标(9,4)或(﹣3,4)或(7,﹣4).【分析】(1)依据中心对称的性质,即可得到△ABC关于坐标原点O的中心对称图形△A′B′C′,进而得出点A的对应点A′的坐标;(2)依据平行四边形的判定,画出平行四边形ABCD,即可得到平行四边形的第四个顶点D 的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求,故答案为:(﹣3,﹣4);(2)如图所示,以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(9,4)或(﹣3,4)或(7,﹣4).故答案为:(9,4)或(﹣3,4)或(7,﹣4).21.如图,在四边形ABCD中,AD∥BC(1)作对角线AC的垂直平分线与边AD、BC分别相交于点E、F(尺规作图,保留作图痕迹,不写作法);(2)连接AF、CE,判断四边形AFCE的形状,并说明理由.【分析】(1)利用基本作图作EF垂直平分AC;(2)利用线段的垂直平分线的性质得AE=CE,AF=CF,利用等腰三角形的性质得到∠AFE =∠CFE,再根据平行线的性质得∠AEF=∠CFE,所以∠AFE=∠AEF,从而得到AE=AF,然后根据菱形的判定方法可判断四边形AFCE为菱形.【解答】解:(1)如图,点E、F为所作;(2)四边形AFCE为菱形.理由如下:∵EF垂直平分AC,∴AE=CE,AF=CF,∴EF平分∠AFC,即∠AFE=∠CFE,∵AD∥BC,∴∠AEF=∠CFE,∴∠AFE=∠AEF,∴AE=AF,∴AE=EC=CF=AF,∴四边形AFCE为菱形.22.某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x元(x为正整数,且x>80).(1)若希望每月的利润达到2400元,又让利给消费者,求x的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】(1)直接利用每件利润×销量=2400,进而得出一元二次方程解出答案即可;(2)直接利用每件利润×销量=w,进而得出函数最值即可.【解答】解:(1)由题意可得:(x﹣60)[100﹣2(x﹣80)]=2400,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100(不合题意舍去),答:x的值为90;(2)设利润为w,根据题意可得:w=(x﹣60)[100﹣2(x﹣80)]=﹣2x2+380x﹣15600=﹣2(x﹣95)2+2450,故每件商品的售价定为95元时,每个月可获得最大利润,最大的月利润是2450元.23.如图,在△ABC中,D、E、F分别是各边的中点,BH是AC边上的高.(1)求证:四边形DBEF是平行四边形;(2)求证:∠DFE=∠DHE.【分析】(1)根据三角形中位线定理得到DF∥BC,EF∥AB,得到DF∥BE,EF∥BD,于是得到结论;(2)根据平行线的性质得到∠A=∠EFH,根据垂直的定义得到∠AHB=90°,得到∠EFH=∠FHD,同理,∠C=∠CHE,根据平角的定义即可得到结论.【解答】证明:(1)∵D、E、F分别是各边的中点,∴DF和EF是△ABC的中位线,∴DF∥BC,EF∥AB,∴DF∥BE,EF∥BD,∴四边形DBEF是平行四边形;(2)∵EF∥AB,∴∠A=∠EFH,∵BH⊥AC,∴∠AHB=90°,∴AD=DH,∴∠AHD=∠A,∴∠EFH=∠FHD,同理,∠C=∠CHE,∴∠CHE=∠AFD,∴∠DFE=∠DHE.24.如图,函数y1=的图象与函数y2=kx+b的图象交于点A(﹣1,a)B(﹣8+a,1)(1)求函数y=和y=ka+b的表达式;(2)观察图象,直接写出不等式<kx+b的解.【分析】(1)根据反比例函数系数k的几何意义得出﹣1×a=(﹣8+a)×1=m,求出a的值,得到A、B的坐标,求出m得到反比例函数解析式,然后利用待定系数法求一次函数解析式;(2)根据交点坐标结合图象即可求得.【解答】解:(1)∵函数y1=的图象经过点A(﹣1,a)B(﹣8+a,1),∴﹣1×a=(﹣8+a)×1=m,∴a=4,m=﹣4,∴A(﹣1,4),B(﹣4,1),反比例函数解析式为y1=﹣,把A(﹣1,4),B(﹣4,1)代入y2=kx+b得,解得k=1,b=5,∴一次函数解析式为y=x+5;(2)由图象可知:不等式<kx+b的解为﹣4<x<﹣1或x>0.25.如图,将矩形ABCD沿对角线BD折叠,点C的对应点为点C′,连接CC′交AD于点F,BC′与AD交于点E.(1)求证:△BAE≌△DC′E;(2)写出AE与EF之间的数量关系,并说明理由;(3)若CD=2DF=4,求矩形ABCD的面积.【分析】(1)根据AAS证明△BAE≌△DC′E即可.(2)证明AE=EC′,EC′=EF即可.(3)理由相似三角形的性质求出BC即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠BCD=90°由翻折的性质可知:CD=C′D,∠BCD=∠BC′D=90°,∴∠A=∠DC′E=90°,AB=C′D,∵∠AEB=∠DEC′,∴△BAE≌△DC′E(AAS).(2)解:结论:AE=EC′.理由:∵△BAE≌△DC′E,∴AE=EC′,∵BC=BC′,∴∠BCC′=∠BC′C,∵EF∥BC,∴∠EFC′=∠BCC′,∴∠EC′F=∠EFC′,∴EF=EC′,∴AE=EF.(3)解:由翻折可知:BD⊥CC′,∴∠FCD+∠BDC=90°,∠BDC+∠CBD=90°,∴∠FCD=∠CBD,∵∠CDF=∠BCD=90°,∴△CDF∽△BCD,∴=,∴=,∴BC=8,∴S矩形ABCD=BC•CD=32.26.如图,在直角坐标系xOy中,矩形ABCD的DC边在x轴上,D点坐标为(﹣6,0)边AB、AD的长分别为3、8,E是BC的中点,反比例函数y=的图象经过点E,与AD边交于点F.(1)求k的值及经过A、E两点的一次函数的表达式;(2)若x轴上有一点P,使PE+PF的值最小,试求出点P的坐标;(3)在(2)的条件下,连接EF、PE、PF,在直线AE上找一点Q,使得S△QEF=S△PEF直接写出符合条件的Q点坐标.【分析】(1)先确定出点B,C坐标,进而得出点E坐标,最后用待定系数法即可求出直线AE解析式;(2)先找出点F关于x轴的对称点F'的坐标,进而求出直线EF'的解析式,即可得出结论;(3)先利用面积和差求出三角形PEF的面积,再求出直线EF的解析式,设出点Q的坐标,利用坐标系中求三角形面积发方法建立方程求解,即可得出结论.