3.3.正方格子的布里渊区p10
布里渊区图示

a 3 正格子原胞基矢 a1 ai, a2 i aj 2 2 取单位矢量k垂直于i, j 则,a1,a2和k构成的体积 3 2 a 2
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
倒格子原胞的基矢为 2 (a2 k ) 2 2 b1 i j a 3a 2 (k a1 ) 4 b2 j 3a
的垂直平分线和第一 布里渊区边界所围成 —— 第二布里渊区大小
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
第三布里渊区
由4个倒格点
的垂直平分线和第二布 里渊区边界边界所围成 第三布里渊区大小
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
第一、第二和第三布里渊区
§3-4 三维晶格的振动 ——
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
选一个倒格点为原点,原点的最近邻倒格矢有6个,分别是
b1 , b2 , (b1 b2 )
§3-4 三维晶格的振动 —— 晶格振动与晶体的热学性质
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
晶格振动与晶体的热学性质
正方格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
正方格子其它布里渊 和第一布里渊 区重合
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子的第一布里渊区
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形状
布里渊区通俗理解

布里渊区通俗理解-概述说明以及解释1.引言1.1 概述布里渊区是一个在物理和数学领域中具有重要意义的概念,它主要用来描述在给定条件下某一物体或物体集合的邻域。
布里渊区的概念源于法国物理学家亚历山大·布里渊的研究成果,他发现了一种描述物体在空间中的局部特性的方法。
布里渊区的概念不仅在物理学领域中被广泛应用,同时也在计算机图形学、材料科学、生物学等领域中具有重要作用。
在本文中,我们将深入探讨布里渊区的概念、应用以及重要性,希望能够对读者有所启发和帮助。
通过了解布里渊区的相关知识,我们可以更好地理解物体在空间中的局部结构和特性,为我们探索和应用这些知识提供了理论基础。
在日常生活中,布里渊区的概念也有着重要的意义,可以帮助我们更好地理解世界的复杂性,促进科学技术的发展和创新。
展望未来,布里渊区的研究和应用将会不断深化和拓展,为人类社会的进步和发展做出更大的贡献。
1.2 文章结构本文将分为三个主要部分来讨论布里渊区的通俗理解。
在引言部分,我们将简要介绍布里渊区的概念、文章结构和撰写本文的目的。
在正文部分,我们将详细探讨布里渊区的概念,其在实际应用中的情况以及在各领域中的重要性。
最后,在结论部分,我们将总结布里渊区的作用,讨论其在日常生活中的意义,并展望未来布里渊区的发展方向。
通过这样的结构安排,读者可以系统地了解布里渊区的相关知识,并深入理解其在现实生活中的应用和意义。
1.3 目的2.正文2.1 布里渊区的概念布里渊区(英文名为Boulevard区)是一种在计算机科学领域中常用的概念,用于描述一种数据结构的布局方式。
布里渊区是指内存中的一段连续地址空间,通常用来存储程序代码、全局变量和静态变量。
在操作系统中,布里渊区还可以用于存放动态链接库和共享库的代码段和数据段。
布里渊区的特点是具有一定的大小和位置,可以在运行时被操作系统动态地分配和回收。
布里渊区的概念主要用于优化内存管理和提高程序的执行效率。
布里渊区图示

a 3 正格子原胞基矢 a1 = ai, a2 = i + aj 2 2 取单位矢量k垂直于i, j 则,a1,a2和k构成的体积 3 2 Ω= a 2
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
倒格子原胞的基矢为 2π (a2 × k ) 2π 2π b1 = i− j = Ω a 3a 2π (k × a1 ) 4π b2 = = j Ω 3a
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
正方格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
正方格子其它布里渊区的形状
—— 每个布 里渊区经过适 当的平移之后 和第一布里渊 区重合
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子的第一布里渊区
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形成
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
二维斜格子其它布里渊区的形状
—— 每个布里 渊区经过适当 的平移之后和 第一布里渊区 重合
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
平面正三角形,相邻原子间距为 求正格矢和倒格矢 求正格矢和倒格矢, 平面正三角形,相邻原子间距为a,求正格矢和倒格矢,画 出第一和第二布里渊区
的垂直平分线和第一 布里渊区边界所围成 —— 第二布里渊区大小
§3-4 三维晶格的振动 ——
晶格振动与晶体的热学性质
第三布里渊区 由4个倒格点 个倒格点
的垂直平分线和第二布 里渊区边界边界所围成 第三布里渊区大小
§3-4 三维晶格的振动 ——
23布里渊区

