高考数学备考:四种命题及其关系

合集下载

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。

2021届高考数学总复习:命题及其关系、充分条件与必要条件

2021届高考数学总复习:命题及其关系、充分条件与必要条件

2021届高考数学总复习:命题及其关系、充分条件与必要条件一、知识点1.命题(1)命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系。

2.充分条件、必要条件与充要条件的概念1.否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论。

2.区别A是B的充分不必要条件(A⇒B且B⇒/A),与A的充分不必要条件是B(B⇒A且A⇒/B)两者的不同。

3.A是B的充分不必要条件⇔非B是非A的充分不必要条件。

4.充要关系与集合的子集之间的关系,设A={x|p(x)},B ={x|q(x)},(1)若A⊆B,则p是q的充分条件,q是p的必要条件。

(2)若A B,则p是q的充分不必要条件,q是p的必要不充分条件。

(3)若A=B,则p是q的充要条件。

一、走进教材1.(选修2-1P8A组T2改编)命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”。

故选C。

答案 C2.(选修2-1P 10练习T 3(2)改编)“(x -1)(x +2)=0”是“x =1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 若x =1,则(x -1)(x +2)=0显然成立,但反之不成立,即若(x -1)(x +2)=0,则x 的值也可能为-2。

故选B 。

答案 B二、走近高考3.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪⎪⎪x -12<12”是“x 3<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析由⎪⎪⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1。

高三高考数学复习课件1-2命题及其关系充分条件与必要条件

高三高考数学复习课件1-2命题及其关系充分条件与必要条件

跟踪训练1 (1)命题“若x,y都是偶数,则x+y也是偶 数”的逆否命题是( )
A.若x+y是偶数,则x与y不都是偶数 B.若x+y是偶数,则x与y都不是偶数 C.若x+y不是偶数,则x与y不都是偶数 D.若x+y不是偶数,则x与y都不是偶数
(2)设原命题:若a+b≥2,则a,b中至少有一个不小于 1,则原命题与其逆命题的真假情况是( )
【答案】 A
题型一 命题及其关系 【例1】 (1)命题:“若x2<1,则-1<x<1”的逆否命题 是( ) A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1 C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥1
(2)(2018·石家庄模拟)命题“若一个数是负数,则它的 平方是正数”的逆命题是( )
1-m≤1+m, 则1-m≥-2, ∴0≤m≤3.
1+m≤10,
∴当 0≤m≤3 时,x∈P 是 x∈S 的必要条件,即所求 m 的取
值范围是[0,3].
【思维升华】 充分条件、必要条件的应用,一般表现 在参数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的 关系,然后根据集合之间的关系列出关于参数的不等式(或 不等式组)求解.
p是q的_充__分__不__必__要___条件
p⇒q且q⇒ p
p是q的__必__要__不__充__分___条件
p q且q⇒p
p是q的_充__要__条件
p⇔q
p是q的_既__不__充__分__也__不__必__要___条件 p q且q p
【知识拓展】 从集合角度理解充分条件与必要条件
若p以集合A的形式出现,q以集合B的形式出现,即A= {x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以 叙述为