【解答】解:(1)在矩形ABCD中,AB=3,AD=8,∴CD=AB=3,BC=AD=8,∵D(﹣6,0),∴A(﹣6,8),C(﹣3,0),B(﹣3,8),∵E是BC的中点,∴E(﹣3,4),∵点D在反比例函数y=的图象上,∴k=﹣3×4=﹣12,设经过A、E两点的一次函数的表达式为y=k'x+b,∴,∴,∴经过A、E两点的一次函数的表达式为y=﹣x;(2)如图1,由(1)知,k=﹣12,∴反比例函数的解析式为y=﹣,∵点F的横坐标为﹣6,∴点F的纵坐标为2,∴F(﹣6,2),作点F关于x轴的对称点F',则F'(﹣6,﹣2),连接EF'交x轴于P,此时,PE+PF的值最小,∵E(﹣3,4),∴直线EF'的解析式为y=2x+10,令y=0,则2x+10=0,∴x=﹣5,∴P(﹣5,0);(3)如图2,由(2)知,F'(﹣6,﹣2),∵E(﹣3,4),F(﹣6,2),∴S△PEF=S△EFF'﹣S△PFF'=×(2+2)×(﹣3+6)﹣(2+2)×(﹣5+6)=4,∵E(﹣3,4),F(﹣6,2),∴直线EF的解析式为y=x+6,由(1)知,经过A、E两点的一次函数的表达式为y=﹣x,设点Q(m,﹣m),过点Q作y轴的平行线交EF于G,∴G(m,m+6),∴QG=|﹣m﹣m﹣6|=|2m+6|,∵S△QEF=S△PEF,∴S△QEF=|2m+6|×(﹣3+6)=4,∴m=﹣或m=﹣,∴Q(﹣,)或(﹣,).。

2019-2020学年淮安市淮安区八年级下学期期末数学试卷(含解析)

2019-2020学年淮安市淮安区八年级下学期期末数学试卷(含解析)

2019-2020学年淮安市淮安区八年级下学期期末数学试卷一、选择题(本大题共8小题,共24.0分)1.下列成语描述的事件为随机事件的是()A. 水涨船高B. 水中捞月C. 守株待兔D. 铁杵成针2.下列式子中,为最简二次根式的是()A. √12B. √7C. √4D. √483.若分式1x+2在实数范围内有意义,则实数x的取值范围是()A. x>−2B. x<−2C. x=−2D. x≠−24.下列说法正确的是()A. 为了审核书稿中的错别字,选择抽样调查B. 为了了解春节联欢晚会的收视率,选择全面调查C. “射击运动员射击一次,命中靶心”是随机事件D. “经过有交通信号灯的路口,遇到红灯”是必然事件5.如图,A、B分别为反比例函数y=−2x (x<0),y=8x(x>0)图象上的点,且OA⊥OB,则sin∠ABO的值为()A. √25B. √35C. √55D. √756.小敏上月在某文具店正好用30元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小敏只比上次多用了6元钱,却比上次多买了8本,若设她上月买了x本笔记本,则根据题意可列方程为()A. 36x+8−30x=1 B. 30x−36x+8=1 C. 36x−30x+8=1 D. 30x+8−36x=17.如图,在平行四边形ABCD中,点E为AB的中点,点F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()个.A. 2B. 3C. 4D. 58.函数y=ax(a≠0)与y=a在同一坐标系中的大致图象是()xA. B.C. D.二、填空题(本大题共8小题,共24.0分)9.当x=______ 时,分式x+3的值为0.2x+110.若m适合关系式√3x+2y−1−m+√2x+3y−m=√x−2013+y⋅√2013−x−y,则m=______.11.设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系式如图所示,当△ABC为等腰直角三角形时,则x+y的值为______.12.如图,是一副普通扑克牌中的张黑桃牌.将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数大于的概率为.13. 如图,菱形ABCD 的边长为a ,∠A =60°,E 、F 分别是边AD ,CD 上的两个动点,且满足AE +CF =a.则EF 的最小值是______.14. 分式方程xx−2−1x 2−4=1的解是______ .15. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为______.16. 若一次函数y =2x +b 的图象不经过第二象限,则b 的取值范围为b ______0. 三、计算题(本大题共3小题,共20.0分) 17. 计算:(√5+1)(√5−1)−√32−(−3)218. 计算:(1)x 2x −2+42−x (2)(a 2+4a −4)÷a 2−4a 2+2a19. 解分式方程:xx+1−6x 2−1=1四、解答题(本大题共7小题,共52.0分)20. 一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下: 摸球的次数 200 300 400 1000 1600 2000 摸到白球的频数 7293130 334 532 667 摸到白球的频率0.3600 0.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是______.(精确到0.01),由此估出红球有______个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.21. (1)计算:①√8+(−1)2017−√12②√50×√32√8−4(2)按照指定方法解下列方程组: ①(用代入法){2x +y =5x −3y =6②(用加减法){st−t3=5s4+t8=3422. 解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的最大值”等等. 设A =3xx−2−xx+2 ,B =x 2−4x,求A 与B 的积;提出(1)的一个“逆向”问题,并解答这个问题.23. 已知直线AB :y =kx +b 经过点B(1,4)、A(5,0)两点,且与直线y =2x −4交于点C .(1)求直线AB 的解析式并求出点C 的坐标;(2)求出直线y =kx +b 、直线y =2x −4及y 轴所围成的三角形面积; (3)现有一点P 在直线AB 上,过点P 作PO//y 轴交直线y =2x −4于点Q ,若线段PQ 的长为3,求点P 的坐标.24. 