倒格子和布里渊区
合集下载
SSP第3章倒格子布里渊110827-P

a1 =
FCC (正基矢) a (j + k) 2 a a 2 = (k + i ) 2 a a 3 = (i + j) 2
可见 BCC 倒格子是一个边长为4π/a 的FCC格子。 倒格子原点最近邻有十二个格点。 所以BCC晶格第一布里渊区是一个 正十二面体。
17
3.5 晶体的X射线衍射
所以有 eiK h ⋅R l = 1
h
h
h
Q R l 是正格矢, ∴ K h应是 R l 的倒格矢
F (Kh)是物理量 Γ (r) 在傅氏 空间的表示形式
即:物理量在正格子中表示和在倒格子中表示满足傅氏变换关系; 正空间周期性物理量的傅氏空间就是其倒空间; 正格子和倒格子互为傅氏变换。
10
3Байду номын сангаас3 倒格子的性质
13
3.4 布里渊区
3.4.2 布里渊区界面方程
令,Kh为倒格矢,如下图, A为Kh的垂直平分面 k为倒空间的矢量 则,A上所有点都应满足
1 K h2 2 证明:由图可见, k ⋅Kh = Q K 1 k ⋅ h = Kh Kh 2 1 Kh 2
A
1 Kh 2
0 k
k’
Kh
∴
k ⋅Kh =
1 2 Kh 2
可以验证,当波矢Kh取为
K h = h1b1 + h2b 2 + h3b 3, h1h2 h3为整数
其中 b1,b2,b3 由 验证:
a i ⋅b j = 2πδ ij
确定,则以上条件成立。
K h ⋅ R l = (h1b1 + h2b 2 + h3b 3 ) ⋅ (l1a1 + l2a 2 + l3a3 )
FCC (正基矢) a (j + k) 2 a a 2 = (k + i ) 2 a a 3 = (i + j) 2
可见 BCC 倒格子是一个边长为4π/a 的FCC格子。 倒格子原点最近邻有十二个格点。 所以BCC晶格第一布里渊区是一个 正十二面体。
17
3.5 晶体的X射线衍射
所以有 eiK h ⋅R l = 1
h
h
h
Q R l 是正格矢, ∴ K h应是 R l 的倒格矢
F (Kh)是物理量 Γ (r) 在傅氏 空间的表示形式
即:物理量在正格子中表示和在倒格子中表示满足傅氏变换关系; 正空间周期性物理量的傅氏空间就是其倒空间; 正格子和倒格子互为傅氏变换。
10
3Байду номын сангаас3 倒格子的性质
13
3.4 布里渊区
3.4.2 布里渊区界面方程
令,Kh为倒格矢,如下图, A为Kh的垂直平分面 k为倒空间的矢量 则,A上所有点都应满足
1 K h2 2 证明:由图可见, k ⋅Kh = Q K 1 k ⋅ h = Kh Kh 2 1 Kh 2
A
1 Kh 2
0 k
k’
Kh
∴
k ⋅Kh =
1 2 Kh 2
可以验证,当波矢Kh取为
K h = h1b1 + h2b 2 + h3b 3, h1h2 h3为整数
其中 b1,b2,b3 由 验证:
a i ⋅b j = 2πδ ij
确定,则以上条件成立。
K h ⋅ R l = (h1b1 + h2b 2 + h3b 3 ) ⋅ (l1a1 + l2a 2 + l3a3 )
17 倒格子

2 π a a 2 3 a b a 1 1 1 Ω
0 i j
2π
2 π a a 3 1 a b a 1 2 1 0 Ω
2.
R π (为整数) l K h 2
K h b h b h b h 1 2 3 1 2 3
其中 Rl和 Kh分别为正格点位矢和倒格点位矢。
R l a l a l a l 1 2 3 1 2 3
h b h b h b ) 1 2 3 l a l a l a ) ( Rl Kh ( 1 2 3 1 2 3 1 2 3
2 π ( l h l h l h ) 1 1 2 2 3 3
2π
3.