高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件

高考数学复习考点知识与题型专题讲解2---命题及其关系、充分条件与必要条件

高考数学复习考点知识与题型专题讲解命题及其关系、充分条件与必要条件考试要求1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p常用结论充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)“x>1”是“x>0”的充分不必要条件.(√)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)p是q的充分不必要条件等价于q是p的必要不充分条件.(√)教材改编题1.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.2.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等3.方程x2-ax+a-1=0有一正一负根的充要条件是________.答案a∈(-∞,1)解析依题意得a-1<0,∴a<1.题型一命题及其关系例1(1)(2022·玉林质检)下列四个命题为真命题的个数是()①命题“若x>1,则x2>1”的否命题;②命题“梯形不是平行四边形”的逆否命题;③命题“全等三角形面积相等”的否命题;④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题.A .1B .2C .3D .4答案B解析 ①命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,不正确,例如取x =-2.②命题“梯形不是平行四边形”是真命题,因此其逆否命题也是真命题.③命题“全等三角形面积相等”的否命题“不是全等三角形的面积不相等”是假命题. ④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题“若两条直线是异面直线,则这两条直线没有公共点”是真命题.综上可得真命题的个数为2.(2)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________________.答案f (x )=sin x ,x ∈[0,2](答案不唯一)解析设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.教师备选(2022·合肥模拟)设x ,y ∈R ,命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是()A .若x 2+y 2≤2,则x 2≤1或y 2≤1B.若x2+y2>2,则x2≤1或y2≤1C.若x2+y2≤2,则x2≤1且y2≤1D.若x2+y2>2,则x2≤1且y2≤1答案C解析根据否命题的定义可得命题“若x2+y2>2,则x2>1或y2>1”的否命题是“若x2+y2≤2,则x2≤1且y2≤1”.思维升华判断命题真假的策略(1)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练1(1)(2022·安顺模拟)命题“若x,y都是奇数,则x+y是偶数”的逆否命题是() A.若x,y都是偶数,则x+y是奇数B.若x,y都不是奇数,则x+y不是偶数C.若x+y不是偶数,则x,y都不是奇数D.若x+y不是偶数,则x,y不都是奇数答案D解析命题“若x,y都是奇数,则x+y是偶数”的逆否命题是“若x+y不是偶数,则x,y不都是奇数”.(2)命题p:若m≤a-2,则m<-1.若p的逆否命题为真命题,则a的取值范围是________.答案(-∞,1)解析依题意,命题p 的逆否命题为真命题,则命题p 为真命题,即“若m ≤a -2,则m <-1”为真命题,则a -2<-1,解得a <1.题型二 充分、必要条件的判定例2(1)已知p :⎝ ⎛⎭⎪⎫12x <1,q :log 2x <0,则p 是q 的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案B解析由⎝ ⎛⎭⎪⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B解析当a1<0,q>1时,a n=a1q n-1<0,此时数列{S n}单调递减,所以甲不是乙的充分条件.当数列{S n}单调递增时,有S n+1-S n=a n+1=a1q n>0,若a1>0,则q n>0(n∈N*),即q>0;若a1<0,则q n<0(n∈N*),不存在.所以甲是乙的必要条件.教师备选在△ABC中,“AB2+BC2=AC2”是“△ABC为直角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析在△ABC中,若AB2+BC2=AC2,则∠B=90°,即△ABC为直角三角形,若△ABC为直角三角形,推不出∠B=90°,所以AB2+BC2=AC2不一定成立,综上,“AB2+BC2=AC2”是“△ABC为直角三角形”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练2(1)“a>2,b>2”是“a+b>4,ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·成都模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为a⊥b,所以a ·b =0,则(a +b )2=a 2+2a ·b +b 2=a 2+b 2,所以“a ⊥b ”是“(a +b )2=a 2+b 2”的充分条件;反之,由(a +b )2=a 2+b 2得a ·b =0,所以非零向量a ,b 垂直,“a ⊥b ”是“(a +b )2=a 2+b 2”的必要条件.故“a ⊥b ”是“(a +b )2=a 2+b 2”的充要条件.题型三 充分、必要条件的应用例3已知集合A ={x |x 2-8x -20≤0},非空集合B ={x |1-m ≤x ≤1+m }.若x ∈A 是x ∈B 的必要条件,求m 的取值范围.解由x 2-8x -20≤0,得-2≤x ≤10,∴A ={x |-2≤x ≤10}.由x ∈A 是x ∈B 的必要条件,知B ⊆A .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].延伸探究本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,则⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10,解得m ≥9,故m 的取值范围是[9,+∞). 教师备选(2022·泰安检测)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是()A .(-∞,-1]B .(-∞,-1)C .[1,+∞)D .(1,+∞)答案A解析因为q :|x +2a |<3,所以q :-2a -3<x <-2a +3,记A ={x |-2a -3<x <-2a +3},p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以A B ,所以a ≤-2a -3,解得a ≤-1.思维升华 求参数问题的解题策略(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练3(1)使2x ≥1成立的一个充分不必要条件是()A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案B解析由2x ≥1得0<x ≤2,依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案[1,2]解析由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎪⎨⎪⎧a -1≤1,a +1≥2且等号不能同时取到,解得1≤a≤2.