有一项工程,由甲、乙两个工程队共同完成,若乙工程队单独完成需要60天;若两个工程队合作18天后,甲工程队再单独做10天也恰好完成. (1)甲工程队单独完成此项工程需要几天?(2)若甲工程队每天施工费用为0.6万元,乙工程队每天施工费用为0.35万元,要使该项目总施工费用不超过22万元,则乙工程队至少施工多少天?25. 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.26. 如图1,长方形ABCD中,AB=a,AD=b,E是AD边上一点,AE:AD=n;(1)当n=时,S△ABES△DCE =32;S△BEC=;(2)若F是BC的中点(图2),P是BC上一点,试说明S△BPE、S△PCE、S△PEF之间的关系;(3)若P在BC边的延长线上,直接写出S△BPE、S△PCE、S△PEF之间的关系为【答案与解析】1.答案:C解析:解:“水涨船高”是必然事件,发生的可能性为100%,“水中捞月”是确定事件,发生的可能性为0,“守株待兔”可能发生,也可能不发生,是随机事件,“铁杵成针”是必然事件,故选:C.逐个分析各个成语所描述的事件,发生的可能性的大小,进而得出随机事件考查随机事件的意义、理解随机事件发生的可能性在0−1之间,是不确定事件.2.答案:B解析:解:A、√12=12√2,不是最简二次根式,故本选项不符合题意;B、√7是最简二次根式,故本选项符合题意;C、√4=2,不是最简二次根式,故本选项不符合题意;D、√48=4√3,不是最简二次根式,故本选项不符合题意;故选:B.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键,注意:判断一个二次根式是最简二次根式,必须具备以下两个条件:①被开方数中的因数是整数,因式是整式,②被开方数中的每个因数或因式的指数都小于根指数2.3.答案:D解析:解:∵代数式1x+2在实数范围内有意义,∴x+2≠0,解得:x≠−2.故选:D.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握定义是解题关键.4.答案:C解析:解:为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过有交通信号灯的路口,遇到红灯”是随机事件,D错误.。

2019-2020年江苏省八年级下学期数学期末试卷(有答案)

2019-2020年江苏省八年级下学期数学期末试卷(有答案)

2019-2020江苏省八年级下学期数学期末试卷一、选择题(本大题10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式211x x -+的值为零,则x 的值为 A .-1 B .0 C .±1 D .12.下列计算中,正确的是A .23+42=65B .27÷3=3C .33×32=36D .()23-=-33.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y =k x(x>0)的图象经过顶点B ,则k 的值为 A .12 B .20 C .24 D .324.如图,AB 是⊙O 的直径,∠AOC =110°,则∠D 的度数等于A .25°B .35°C .55°D .70°5.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是A .15B .25C .35D .456.若最简二次根式23a +与53a -是同类二次根式,则a 为A .a =6B .a =2C .a =3或a =2D .a =17.如图,在矩形ABCD 中,AB =2,BC =4,对角线AC 的垂直平分线分别交AD 、A C 于点E 、D ,连接CE ,则CE 的长为A .3B .3.5C .2.5D .2.88.已知51023y x x =-+--,则xy =A .-15B .-9C .9D .15 9.如图,AB 切⊙O 于点B ,OB =2,∠OAB =36°,弦BC ∥OA ,劣弧BC 的弧长为A .5πB .25πC .35πD .45π 10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG//CF ;④∠GAE =45°;⑤S △FGC =3.6.则正确结论的个数有A .2B .3C .4D .5二、填空题(本大题共8小题,每小题2分,共16分,把答案填在答题卡相应横线上)11.一元二次方程x 2-4x =0的解是 ▲ . 12.点(3,a )在反比例函数y =6x图象上,则a = ▲ . 13.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若CD =2EF =4,BC =42,则∠C 等于 ▲ .14.已知关于x 的方程22x m x +-=3的解是正数,那么m 的取值范围为 ▲ .15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y =6x(x>0)的图象上,则点C 的坐标为 ▲ . 16.如图,已知圆锥的母线AC =6cm ,侧面展开图是半圆,则底面半径OC = ▲ .17.某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件,若加工a 件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,则手工每小时加工产品的数量为 ▲ 件.18.如图,在直角坐标系中,以坐标原点为圆心、半径为2的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表达式为 ▲ .三、简答题(本大题共10小题,共64分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题4分)计算()21332242-+-. 20.(本题8分)解方程(1)2x 2-5x -3=0(2)2316111x x x +=+--21.(本题5分)先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程x 2-x =6的根. 22.(本题6分)某学校开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为▲,其所在扇形统计图中对应的圆心角度数是▲度;(2)请把条形统计图补充完整;(3)若该校有学生1200人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?23.