将任一布里渊 区的各部分平移适 当的位矢就可合并 成第一布里渊区
D
O A
C
B
由于倒格子的周期性,很多时候我们 只需关心第一布里渊区
2
固体物理导论
第 2 章 晶体衍射和倒格子
2.3 布里渊区
2. 衍射条件的布里渊区诠释
2k G G 2
D
GD
k1
1 1 2 k G G 2 2
体心立方
x
a3
Ω a1 (a2 a3 ) 1 3 a 2
Ω b1 (b2 b3 )
*
4π a
2( 2 π ) 3 / a 3
5
固体物理导论
第 2 章 晶体衍射和倒格子
2.3 布里渊区
倒格矢可以表示为
G v1b1 v2b2 v3b3 4π 2π [(v2 v3 )i (v3 v1 ) j (v1 v2 )k ] a a
最短的倒格矢是以下12个矢量
2π 2π 2π ( j k ); ( k i ); (i j ) a a a
第一布里渊区由上述12个矢量的 垂直平分面围成,是一个正十二面体
6
固体物理导论
第 2 章 晶体衍射和倒格子
2.3 布里渊区
体心立方晶格的布里渊区中一些 具有较高对称性的点或轴的坐标
其中
2π X: (1,0,0) a 2π 1 1 1 L: ( , , ) a 2 2 2 2π 3 3 K: ( , ,0 ) a 4 4 1 3 0 1, 0 , 0 2 4
10
k2
O
GC
C
任何从原点到 G 的垂直平分面的矢量都满足衍射 条件,这些平面正是布里渊区的边界。布里渊区包含 了所有能在晶体上发生布拉格反射的波的波矢 k
布里渊区

布里渊区
主讲人: 主讲人:许本超 答疑人: 答疑人:李海龙 封福明
固体物理 固体物理
内容
• • • • • • • • • 1.倒易空间 2. 布里渊区基本概念 3. 典型格子的第一布里渊区 4.布里渊区的几何性质 5. 衍射条件在布里渊区诠释 6.布里渊区中的K点 7.布里渊区和能带的关系 8.布里渊区和费米面 9.MS计算能带实例图
14
固体物理 固体物理
7.2布里渊区和能带的关系
能带论的基本出发点: 能带论的基本出发点 固体中的电子可以在整个固体中运动 电子在运动过程中要受晶格原子势场的作用 由于周期场的微扰, 由于周期场的微扰,
E
E6
E(k)函数在布里渊区 函数在布里渊区
允许带
E5
边界k=± 边界 ±nπ/a处出现 处出现
3.2体心立方晶格的F.B.Z 体心立方晶格的F.B.Z 体心立方晶格的 体心立方晶格的倒格子为面心立方晶格
可以看出, 可以看出,面心立方倒 格子(即体心立方晶格) 格子(即体心立方晶格) 的F.B.Z为正菱形十二 为正菱形十二 面体(非正十二面体) 面体(非正十二面体)
8
固体物理 固体物理
3.3面心立方晶格的F.B.Z 面心立方晶格的 面心立方晶格的F.B.Z 面心立方晶格的倒格子为体心立方晶格
如右图所示, 如右图所示,黑框为体心立方 倒格子,取其体心(黄点) 倒格子,取其体心(黄点)作 为原点,红点(8个 为原点,红点(8个)为此原 点最相邻的倒格点,蓝点(6 点最相邻的倒格点,蓝点( 个)为此原点次相邻倒格点 可以看出, 可以看出,体心立方倒 格子(即面心立方晶格) 格子(即面心立方晶格) 的F.B.Z为截角的八面体 为截角的八面体 十四面体) (十四面体)
30 布里渊区的知识