3 2 π Ω*
2π d h1h2h3
。
h b h b h b (1)证明 K h 1 2 3 与晶面族(h1h2h3)正交: 1 2 3
设ABC为晶面族(h1h2h3)中离原点最近的晶面,
a1 a 2 a 3 ABC在基矢 a1 , a 2 , a 3上的 截距分别为 , , 。 h1 h2 h3
a
i a 2 a 2
j a 2 a 2
a a a k a i 2 2 j 2 a a a 2 a 2 2 2 2 a2 a2
a a a Байду номын сангаас 2 k 2 2 a a a 2 2 2
2 2 π 2 πa 2 π b a a 2 3 j k j k 1 3 Ω a 2 a 2
是该晶面的法线方向,它的大小则为该晶面族面间距倒数的2 倍。
晶体结构
正格子
倒格子 1.
1. R n a n a n a n 1 2 3 1 2 3
倒格子与布里渊区

4、面心立方格子的布里渊区
(1)面心立方格子的格子常数(立方边长)为a,倒格子为体心 立方,倒格子常数(立方边长)为4/a。 (2)第一布里渊区为截角八面体(十四面体) (3) 几个点的坐标 : 2/a(0,0,0) X: 2/a(1,0,0) L: 2/a(-½,½ ,½ ) K: 2/a(0,¾,¾ )
2、倒格子
布拉维格子的基矢a1、 a2 、a3为正格子基矢,称Rl=l1a1+l2a2+l3a3决 定的空间为正格子,=a1· (a2×a3)为正格子原胞体积。 × 2 × × 定义 1 2 3 3 1
b
1
= 2π a a Ω
为倒格子基矢,由Kh=h1b1+h2b2+h3b3决定的空间为倒格子, =b1· (b2×b3)为倒格子原胞体积。 正格子空间的长度量纲是m,倒格子空间的长度量纲为m-1。
3、两种格子原胞间的关系
Ω
*
2π =
Ω
3
倒格子原胞体积与正格子原胞体积存在倒数关系。
4、正格子与倒格子互为对方的倒格子 根据倒格子基矢的定义,倒格子的倒格子基矢
b
* 1
×b b = 2π
2
3
Ω*
a1
同理,可以证明 b2*=a2, b3*=a3 倒格子的倒格子就是正格子。
5、正格子(h1h2h3)晶面族与倒格矢Kh正交 Kh•CA=(h1b1+h2b2+h3b3) •(a1/h1-a3/h3)=0 Kh•CB=(h1b1+h2b2+h3b3) •(a2/h2-a3/h3)=0
矢量的乘积
标量积或点积 A· B=|A||B|cos(A,B) 矢量积或叉积 任何两个矢量A和B的矢量积是一个矢量,它的大小等于这两个矢 量作成的平行四边形的面积,方向与这个平行四边形所在的平面的 垂线方向平行。 |AB|=|ABsin(A,B)|
布里渊区gamma点的物理意义

布里渊区gamma点的物理意义
【原创版】
目录
1.布里渊区的定义与物理意义
2.布里渊区与倒格子的关系
3.γ点的定义及其在布里渊区中的作用
4.γ点在晶体电子态中的应用
5.总结
正文
布里渊区是固体物理学中的一个重要概念,它描述了晶体中电子状态的分布情况。
布里渊区可以用波矢 k 来描述,其中 kx、ky、kz 构成一个 k 空间(属于倒格子)。
晶体电子的所有状态对应的全部 k,都将均匀分布在倒格子的一个 W-S 原胞中,这个原胞就称为布里渊区。
布里渊区与倒格子有密切的关系。
倒格子是实际空间中晶格点的倒数空间,而布里渊区是描述电子状态的虚拟空间。
在波矢空间中,倒格子的体积就是第一布里渊区所围成的空间的体积。
也就是说,它们实际上是同一个空间,只是基矢不同而已。
在布里渊区中,γ点是一个重要的概念。
γ点是倒格子中的一个特殊点,它与晶体中的电子态有直接的关系。
γ点在布里渊区中的作用是描述电子态的能量和动量。
通过γ点,我们可以了解电子在晶体中的行为和性质。
γ点在晶体电子态中的应用非常广泛。
在晶体的能带理论中,各种电子态按照它们的波矢分类。
通过γ点,我们可以研究电子态的能量分布、电子态的相互作用以及电子态的激发等物理现象。
此外,γ点还可以用于分析晶体的光学性质、电学性质以及磁学性质等。
总之,布里渊区和γ点是固体物理学中非常重要的概念。
1.6 倒格子和布里渊区

第一章 晶体结构
第五节 七个晶系和十四种布拉菲格子
根据晶体的对称性特征划分: 32点群; 230种空间群 7个晶系 14种布拉菲格子
晶系 三斜 单斜 正交 三方 四方