(本题6分)如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、BD.(1)求弦AB的长;(2)当∠ADC=15°时,求弦BD的长.24.(本题6分)如图,在平面直角坐标系xOy中,一次函数y1=kx的图象与反比例函数y2=mx图象交于A、B两点.(1)根据图像,求一次函数和反比例函数解析式;(2)根据图象直接写出kx>mx的解集为▲;(3)若点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试直接写出点P所有可能的坐标为▲.25.(本题6分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.26.(本题7分)如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,BD交AC于点F.(1)求证:DE是⊙O的切线;(2)若CE=4,ED=8,求⊙O的半径.27.(本题8分)如图,在平面直角坐标系中,点A的坐标为(1,1),OA=AC,∠OAC=90°,点D为x轴上一动点,以AD为边在AD的右侧作正方形ADEF.(1)如图(1)当点D在线段OC上时(不与点O、C重合),则线段CF与OD之间的数量关系为▲;位置关系为▲.(2)如图(2)当点D在线段OC的延长线上时,(1)中的结论是否成立?若成立,请说明理由;若不成立,请举一反例;(3)设D点坐标为(t,0),当D点从O点运动到C点时,用含y的代数式表示E点坐标,并直接写出E点所经过的路径长.28.(本题8分)如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC-CB-BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由,同时求出△AMN的面积;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF为直角三角形,试求a的值.。

2019-2020学年江苏省淮安市初二下期末质量检测数学试题含解析

2019-2020学年江苏省淮安市初二下期末质量检测数学试题含解析

2019-2020学年江苏省淮安市初二下期末质量检测数学试题一、选择题(每题只有一个答案正确)1.已知一次函数的图象过点(0,3),且与两坐标轴围成的三角形的面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=-1.5x+3C.y=1.5x+3或y=-1.5x+3 D.y=1.5x-3或y=-1.5x-32.三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有()A.1个B.2个C.3个D.4个3.如果一组数据3-,2-,0,1,x,6,9,12的平均数为3,则x为()A.2 B.3 C.1-D.14.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD5.在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是()A.(3,﹣1)B.(-1,3)C.(-3,1)D.(-2,﹣3)6.一直角三角形两边分别为5和12,则第三边为()A.13 B.119C.13或119D.77.下列运算正确的是()A.9=3±B.(m2)3=m5C.a2•a3=a5D.(x+y)2=x2+y28.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A.(32,0)B.(2,0)C.(52,0)D.(3,0)9.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较 10.计算的2(4)-的结果是( )A .4-B .4±C .4D .16 二、填空题11.如图,在平行四边形ABCD 中,点E 、F 分别在边BC 、AD 上,请添加一个条件__________使四边形AECF 是平行四边形(只填一个即可).12.已知345x y z ==,则2x y z x y z +-=-+________. 13.因式分解:224a a -=___.14.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为__________. 15.如图,已知四边形ABCD 是平行四边形,将边AD 绕点D 逆时针旋转60°得到DE ,线段DE 交边BC 于点F ,连接BE .若∠C+∠E =150°,BE =2,CD =23,则线段BC 的长为_____.16.如图,在Rt ABC ∆中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,F 在CA 的延长线上,FDA B =∠∠,6AC =,8AB =,则四边形AEDF 的周长是____________.17.在等腰△ABC 中,三边分别为a 、b 、c ,其中a=4,b 、c 恰好是方程23(21)5()04x k x k -++-=的两个实数根,则△ABC 的周长为__________.三、解答题18.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.19.(6分)如图,已知△ABC 是等边三角形,点D 、B 、C 、E 在同一条直线上,且∠DAE =120°,求证:BC 2=CE•DB .20.(6分)解方程:234320x x -+=(用公式法解).21.(6分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环 中位数/环 众数/环 方差 甲a 7 7 1.2 乙 7b 8 c(1)求a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?22.(8分)()1计算:26546;2232)63-②. ()2海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:()()()(S p p a p b p c =---其中a ,b ,c 为三角形的三边长,2a b c p ++=,S 为三角形的面积).利用海伦公式求5a =3b =,25c =时的三角形面积S .23.(8分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.24.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.25.(10分)如图,直线483y x=-+与x轴、y轴分别相交于点A B、,设M是线段OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点C处。