*简谐近似是晶格动力学处理许多物理问题的出发点!
* 对热膨胀和热传导等问题必须考虑高阶项 --- 特别是3次和4次项的作用 → 这称为非谐项或非谐作用 – V非谐 * 具体处理问题时,把非谐项看成是对起主要作用 的简谐项的微扰!
简正振动模式:在简谐近似下, 由N个原子构成的晶体的晶格振 动, 可变为3N个独立的谐振子的振动. 每个谐振子的振动模式称 为简正振动模式 简正振动模式对应着所有的原子都以该模式的频率做振动, 它是 晶格振动模式中最简单最基本的振动方式. 原子的振动 —格波振动通常是这3N个简正振动模式的线形迭加.
2
a
i
倒格矢的垂直平分面 构成第一布里渊区
a
O
一维晶格点阵
b
-π/a
O
倒格子点阵
π/a
二维晶格点阵的布里渊区 取正格子基矢为 a1 ai 和a2 a j 可求出倒格子基矢为
2 2 b1 i 和b2 j a a
作原点0至其它倒格点连线的中垂线,它们将二维倒 格子平面分割成许多区域
第三章 晶格动力学和 晶体的热学性质
固体的许多性质都可以基于静态模型来理解(即晶体点阵模型), 即认为构成固体的原子在空间做严格的周期性排列,在该框架内, 我们讨论了X 光衍射发生的条件,求出了晶体的结合能,以后还将 在此框架内,建立能带论,计算金属大量的平衡性质。然而它只 是实际原(离)子构形的一种近似,因为原子或离子是不可能严 格的固定在其平衡位置上的,而是在固体温度所控制的能量范围 内在平衡位置附近做微振动。只有深入地了解了晶格振动的规律, 更多的晶体性质才能得到理解。如:固体热容,热膨胀,热传导, 融化,声的传播,电导率,压电现象,某些光学和介电性质,位 移性相变,超导现象,晶体和辐射波的相互作用等等。
固体物理 讲习题参考答案

解:(1)由平衡条件
∂U ∂r
r0
=
mα r m+1
−
nβ r n+1
=
0 ,得
1
平衡间距
r0
=
nβ mα
n−m
(2)将 U(r)理解为晶体中所有其他原子对某一个原子的相互作用
则系统总的内能为对所有原子求和
U
total
2
r0 ∝ q1−n
,
U0
∝
q2 r0
当 q → 2q ,
r0′
=
4−
1 n−1
r0
因为晶格常数 a ∝ r0 ,故晶格常数满足相同的变化规律
n
结合能 W ′ = −U0′ = 4n−1W0
2.3.若一晶体的相互作用能可以表示为
U (r) = − α + β rm rn
试求(1)平衡间距 r0 (2)结合能 W(单个原子的) (3)体弹性模量 (4)若 m=2,n=10,r0=3A,W=4eV,求α,β值。
1.11
证明六角晶体的介电常数张量为
0
ε2
0
0 0 ε2
证
1:六角晶体,设介电常数为
ε ε
xx yx
ε xy ε yy
ε ε
xz yz
,取坐标架如图示
ε zx ε zy ε zz
选电场方向在 x 轴方向,有
Dx ε xx
Dy
0
− sin 60
,可得
ε yy
= ε zz
cos 60
第六讲
2.2.讨论使离子电荷加倍所引起的对 NaCl 晶格常数及结合能得影响。(排斥势看作不变) 解:NaCl 为离子晶体,系统内能可写为
简约布里渊区定义