对称性特征 只有1或 i 唯一2或 m 三个2或 m 唯一3 或 唯一4 或
第一章 晶体结构 a b c
C1、 Ci a b c ==90º C2、CS、C2h D2、C2V、D2h C 3 、 S6 、 D 3 C3V、D3d C4、S4、C4h、D4 C4V、D2d、D4h
晶胞参数
所属点群
Bravais格子 简单三斜 简单单斜 底心单斜 简单、底心、体 心、面心正交 三方 简单四方 体心四方 六方
第五节 七个晶系和十四种布拉菲格子
a b c = == 90º a=b=c = = 90º a=b c = == 90º
六方
唯一6 或
a=b c C6、C3h、C6h、D6、 = = 90º =120º C6V、D3h、D6h
第一章 晶体结构
第六节 倒格子和布里渊区
① ② O
③
二维正方格子的布里渊区
二维正方格子的布里渊区
①
②
二维正方格子的布里渊区
①
②
第一章 晶体结构
第六节 倒格子和布里渊区
二维正方格子的10个布里渊区
பைடு நூலகம்
第一章 晶体结构
第六节 倒格子和布里渊区
二维六方格子的10个布里渊区
第一章 晶体结构
第六节 倒格子和布里渊区
立方
四个3
a=b=c = == 90º
T、Th、Td O、 Oh
简单、体心、面 心立方
第一章 晶体结构
第五节 七个晶系和十四种布拉菲格子
第五节 七个晶系和十四种布拉菲格子
根据晶体的对称性特征划分: 32点群; 230种空间群 7个晶系 14种布拉菲格子
晶系 三斜 单斜 正交 三方 四方
对称性特征 只有1或 i 唯一2或 m 三个2或 m 唯一3 或 唯一4 或
第一章 晶体结构 a b c
C1、 Ci a b c ==90º C2、CS、C2h D2、C2V、D2h C 3 、 S6 、 D 3 C3V、D3d C4、S4、C4h、D4 C4V、D2d、D4h
晶胞参数
所属点群
Bravais格子 简单三斜 简单单斜 底心单斜 简单、底心、体 心、面心正交 三方 简单四方 体心四方 六方
第五节 七个晶系和十四种布拉菲格子
a b c = == 90º a=b=c = = 90º a=b c = == 90º
六方
唯一6 或
a=b c C6、C3h、C6h、D6、 = = 90º =120º C6V、D3h、D6h
第一章 晶体结构
第六节 倒格子和布里渊区
① ② O
③
二维正方格子的布里渊区
二维正方格子的布里渊区
①
②
二维正方格子的布里渊区
①
②
第一章 晶体结构
第六节 倒格子和布里渊区
二维正方格子的10个布里渊区
பைடு நூலகம்
第一章 晶体结构
第六节 倒格子和布里渊区
二维六方格子的10个布里渊区
第一章 晶体结构
第六节 倒格子和布里渊区
立方
四个3
a=b=c = == 90º
T、Th、Td O、 Oh
简单、体心、面 心立方
第一章 晶体结构
第五节 七个晶系和十四种布拉菲格子
倒格子和布里渊区

矢对应一个阵点,因而可以说:晶体点阵中的晶面取向和晶 面面间距这 2 个参量在倒易点阵里只用一个点阵矢量(或说 阵点)就能综合地表达出来。
上述第4点的图示。
5. 正点阵和倒易点阵是互易的:由正点阵 a1, a 2 , a3 给出倒易
点阵 b1, b2, b3 现假定 b1, b2 , b3 为正点阵,则其
? iGhkl
?r?) exp(
? iGhkl
? ?Rn
)
K
显然: 即:
? K? e?xp(iG?hkl ?Rn ) ? 1
Ghkl ?Rn ? 2? m
既然 Rn 是正点阵的格矢,符合该关系的 G hkl 就是倒易点阵
的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中
的表述之间服从Fourier变换关系。
实际上,晶体结构本身就是一个具有晶格周期性的 物理量,所以也可以说: 倒易点阵是晶体点阵的 Fourier变换,晶体点阵则是倒易点阵的 Fourier逆变换。 因此,正格子的量纲是长度 L, 称作坐标空间,倒格子 的量钢是长度的倒数 L-1,称作波矢空间。例如:正点 阵取cm,倒易点阵是cm-1, 下一节我们将看到:
晶面系的面间距就是原点到ABC面的距离,由于 G h1h2h3 ? ( ABC )
可以证明:
?
d ? OA ? GG? h1h2h3Βιβλιοθήκη h1h2 h3 h1h2 h3
? ?2?