江苏省淮安市2019-2020学年初二下期末质量检测数学试题含解析

江苏省淮安市2019-2020学年初二下期末质量检测数学试题含解析

江苏省淮安市2019-2020学年初二下期末质量检测数学试题一、选择题(每题只有一个答案正确)1.不等式组3x a x ≥⎧⎨⎩<的整数解有三个,则a 的取值范围是( ) A .﹣1≤a <0 B .﹣1<a ≤0 C .﹣1≤a ≤0 D .﹣1<a <02.ABCD 中,130A C ∠+∠=︒,则D ∠的度数是( )A .65︒B .115︒C .125︒D .130︒3.在矩形ABCD 中,对角线AC ,BD 交于点O ,OE ∥BC 交CD 于E ,若OE =3cm ,CE =2,则矩形ABCD 的周长( )A .10B .15C .20D .224.如图,已知菱形ABCD 的周长是24米,∠BAC =30°,则对角线BD 的长等于()A .3B .3米C .6米D .3米5.下列各式中,能用完全平方公式分解因式的是( )A .2441x x -+B .2631x x ++C .2242x xy y ++D .29181x x ++6.将正比例函数y=2x 的图象向下平移2个单位长度,所得图象对应的函数解析式是( ) A .y=2x-1 B .y=2x+2C .y=2x-2D .y=2x+17.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下: 衬衫尺码 39 40 41 42 43平均每天销售件数10 12 20 12 12该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A .平均数B .方差C .中位数D .众数8.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分9.正比例函数y=kx (k≠0)的函数值y 随着x 增大而减小,则一次函数y=x+k 的图象大致是()A .B .C .D .10.下列各点中,在反比例函数y =6x 图象上的是( ) A .(2,3)B .(﹣1,6)C .(2,﹣3)D .(﹣12,﹣2)二、填空题 11.我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12.已知点(-4,y 1),(2,y 2)都在直线y=ax+2(a <0)上,则y 1, y 2的大小关系为_________ . 13.一个多边形的每个外角都是18,则这个多边形的边数是________.14.若等腰三角形中相等的两边长为10cm ,第三边长为16cm ,那么第三边上的高为______cm . 15.点A (a,b )是一次函数y=x+2与反比例函数4y x=的图像的交点,则22a b ab -=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏淮安市洪泽区八年级第二学期期末数学试卷一、选择题(共8小题).1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列各式计算正确的是()A.÷=4B.+=C.2﹣=D.=×3.反比例函数y=的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.如果x﹣2y=0且x≠0,那么的值等于()A.﹣B.﹣C.D.5.下列调查中适合普查的是()A.调查市场上某种白酒中塑化剂的含量B.了解某火车的一节车厢内冠状病毒感染的人数C.调查鞋厂生产的鞋底能承受的弯折次数D.了解某市居民每周收看新闻联播的次数6.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到黄球的概率是()A.B.C.D.7.矩形一定具有而菱形不一定具有的性质是()A.内角和等于360°B.对角线互相垂直C.对边平行且相等D.对角线相等8.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种二、填空题(共8小题).9.若在实数范围内有意义,则x的取值范围是.10.反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x 轴于点P,如果△MOP的面积为3,那么k的值是.11.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有人.12.有五张形状完全相同不透明的卡片,每张卡片上分别写有0,,﹣1,,,π,将无字一面朝上洗匀后,从中任取一张,取到的是无理数的概率是.13.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.14.若关于x的方程﹣=1无解,则a=.15.若平行四边形ABCD中一内角平分线和某边相交把这条边分成2cm、3cm的两条线段,则平行四边形ABCD的周长是cm.16.观察:a1=1﹣,a2=1﹣,a3=1﹣,a4=1﹣,…,则a2020=(用含的代数式表示).三、解答题17.计算或化简:(1)÷(﹣)×;(2)•(﹣).18.解方程:=﹣3.19.先化简再求值:(﹣1)÷,再从0,﹣1,2中选一个数作为a的值代入求值.20.某学校开展学生读书月活动,为了了解学生每天读书情况,教务处随机抽取了部分学生,了解他们每天读书时长情况,并按时长分为4个等级:A.少于5分钟、B.5分钟到15分钟、C.大于15分钟到30分钟、D.30分钟以上.并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将图(2)补充完整;(3)D所对应的圆心角的度数为°;(4)如果该校有1500名学生,请你根据调查数据估计,该校每天读书时长超过15分钟的学生大约有多少人?21.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=;四边形C2B2C1B1的面积为.22.