课时精练1.(2022·韩城模拟)设p:2<x<3,q:|x-2|<1,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式|x-2|<1得-1<x-2<1,解得1<x<3,因为{x|2<x<3}{x|1<x<3},因此p是q的充分不必要条件.2.(2022·马鞍山模拟)“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是() A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y不全为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案C解析根据命题“若p,则q”的逆否命题为“若綈q,则綈p”,可以写出“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是“若x,y∈R,x,y 不全为0,则x2+y2≠0”.3.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c,得到(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.4.已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.5.(2022·太原模拟)下列四个命题:①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题;②“若ab=0,则a=0”的逆否命题;③“若ac=cb,则a=b”的逆命题;④“若a=b,则a2=b2”的否命题.其中是真命题的为()A.①④B.②③C.①③D.②④答案C解析①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题是“在△ABC中,若∠C>∠B,则AB>AC”,是真命题;②“若ab=0,则a=0”是假命题,所以其逆否命题也是假命题;③“若ac=cb,则a=b”的逆命题是“若a=b,则ac=cb”,是真命题;④“若a=b,则a2=b2”的否命题是“若a≠b,则a2≠b2”,是假命题.6.(2022·青岛模拟)“∀x>0,a≤x+4x+2”的充要条件是()A.a>2B.a≥2 C.a<2D.a≤2 答案D解析因为x>0,所以x+4x+2=x+2+4x+2-2≥2(x+2)×4x+2-2=2,当且仅当x +2=4x +2,即x =0时等号成立,因为x >0,所以x +4x +2>2, 所以“∀x >0,a ≤x +4x +2”的充要条件是a ≤2. 7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题是真命题,则m 的取值范围是()A .(1,2)B .[1,2)C .(1,2]D .[1,2]答案D解析命题的逆命题“若1<x <2,则m -1<x <m +1”成立,则⎩⎪⎨⎪⎧ m +1≥2,m -1≤1,得⎩⎪⎨⎪⎧m ≥1,m ≤2,得1≤m ≤2, 即实数m 的取值范围是[1,2].8.(2022·厦门模拟)已知命题p :x <2m +1,q :x 2-5x +6<0,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .m >12B .m ≥12C .m >1D .m ≥1答案D解析∵命题p :x <2m +1,q :x 2-5x +6<0,即2<x <3,p 是q 的必要不充分条件,∴(2,3)(-∞,2m +1),∴2m +1≥3,解得m ≥1.实数m 的取值范围为m ≥1.9.(2022·延边模拟)若“方程ax 2-3x +2=0有两个不相等的实数根”是真命题,则a 的取值范围是________.答案a <98且a ≠0 解析由题意知⎩⎪⎨⎪⎧Δ=(-3)2-8a >0,a ≠0, 解得a <98且a ≠0. 10.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案x <-1(答案不唯一)解析由于4x =22x ,故2x >22x 等价于x >2x ,解得x <0,使得“2x >4x ”成立的一个充分条件只需为集合{x |x <0}的子集即可.11.直线y =kx +1与圆x 2+y 2=a 2(a >0)有公共点的充要条件是________.答案a ∈[1,+∞)解析直线y =kx +1过定点(0,1),依题意知点(0,1)在圆x2+y2=a2内部(包含边界),∴a2≥1.又a>0,∴a≥1.12.给出下列四个命题:①命题“在△ABC中,sin B>sin C是B>C的充要条件”;②“若数列{a n}是等比数列,则a22=a1a3”的否命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题;④命题“直线l与平面α垂直的充要条件是l与平面α内的两条直线垂直.”其中真命题是________.(填序号)答案①③解析对于①,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,①是真命题;②“若数列{a n}是等比数列,则a22=a1a3”的否命题是“若数列{a n}不是等比数列,则a22≠a1a3”,取a n=0,可知②是假命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题“若a与b的夹角为锐角,则a·b>0”为真命题;④直线l与平面α内的两条直线垂直是直线l与平面α垂直的必要不充分条件,④是假命题.13.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p 和q 中有且只有一个为真命题,则实数a 的取值范围是()A .0<a <1或a ≥2B .0<a <1或a >2C .1<a ≤2D .1≤a ≤2答案C解析若p 和q 中有且只有一个为真命题,则有p 真q 假或p 假q 真,当p 真q 假时,则⎩⎪⎨⎪⎧ -2-a <1<a ≤2,a >0,解得1<a ≤2;当p 假q 真时,则⎩⎪⎨⎪⎧1≤-2-a <2<a ,a >0,无解, 综上,1<a ≤2.14.若“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,则实数m 的取值范围为________. 答案m ≥5解析依题意有x 2-4x +3<0⇒1<x <3,x 2-mx +4<0⇒mx >x 2+4,∵1<x <3,∴m >x +4x ,设f (x )=x +4x (1<x <3),则函数f (x )在(1,2)上单调递减,在(2,3)上单调递增,∴f (1)=5,f (2)=4,f (3)=133,因此函数f (x )=x +4x (1<x <3)的值域为[4,5),∵“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,∴m ≥5.15.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是()A .a >3B .a <3C .a >4D .a <4答案A解析若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案⎝⎛⎦⎥⎤0,255 解析画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d=222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.。