Gh1h2h3
由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中 的一族晶面相对应的,它的方向是该族晶面的法线方向,而 它的大小是该族晶面面间距倒数的2π倍。又因为倒易点阵基
第二到第九 Brillouin区约化到第一布里渊区
各布里渊区的形状,不管被分成多少部分,对原点都是对称的
上述第4点的图示。
5. 正点阵和倒易点阵是互易的:由正点阵 a1, a 2 , a3 给出倒易
点阵 b1, b2, b3 现假定 b1, b2 , b3 为正点阵,则其
? iGhkl
?r?) exp(
? iGhkl
? ?Rn
)
K
显然: 即:
? K? e?xp(iG?hkl ?Rn ) ? 1
Ghkl ?Rn ? 2? m
既然 Rn 是正点阵的格矢,符合该关系的 G hkl 就是倒易点阵
的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中
的表述之间服从Fourier变换关系。
实际上,晶体结构本身就是一个具有晶格周期性的 物理量,所以也可以说: 倒易点阵是晶体点阵的 Fourier变换,晶体点阵则是倒易点阵的 Fourier逆变换。 因此,正格子的量纲是长度 L, 称作坐标空间,倒格子 的量钢是长度的倒数 L-1,称作波矢空间。例如:正点 阵取cm,倒易点阵是cm-1, 下一节我们将看到:
晶面系的面间距就是原点到ABC面的距离,由于 G h1h2h3 ? ( ABC )
可以证明:
?
d ? OA ? GG? h1h2h3Βιβλιοθήκη h1h2 h3 h1h2 h3
? ?2?
Gh1h2h3
由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中 的一族晶面相对应的,它的方向是该族晶面的法线方向,而 它的大小是该族晶面面间距倒数的2π倍。又因为倒易点阵基
第二到第九 Brillouin区约化到第一布里渊区
各布里渊区的形状,不管被分成多少部分,对原点都是对称的
倒易空间和布里渊区

因此,如何做出布里渊区有重要 意义。
E
3 2 a aa
0 2 3 aa a
k
图 E ~ k 曲线的表达图式
作出布里渊区的方法?
从倒格子点阵的原点出发,作出它最近邻点的倒格子点 阵矢量,并作出每个矢量的垂直平分面,可得到倒格子 的WS(威格纳-塞兹)原胞,称为第一布里渊区(简约) 。
同样可以作出第二、第三……布里渊区。
的面间距为d1
b3
a2
a2 a3 为平行四边形(a2,a3)的
b2
a1
面积,则有
b1
2
a2 a3
b2
2
a3 a1
b3
2
a1 a2
b1
b1
2 a2a3
2
d1
表明倒易点阵基矢的长度正好与晶面间距的倒数成正比
说明:
(1)倒易点阵基矢的大小是该晶面族的晶面间距的倒数的2π 倍。单位为长度的倒数。
2
a
a2 i j k 2
Ωa1a2a31a3 2
ak
a
a3 i j k 2
a1
a2 aj
ai
a3
2. 倒格子(Reciprocal Lattice)
倒格子是相对于正格子而言的,因此首先确定要确定正
格子。a1,a2,a3称为正点阵。
a3
定义b1,b2,b3为新的基矢:
b1
2
a2 a3
3布里渊区
要知道一个能带中有多少个量子 态,必须求出在一个布里渊区内 电子状态的点数。
考虑到k的周期性,可以把k的取 值范围限制在一个区域内,这个 区域是一个最小的周期性重复单 元。这个最小的单元就是上面简 约布里渊区。
布里渊区在研究晶体内电子的运 动时特别重要,因为当晶体中的 电子表现出波动性时,它们也会 在这些界面上发生反射。
E
3 2 a aa
0 2 3 aa a
k
图 E ~ k 曲线的表达图式
作出布里渊区的方法?