概率如图,转盘中8个扇形面积都相等,任意转动转盘一次,当转盘停止转动时,估计下列事件发生的可能性大小,写出它们发生的概率,并将这些事件发生的可能性从小到大的顺序排列:(1)P(指针落在标有6的区域内)=;(2)P(指针落在标有9的区域内)=;(3)P(指针落在标有偶数的区域内)=;(4)P(指针落在标有偶数或奇数区域内)=.23.某社团组织全体成员区游览区游览,游览区距出发点120公里.一部分成员乘慢车先行,出发1小时后,另一部分成员乘快车前往,结果,他们同时到达游览区.已知快车速度是慢车的1.5倍,求慢车速度.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.25.如图,一次函数y=kx+1与反比例函数y=的图象有公共点A(1,2).直线l⊥x 轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C,请根据上述条件,解答下列问题:求:(1)k,m的值;(2)一次函数y=kx+1图象与x轴交点D的坐标;(3)求△ABC的面积.26.在平面直角坐标系xOy中,点M的坐标为(a1,b1),点N的坐标为(a2,b2),且a1≠a2,b2≠b1,以MN为矩形的两个顶点,且该矩形的边与坐标轴平行,则称该矩形为M、N的“正直矩形”.如图为MN的“正直矩形”示意图.(1)已知点A的坐标为(2,0),①若点B(4,3),求点A、B的“正直矩形”面积;②当点A与点C“正直矩形”是面积为4的正方形时,直接写出符合条件的所有点C坐标;(2)在(1)的条件下,点D横坐标是m,它是直线y=﹣2x+8上一点,求点D与点A 的“正直矩形”的周长(用含m的式子表示).27.(1)[方法探索]如图1,在等边ABC中,点P在△ABC内,且PA=6,PC=8,∠APC=150°,求PB的长.小敏在解决这个问题时,想到了以下思路:如图1,把△APC绕着点A顺时针旋转60°得到△AP'B,连接PP′,分别证明△AP′P和△BP′P是特殊三角形,从而得解.请在此思路提示下,求出PB的长.解:把△APC绕着点A顺时针旋转60°得到△AP′B,连接PP′.接着写下去:(2)[方法应用]请借鉴上述利用旋转构图的方法,解决下面问题:①如图2,点P在等边△ABC外,且PA=4,PB=3,∠APB=120°,若AB=2,求∠PBC度数.②如图3,在△ABC中,∠BAC=90°,AB=AC=,P是△ABC外一点,连接PA、PB、PC.已如∠APB=45°,PB=2.请直接写出PC的长.参考答案一、填空题(共8小题).1.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、既是轴对称图形又是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:B.2.下列各式计算正确的是()A.÷=4B.+=C.2﹣=D.=×【分析】根据二次根式的除法法则对A进行判断.利用二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对D进行判断.解:A、原式==2,所以A选项错误;B、与不能合并,所以B选项错误;C、原式=,所以C选项正确;D、原式==×,所以D选项错误.故选:C.3.反比例函数y=的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限【分析】直接根据反比例函数的性质进行解答即可.解:∵反比例函数y=中k=6>0,∴此函数的图象位于一、三象限.故选:B.4.如果x﹣2y=0且x≠0,那么的值等于()A.﹣B.﹣C.D.【分析】首先将x﹣2y=0变形为x=2y,然后将其代入所求的分式,进行化简即可.解:由x﹣2y=0且x≠0,得x=2y,且y≠0,∴原式=,故选:C.5.下列调查中适合普查的是()A.调查市场上某种白酒中塑化剂的含量B.了解某火车的一节车厢内冠状病毒感染的人数C.调查鞋厂生产的鞋底能承受的弯折次数D.了解某市居民每周收看新闻联播的次数【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、调查市场上某种白酒中塑化剂的含量,调查具有破坏性,适合抽样调查,故本选项不合题意;B、了解某火车的一节车厢内冠状病毒感染的人数,适合普查,故本选项符合题意;C、调查鞋厂生产的鞋底能承受的弯折次数,适合抽样调查,故本选项不合题意;D、了解某市居民每周收看新闻联播的次数,调查范围广,适合抽样调查,故本选项不合题意.故选:B.6.在一个不透明的盒子里有形状、大小相同的黄球2个、红球3个,从盒子里任意摸出1个球,摸到黄球的概率是()A.B.C.D.【分析】直接利用概率公式求解.解:从盒子里任意摸出1个球,摸到黄球的概率==.故选:A.7.矩形一定具有而菱形不一定具有的性质是()A.内角和等于360°B.对角线互相垂直C.对边平行且相等D.对角线相等【分析】由矩形具有的性质:对角线相等,对角线互相平分;菱形具有的性质:邻边相等,对角线互相平分,对角线互相垂直;即可求得答案.解:∵矩形具有的性质:对角线相等,对角线互相平分;菱形具有的性质:邻边相等,对角线互相平分,对角线互相垂直;∴矩形具有而菱形不一定具有的性质是:对角线相等.故选:D.8.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;∴有4种可能使四边形ABCD为平行四边形.故选:B.二、填空题(每题3分,共24分)9.若在实数范围内有意义,则x的取值范围是x≥﹣2.【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x 轴于点P,如果△MOP的面积为3,那么k的值是6.【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解:由题意得:S△MOP=|k|=3,k=±6,又∵函数图象在一象限,∴k=6.故答案是:6.11.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有5人.【分析】由公式:频率=,得:频数=总人数×频率.解:根据题意,得该班在这个分数段的学生有50×0.1=5(人).12.有五张形状完全相同不透明的卡片,每张卡片上分别写有0,,﹣1,,,π,将无字一面朝上洗匀后,从中任取一张,取到的是无理数的概率是.