【高中数学,四种命题及其关系】 高中数学命题及关系知识点

【高中数学,四种命题及其关系】 高中数学命题及关系知识点

【高中数学,四种命题及其关系】高中数学
命题及关系知识点
四种命题及其关系高考频度:★★☆☆☆难易程度:★★☆☆☆原命题为“若互为共轭复数,则”,关于逆命题、否命题、逆否命题真假性的判断依次如下,正确的是A.真、假、真B.假、假、真 C.真、真、假 D.假、假、假
【参考答案】B
【解题必备】四种命题的关系及其真假的判断是高考中的一个热点,多以选择题的形式出现,难度一般不大,往往会结合其他知识点(如函数、不等式、三角、向量、立体几何等)进行综合考查.常见的解法如下:
(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.即命题表述形式原命题若p,则q 逆命题若q,则p 否命题若,则逆否命题若,则(2)①给出一个命题,要判断它是真命题,需经过严格的推理证明;
而要说明它是假命题,则只需举一反例即可.②由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.
即 1.设有下面四个命题:若复数满足,则;
:若复数满足,则;
:若复数满足,则;
:若复数,则. 其中的真命题为 A. B. C. D. 2.设,命题“若,则方程有实根”的逆否命题是 A.若方程有实根,则 B.若方程有实根,则 C.若方程没有实根,则 D.若方程没有实根,则 1.【答案】B
【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.学-科网 2.
【答案】D
【解析】原命题的逆否命题是:若方程没有实根,则,故选D.。

高考数学总结归纳点拨 四种命题要点回顾

高考数学总结归纳点拨 四种命题要点回顾

四种命题要点回顾四种命题及其关系虽是高考命题的内容之一,但一般不单独命题,主要以选择题和填空题的形式出现,往往和其它知识结合起来进行考查。

1.四种命题:把命题“若p则q”作为原命题,对它的条件p和结论q作“换位”和“换质(否定)”,又可以得到三种不同形式的命题。

关于逆命题,否命题与逆否命题,也可以如下表述:(1)p、q“换位”:交换原命题的条件和结论,所得的命题是逆命题;(2)p、q“换质”:同时否定命题的条件和结论,所得的命题是否命题;(3)p、q“换位”且“换质”:交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题。

2.四种命题之间的关系:互逆命题,互否命题与互为逆否命题都是说两个命题的关系,把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题,否命题与逆否命题。

四种命题之间的关系如图所示:3.四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互否命题,它们的真假性没有关系。