简约布里渊区定义布里渊区是一种数学概念,它在函数分析和特别是测度论中扮演着重要的角色。
布里渊区是指由笛卡尔坐标系中的一个原点围成的、具有一些特殊性质的平面区域。
它是由布里渊基矢量所生成的晶格的一个基本单元。
为了更好地理解布里渊区的定义,我们需要回顾一些基础知识。
在晶体学中,布拉伐格子是一个周期性排列的点阵,用来描述晶体的结构。
而布里渊区就是由布拉伐格子所生成的晶格的倒格子所围成的区域。
布拉伐格子中的每个点都对应着倒格子中一个向量,这个向量被称为布里渊基矢量。
倒格子中相邻两个基矢量之间的距离被称为布里渊格矢。
简约布里渊区是指由布里渊基矢量所生成的布里渊格点再经过一系列的简约操作得到的最小重复单元。
简约操作包括平移、合并、旋转等操作,通过这些操作可以得到一个具有最小对称性的区域。
简约布里渊区具有许多重要的性质,如对称性、体积等,这些性质对于研究材料的电子结构等问题非常关键。
在实际应用中,布里渊区的定义对于理解材料的能带结构、光学性质等起着重要的作用。
以固体电子学为例,能带结构是描述材料中电子的能量与动量关系的重要概念。
通过布里渊区的划分,我们可以将整个能带结构分割成一些小的区域,这些区域被称为能带。
布里渊区对于分析和理解能带结构中的各种物理现象非常有帮助。
另外,布里渊区还在光学中发挥着重要的作用。
在光学中,布里渊区和能带结构密切相关,通过布里渊区的划分,我们可以得到材料在不同频率下的光学性质。
布里渊区的对称性也决定了材料对不同频率光的响应情况,这对于光学器件的设计和制造非常重要。
总结起来,简约布里渊区定义了由布里渊基矢量所生成的布里渊格点经过一系列简约操作得到的最小重复单元。
布里渊区在函数分析和测度论中具有重要的地位,它对于理解材料的能带结构、光学性质等起着关键作用。
通过对布里渊区的研究,我们可以更好地理解材料的物理性质,并应用于材料科学和工程等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—— 3n个线性齐次方程
—— 系数行列式为零条件,得到3n个 j ( j 1, 2, 3, 3n)
长波极限
3个
——
趋于一致
—— 三个频率对应的格波描述不同原胞之间的相对运动 —— 3支声学波
—— 3n-Байду номын сангаас支长波极限的格波描述一个原胞中各原子间的相 对运动 —— 3n-3支光学波
结论:晶体中一个原胞中有n个原子组成,有3支声学波和 3n-3支光学波
第三布里渊区 由4个倒格点
的垂直平分线和第二布 里渊区边界边界所围成 第三布里渊区大小
第一、第二和第三布里渊区
正方格子其它布里渊区的形成
正方格子其它布里渊区的形状
—— 每个布 里渊区经过适 当的平移之后 和第一布里渊 区重合
二维斜格子的第一布里渊区
二维斜格子其它布里渊区的形成
二维斜格子其它布里渊区的形状
三维晶格中的波矢
波矢
—— 3个系数
—— 波矢空间的3个基矢 —— 倒格子基矢
采用波恩-卡曼边界条件
波矢
q
h1 N1
b1
h2 N2
b2
h3 N3
b3
波矢空间一个点占据的体积
—— 倒格子原胞体积
状态密度
N v0 *
N b1 (b2 b3)
Nv0
(2 )3
V
(2 )3
波矢的取值_ h1h2h3 —— 原子振动波函数
—— 每个布里 渊区经过适当 的平移之后和 第一布里渊区 重合
§3.4 三维晶格的振动 三维复式格子 —— 一个原胞中有n个原子
原子的质量 晶体的原胞数目 第l个原胞的位置 原胞中各原子的位置
各原子偏离格点的位移
第k个原子运动方程
—— 原子在三个方向上的位移分量 —— 一个原胞中有3n个类似的方程 方程右边是原子位移的线性齐次函数,其方程的解
将方程解代回3n个运动方程
]i
(
q)
i (q) —— 晶格振动能量量子
—— 声子_Phonon
二维布里渊区 —— 正方格子的布里渊区 正方格子的基矢
倒格子原胞基矢
第一布里渊区 倒格子空间离原点最近的四个倒格点 垂直平分线方程
—— 第一布里渊区 大小
第二布里渊区 由4个倒格点
的垂直平分线和第一 布里渊区边界所围成 —— 第二布里渊区大小
波矢改变一个倒格矢
—— 不同原胞之间位相联系
—— 原子振动状态一样
k的取值限制在一个倒格子原胞中 —— 第一布里渊区
——
个取值
对应于一个波矢q 3支声学波和3n-3支光学波
总的格波数目 N (3 3n 3) 3nN
—— 晶体中原子的坐标数目
晶格振动总的能量
E
3nN
[ni (q)
i 1
1 2