从倒格子点阵的原点出发,作出它最近邻点的倒格子点 阵矢量,并作出每个矢量的垂直平分面,可得到倒格子 的WS(威格纳-塞兹)原胞,称为第一布里渊区(简约) 。
同样可以作出第二、第三……布里渊区。
的面间距为d1
b3
a2
a2 a3 为平行四边形(a2,a3)的
b2
a1
面积,则有
b1
2
a2 a3
b2
2
a3 a1
b3
2
a1 a2
b1
b1
2 a2a3
2
d1
表明倒易点阵基矢的长度正好与晶面间距的倒数成正比
说明:
(1)倒易点阵基矢的大小是该晶面族的晶面间距的倒数的2π 倍。单位为长度的倒数。
2
a
a2 i j k 2
Ωa1a2a31a3 2
ak
a
a3 i j k 2
a1
a2 aj
ai
a3
2. 倒格子(Reciprocal Lattice)
倒格子是相对于正格子而言的,因此首先确定要确定正
格子。a1,a2,a3称为正点阵。
a3
定义b1,b2,b3为新的基矢:
b1
2
a2 a3
3布里渊区
要知道一个能带中有多少个量子 态,必须求出在一个布里渊区内 电子状态的点数。
考虑到k的周期性,可以把k的取 值范围限制在一个区域内,这个 区域是一个最小的周期性重复单 元。这个最小的单元就是上面简 约布里渊区。
布里渊区在研究晶体内电子的运 动时特别重要,因为当晶体中的 电子表现出波动性时,它们也会 在这些界面上发生反射。
倒格子与布里渊区

2、倒格子
布喇菲格子的基矢a1、 a2 、a3为正格子基矢,称Rl=l1a1+l2a2+l3a3决 定的空间为正格子,=a1· (a2×a3)为正格子元胞体积。
定义
b1 2
a
2
a3
a2 a a 1 a b3 2 b 2
3 1 2
为倒格子基矢,由Kh=h1b1+h2b2+h3b3决定的空间为倒格子, =b1· (b2×b3)为倒格子元胞体积。 正格子空间的长度量纲是m,倒格子空间的长度量纲为m-1。
第六节 倒格子与布里渊区
一、倒格子的引入与定义
1、 倒格点
布喇菲格子由无数位向不同的晶面族构成,描述一族晶面的特征 必须有两个参量:面间距、晶面法向。 为了处理问题方便,在数学上将晶面族的特征用一个矢量综合体 现出来,矢量的方向代表这族晶面的法向,矢量的模值比例于这 族晶面的面间距,这样确定的矢量称为倒格矢。倒格矢的端点称 为倒格点。 倒格点的总体构成倒格子空间。 每个倒格点都表示了晶体中一族晶面的特征,倒格点的位置矢量 (倒格矢)体现了晶面的面间距和法向。
3,两种格子元胞间的关系
2
3
倒格子元胞体积与正格子元胞体积存在倒数关系。
4、正格子(h1h2h3)晶面族与倒格矢Kh的关系
正格子中任一晶面族(h1h2h3)可以在所对应的倒格子空间找到一 个倒格矢 Kh =h1b1+ h2b2+ h3b3来体现晶面族的法向和面间距。 对于任意给定的倒格矢Kh ´ =h1 ´ b1+ h2 ´ b2+h3 ´ b3都能得到与之 垂直的晶面族的晶面指数(h1h2h3)。 正格子与倒格子是相对应的,二者互为倒格子。 倒格子的倒格子就是正格子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是:
Gh1h2 h3 CA a1 a3 (h1b1 h2b2 h3b3 ) ( ) h1 h3 2 2 0
同理 Gh1h2 h3 CB 0 而且 CA, CB 都在(ABC)面上, 所以 Gh1h2h3 与晶面系 (h1h2h3 ) 正交。
三维例子:
正点阵为简 单点阵,倒 易点阵也是 简单点阵。
正格子空间中长 的基矢a3对应于 倒格子空间短的 基矢b3,反之亦 然。推广,正格 子空间长的线条 对应于倒格子空 间短的线条。
正点阵为有心点阵时,倒易点阵也是有心点阵, 但有心类型可能不同,例如:体心立方点阵的倒格子 为面心立方点阵。
而面心立方点阵的倒格子为体心立方点阵。
倒易点阵仍是简立方点阵:
2 2 2 b1 i, b2 j , b3 k, a a a
所以倒格子也是布拉菲格子。 六角点阵: 六角点阵的倒易点阵: 见Ashcroft p88 c 轴方向不变,a 轴在垂直于c 轴的 平面上旋转30度。