例1 判断命题“若0m >,则20x x m +-=有实数根”的逆否命题的真假。

分析;可以直接进行逻辑推理判断,可以从逆否命题直接判断,也可以先判断原命题的真假,然后利用原命题与逆否命题的等价关系使问题获解。

解法1:∵0m >,∴40m >,∴410m +>。

∴方程20x x m +-=的判别式410m ∆=+>,∴20x x m +-=有实数根,∴原命题“若0m >,则20x x m +-=有实数根”为真。

又因原命题与它的逆否命题等价,所以“若0m >,则20x x m +-=有实数根”的逆否命题也为真。

评注:本解法是直接进行逻辑推理判断的。

解法2:原命题“若0m >,则20x x m +-=有实数根”的逆否命题为“若20x x m +-=无实数根,则0m ≤”。

∵20x x m +-=无实数根,∴410m ∆=+<,∴104m <-≤, ∴“若20x x m +-=无实数根,则0m ≤”为真。

高考高中数学四种命题的相互关系

高考高中数学四种命题的相互关系

原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互四种命题的相互关系教学目标:1.熟练四种命题之间的关系,及四种命题的真假性之间的关系,并能利用四种命题真假性之间的内在联系进行推理论证2.培养学生简单推理的思维能力.教学重点:四种命题之间的相互关系即真假性之间的联系教学难点:利用真假性之间的内在联系进行推理论证.授课类型:新授课教具准备:多媒体课件.教学过程:一.复习引入:1.二.新课教授1.四种命题间的相互关系以下四个命题中,〔1〕假设f (x) 是正弦函数,那么f (x) 是周期函数;〔2〕假设f (x) 是周期函数,那么f (x) 是正弦函数;〔3〕假设f (x) 不是正弦函数,那么f (x) 不是周期函数;〔4〕假设f (x) 不是周期函数,那么f (x) 不是正弦函数;命题〔1〕与命题〔2〕〔3〕〔4〕之间的关系我们已经了解,那么任意两个命题间的关系是: 〔老师引导—学生答复〕归纳:原命题、逆命题、否命题 和逆否命题之间的关系:2.四种命题真假性之间的关系〔1〕讨论:①例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系: 〔学生答复〕:原命题〔1〕为真其逆命题〔2〕为假其否命题〔3〕为假其逆否命题〔4〕为真发现有以下规律:②〔探究中〕以“假设x2-3x +2=0,那么x =2”为原命题,写出其逆命题,否命题及逆否命题,并判断真假性。

〔学生答复〕:原命题为:假设x2-3x +2=0,那么x =2,为假其逆命题为:假设x =2,那么x2-3x +2=0,为真其否命题为:假设x2-3x +2≠0,那么x ≠2,为真其逆否命题为:假设x ≠2,那么x2-3x +2≠0,为假发现有另外的规律,③再举其它例子:写出“同位角相等,两直线平行〞的逆命题,否命题及逆否命题,并判断真假性。

〔学生答复〕: 原命题为:同位角相等,两直线平行,为真其逆命题为:两直线平行,同位角相等,为真其否命题为:同位角不相等,两直线不平行,为真其逆否命题为:两直线不平行,同位角不相等,为真发现还存在以下规律:④把以上命题改成:同位角不相等,两直线平行,写出其逆命题,否命题及逆否命题,并判断真假性。

高考数学总复习命题及其关系充分条件与必要条件PPT课件

高考数学总复习命题及其关系充分条件与必要条件PPT课件
若 a=1,b= 3,则“A=30°”是“B=60°”的必要不充分条件. 其中真.命题的序号是________.
[自主解答] (1)“存在集合 C 使得 A ⊆C,B ⊆∁UC”⇔ “A ∩B=∅”.故 C 正确.
(2)当数列{an}的首项 a1<0 时,若 q>1,则数列{an}是递减 数列;当数列{an}的首项 a1<0 时,要使数列{an}为递增数列,则 0<q<1,所以“q>1”是“数列{an}为递增数列”的既不充分也 不必要条件.故选 D.
提示:两者说法不相同.“p 的一个充分不必要条件是 q” 等价于“q 是 p 的充分不必要条件”,显然这与“p 是 q 的充 分不必要条件”是截然不同的.
1.“x<0”是“ln(x+1)<0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析:选 B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1, 0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不 充分条件.
[答案] (1)C (2)D (3)①④
充要条件问题的常见类型及解题策略 (1)判断指定条件与结论之间的关系.解决此类问题应分三 步:①确定条件是什么,结论是什么;②尝试从条件推结论, 从结论推条件;③确定条件和结论是什么关系. (2)探究某结论成立的充要、充分、必要条件.解答此类题 目,可先从结论出发,求出使结论成立的必要条件,然后再验 证得到的必要条件是否满足充分性. (3)充要条件与命题真假性的交汇问题.依据命题所述的充 分必要性,判断是否成立即可.
B.若 x≤1,则 x>0
C.若 x≤1,则 x≤0
D.若 x<1,则 x<0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高考数学备考:四种命题及其关系
1、命题的概念
一般地,在数学中,我们把用语言、符号或式
子表达的,可以判断真假的陈述句叫做命题.
2、命题的形式
命题的基本形式为“若p,则q”.
其中p叫做命题的条件,q叫做命题的结论.
创设情境
思考下列四个命题中,命题(1)与命题(2) (3)
(4)的条件和结论之间分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
思考一:命题(1)和命题(2)的条件和结论有什么内在联系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
互逆命题:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。

其中一个命题叫做原命题,另一个叫做原命题的逆命题。

也就是说,把一个命题的条件和结论互换位置就是它的逆命题.
思考二:命题(1)和命题(3)的条件和结论有什么内在联系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
互否命题:如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。

如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。

也就是说,把一个命题的条件和结论同时否定就是它的否命题.
思考三:命题(1)和命题(4)的条件和结论有什么内在联系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

互为逆否命题:如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。

如果把其中的一个命题叫做原命题,那么另一个叫
做原命题的逆否命题。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

也就是说,把一个命题的条件和结论同时否定,并互换位置就是它的逆否命题.。

相关文档
最新文档