【分析】0,,﹣1,,,π中共有2个无理数,则从中随机抽取一张卡片,抽到无理数的概率是.解:∵五个数0,,﹣1,,,π中,无理数是,π,∴从中任取一张,取到的数是无理数的概率是:,故答案为:.13.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.14.若关于x的方程﹣=1无解,则a=2或﹣1.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.据此解答可得.解:去分母,得:x(x+a)﹣3(x﹣1)=x(x﹣1),整理,得:(a﹣2)x=﹣3,当a=2时,分式方程无解,当a≠2时,若x=1,则a﹣2=﹣3,即a=﹣1;若x=0,则(a﹣2)×0=﹣3(无解);综上所述,a=2或﹣1,故答案为:2或﹣1.15.若平行四边形ABCD中一内角平分线和某边相交把这条边分成2cm、3cm的两条线段,则平行四边形ABCD的周长是14或16cm.【分析】此题注意要分情况讨论:根据角平分线的定义以及平行线的性质,可以发现一个等腰三角形,即较短的边是2cm或3cm,又较长的边是2+3=5cm,即可得出平行四边形的周长.解:如图所示:∵在平行四边形ABCD中,AB=CD,AD=BC,AD∥BC,∴∠AEB=∠CBE,又∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,(1)当AE=2cm时,则平行四边形的周长=2(2+5)=14(cm);(2)当AE=3cm时,则平行四边形的周长=2(3+5)=16(cm);综上所述,▱ABCD的周长为14或16cm.故答案为:14或16.16.观察:a1=1﹣,a2=1﹣,a3=1﹣,a4=1﹣,…,则a2020=(用含的代数式表示).【分析】先计算得到a1=,a2=1﹣=,a3=1﹣=,a4=1﹣,由此可得a2020=a1=1﹣.解:a1=1﹣=,a2=1﹣=1﹣=,a3=1﹣=,a4=1﹣=,而2020=3×673+1,所以a2020=a1=1﹣=,故答案为:.三、解答题17.计算或化简:(1)÷(﹣)×;(2)•(﹣).【分析】(1)根据二次根式的乘除法法则计算即可;(2)根据分式的混合运算顺序计算即可.解:(1)原式===;(2)•(﹣)====a.18.解方程:=﹣3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:方程两边同乘以(x﹣2)得:1=x﹣1﹣3(x﹣2),整理得出:2x=4,解得:x=2,检验:当x=2时,x﹣2=0,∴x=2不是原方程的根,则此方程无解.19.先化简再求值:(﹣1)÷,再从0,﹣1,2中选一个数作为a的值代入求值.【分析】根据分式的减法和除法可以化简题目中的式子,然后从0,﹣1,2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.解:(﹣1)÷===,∵当a=﹣1或2时,原分式无意义,∴a=0,当a=0时,原式==.20.某学校开展学生读书月活动,为了了解学生每天读书情况,教务处随机抽取了部分学生,了解他们每天读书时长情况,并按时长分为4个等级:A.少于5分钟、B.5分钟到15分钟、C.大于15分钟到30分钟、D.30分钟以上.并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将图(2)补充完整;(3)D所对应的圆心角的度数为72°;(4)如果该校有1500名学生,请你根据调查数据估计,该校每天读书时长超过15分钟的学生大约有多少人?【分析】(1)根据等级B的人数和所占的百分比,可以求得这次被调查的学生总人数;(2)根据(1)中的结果和条形统计图中的数据,可以求得等级C的人数,从而可以将图(2)补充完整;(3)根据条形统计图中的数据,可以计算出等级D对应的圆心角的度数;(4)根据条形统计图中的数据,可以计算出该校每天读书时长超过15分钟的学生大约有多少人.解:(1)这次被调查的学生共有:80÷40%=200(人),故答案为:200;(2)等级为C的学生有:200﹣20﹣80﹣40=60(人),补充完整的图(2)如右图所示;(3)D所对应的圆心角的度数为:360°×=72°,故答案为:72;(4)1500×=750(人),即该校每天读书时长超过15分钟的学生大约有750人.21.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C都是格点.(1)将△ABC绕点A逆时针旋转90°得到△A1B1C1;(2)作△A1B1C1关于点O成中心对称的△A2B2C2;(3)B1B2的长=10;四边形C2B2C1B1的面积为12.【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用网格特点,分别延长A1O、B1O、C1O,使A2O=A1O、B2O=B1O、C2O=C1O,从而得到A2、B2、C2;(3)利用勾股定理计算B1B2的长;利用平行四边形的面积公式计算四边形C2B2C1B1的面积.解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)B1B2的长=2=10;四边形C2B2C1B1的面积=2×6=12.故答案为10,12.22.概率如图,转盘中8个扇形面积都相等,任意转动转盘一次,当转盘停止转动时,估计下列事件发生的可能性大小,写出它们发生的概率,并将这些事件发生的可能性从小到大的顺序排列:(1)P(指针落在标有6的区域内)=;(2)P(指针落在标有9的区域内)=0;(3)P(指针落在标有偶数的区域内)=;(4)P(指针落在标有偶数或奇数区域内)=1.【分析】根据不可能事件的概率为0,必然事件的概率为1解决(2)、(4),然后根据概率公式解决(1)、(3).解:(1)P(指针落在标有6的区域内)=;(2)P(指针落在标有9的区域内)=0;(3)P(指针落在标有偶数的区域内)==;(4)P(指针落在标有偶数或奇数区域内)=1.这些事件发生的可能性从小到大的顺序排列为:指针落在标有9的区域内、指针落在标有6的区域内、指针落在标有偶数的区域内、指针落在标有偶数或奇数区域内.23.某社团组织全体成员区游览区游览,游览区距出发点120公里.一部分成员乘慢车先行,出发1小时后,另一部分成员乘快车前往,结果,他们同时到达游览区.已知快车速度是慢车的1.5倍,求慢车速度.【分析】设出慢车的速度,再利用慢车的速度表示出块车的速度,根据所用时间差为1小时列方程解答.解:设慢车的速度为xkm/h,则快车的速度为1.5xkm/h,﹣=1,解得:x=90,经检验,x=90是原方程的根.答:慢车的速度是90km/h.24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.25.如图,一次函数y=kx+1与反比例函数y=的图象有公共点A(1,2).直线l⊥x 轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C,请根据上述条件,解答下列问题:求:(1)k,m的值;(2)一次函数y=kx+1图象与x轴交点D的坐标;(3)求△ABC的面积.【分析】(1)用待定系数法即可求解;(2)一次函数解析式为y=x+1,令y=0,则x+1=0,解得:x=﹣1,即可求解;(3)N(3,0),则点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,进而求解.解:(1)将A(1,2)代入一次函数解析式得:k+1=2,解得:k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为y=;故k=1,m=2;(2)由(1)知,一次函数解析式为y=x+1,令y=0,则x+1=0,解得:x=﹣1,故点D(﹣1,0);(3)∵N(3,0),∴点B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解析式得:y=,即CN=,BC=4﹣=,A到BC的距离为2,则S△ABC=××2=.26.在平面直角坐标系xOy中,点M的坐标为(a1,b1),点N的坐标为(a2,b2),且a1≠a2,b2≠b1,以MN为矩形的两个顶点,且该矩形的边与坐标轴平行,则称该矩形为M、N的“正直矩形”.如图为MN的“正直矩形”示意图.(1)已知点A的坐标为(2,0),①若点B(4,3),求点A、B的“正直矩形”面积;②当点A与点C“正直矩形”是面积为4的正方形时,直接写出符合条件的所有点C坐标;(2)在(1)的条件下,点D横坐标是m,它是直线y=﹣2x+8上一点,求点D与点A 的“正直矩形”的周长(用含m的式子表示).【分析】(1)①根据“正直矩形”的定义可知矩形的两条邻边长为2、3,即可求得“正直矩形”的面积;②根据正方形的面积为4,求得边长为2,结合A的坐标,即可求得点C坐标;(2)根据题意D的坐标为(m,﹣2m+8),从而得到点D与点A的“正直矩形”的周长为:2|m﹣2|+2|﹣2m+8|,分三种情况讨论求得即可.解:(1)①∵点A的坐标为(2,0),点B(4,3),∴点A、B的“正直矩形”面积为:(4﹣2)×3=6;②∵点A与点C“正直矩形”是面积为4的正方形,∴点A与点C“正直矩形”的边长都为2,∵A的坐标为(2,0),∴C的坐标为:(4,2)或(0,2)或(0,﹣2)或(4,﹣2);(2)∵点D横坐标是m,它是直线y=﹣2x+8上一点,∴D(m,﹣2m+8),∵A的坐标为(2,0),∴点D与点A的“正直矩形”的周长为:2|m﹣2|+2|﹣2m+8|,①当m<2时,点D与点A的“正直矩形”的周长为:2(2﹣m)+2(﹣2m+8)=﹣6m+20;②当2<m<4时,点D与点A的“正直矩形”的周长为:2(m﹣2)+2(﹣2m+8)=﹣2m+12;③当m>4时,点D与点A的“正直矩形”的周长为:2(m﹣2)+2(2m﹣8)=6m﹣20;综上,点D与点A的“正直矩形”的周长为:﹣6m+20或﹣2m+12或6m﹣20.27.(1)[方法探索]如图1,在等边ABC中,点P在△ABC内,且PA=6,PC=8,∠APC=150°,求PB 的长.小敏在解决这个问题时,想到了以下思路:如图1,把△APC绕着点A顺时针旋转60°得到△AP'B,连接PP′,分别证明△AP′P和△BP′P是特殊三角形,从而得解.请在此思路提示下,求出PB的长.解:把△APC绕着点A顺时针旋转60°得到△AP′B,连接PP′.接着写下去:(2)[方法应用]请借鉴上述利用旋转构图的方法,解决下面问题:①如图2,点P在等边△ABC外,且PA=4,PB=3,∠APB=120°,若AB=2,求∠PBC度数.②如图3,在△ABC中,∠BAC=90°,AB=AC=,P是△ABC外一点,连接PA、PB、PC.已如∠APB=45°,PB=2.请直接写出PC的长.【分析】(1)如图1中,把△APC绕着点A顺时针旋转60°得到△AP'B,连接PP′,证明△PP′B是直角三角形即可解解决问题.(2)①如图2中,把△APB绕着点B顺时针旋转60°得到△BCD,连接PD,证明P.D,C共线,利用勾股定理的逆定理证明∠PBC=90°即可解决问题.②如图3中,过点A作AD⊥AP,使得AD=AP,连接PD,BD.证明△DAB≌△PAC (SAS),推出DB=PC,求出BD即可解决问题.解:(1)如图1中,把△APC绕着点A顺时针旋转60°得到△AP'B,连接PP′,由旋转不变性可知,AP′=AP=6,BP′=PC=8,∠APC=∠AP′B=150°,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△AP′P为等边三角形,∴P′P=PA=6,∠AP′P=60°,∴∠PP′B=150°﹣60°=90°在△BP′P中,P′P=6,BP′=8,∴PB===10.(2)①如图2中,把△APB绕着点B顺时针旋转60°得到△BCD,连接PD,∵△ABC是等边三角形,∴AB=BC=2,∠ABC=60°,由旋转不变性可知,AP=CD=4,BP=BD=3,∠APB=∠BDC=120°,∠PBA=∠DBC,∴∠PBD=∠ABC=60°,∴△PBD为等边三角形,∴∠BDP=60°,∴∠BDP+∠BDC=180°,∴P,D,C共线,∵AB=BC=2,PB=3,PC=3+4=7,∴PB2+BC2=PC2,∴∠PBC=90°,∵∠ABC=60°,∴∠ABP=90°﹣60°=30°.②如图3中,过点A作AD⊥AP,使得AD=AP,连接PD,BD.∵△PAD,△ABC都是等腰直角三角形,∴AD=AP,AB=AC,∠PAD=∠BAC,∴△DAB≌△PAC(SAS),∴DB=PC,∵∠APD=∠APB=45°,∴∠DPB=90°,过点B作BH⊥PA于H,∵PB=2,∠BPH=45°,∴BH=PH=,在Rt△ABH中,∵∠AHB=90°,AB=,BH=,∴AH===2,∴AP=AD=3,∴PD=PA=6,在Rt△DPB中,BD===2,∴PC=BD=2.。

相关文档
最新文档