正格子空间六方结构,在倒格子空间亦为六方结 构。不过其基矢尺寸关系发生变化,基矢方向也转了 一个角度。
显然 : b1 a 2 a 3 , b 2 a 3 a1 , b 3 a1 a 2 ,
b1 2 2 3 a1 a 2 a3 a3 a1 b2 2 a1 a 2 a3 a1 a 2 b3 2 a1 a 2 a3
G G ( k ) 0 2
k
k
G 2
G
G 2
正方点阵布里渊区
第二到第九Brillouin区约化到第一布里渊区
各布里渊区的形状,不管被分成多少部分,对原点都是对称的
六方点阵布里渊区图
见黄昆书图4-24 (p194)
Kittel
(p28)
黄昆书图4-12(p179)
1.4
倒格子和布里渊区
(Reciprocal lattice; Brillouin zones)
一. 定义 二. 倒易点阵和晶体点阵的关系 三. 倒易点阵的物理意义 四. 倒易点阵实例
五. 布里渊区
一. 定义:假设 a1, a 2 , a 3 是一个晶体点阵的基矢,该点阵的
格矢为:Rn n1 a1 n1 a2 n1 a3 原胞体积是: a1 (a2 a3 )
见黄昆书图4-12 (p179)
体心立方的Wigner-Seitz原胞及第一布里渊区
面心立方的Wigner-Seitz原胞及第一布里渊区
Kittel (p29),黄昆书图4-13(p179)
见黄昆书图4-13 (p179)
Symbol Γ
Description Center of the Brillouin zone Simple cube
G hkl hb1 kb2 lb3
就构成了上面点阵的
倒易点阵,上面变换公式中出现的 2 因子,对于晶体学 家来说并没有多大用处,但对于固体物理研究却带来了极 大的方便。倒易点阵的概念是Ewald 1921年在处理晶体X 射线衍射问题时首先引入的,对我们理解衍射问题极有帮 助,更是整个固体物理的核心概念。
倒易点阵是在晶体点阵(布拉菲格子)的基础上定 义的,所以每一种晶体结构,都有 2个点阵与其相联系, 一个是晶体点阵,反映了构成原子在三维空间做周期排 列的图像;另一个是倒易点阵,反映了周期结构物理性 质的基本特征。
四. 倒易点阵实例:
倒格子基矢是从点阵基矢引出的,它们之间的联系需要我 们通过具体实例来理解:根据右面定义, a a
正、倒格子对应关系
不同空间描写晶体的对称性
r空间(实空间)
k空间(相空间)
布拉伐格子
原胞 正(坐标)空间
数学:正格子 观察:显微镜
倒格子 布里渊区
(倒空间中的Wigner-Seitz原胞)
周期性
倒(动量)空间
数学:倒格子 观察:X射线衍射
五. 布里渊区: 第一布里渊区的确定:取法和正点阵中Wigner-Seitz 原胞取法相同。它是倒易点阵的原胞。
与正格子的晶面系 (h1h2h3 ) 正交。 如图所示,晶面系 (h1h2h3 ) 中最靠近原点的晶面(ABC) 在正格子基矢 a1 , a 2 , a 3 的截距分别为: a1 , a 2 , a 3 h1 h2 h3
a1 a 3 CA OA OC h1 h3 a 2 a 3 CB OB OC h2 h3
可以得到:
2 2 (2 )2 b 2 b3 ( a 3 a1 ) ( a1 a 2 ) a1
*
2 3 又因为: b1 (b2 b3 ) (2 ) (a1 b1 ) (2 )
二. 倒易点阵和晶体点阵之间的关系:
倒易点阵是从晶体点阵(以后简称正点阵)中定义出的, 可以方便地证明它和正点阵之间有如下关系: bi a j 2 ij 1. 两个点阵的基矢之间: 1, i j ij 0, i j
2. 两个点阵的格矢之积是 2 的整数倍:Ghkl Rn 2m
3. 两个点阵原胞体积之间的关系是:
4. 正点阵晶面族 (h,k,l) 与倒易点阵格矢 Ghkl 相互垂直,
(2 )3 * b1 (b2 b3 )
Ghkl hb1 kb2 lb3
且有:
2 d hkl G hkl
1. 证明:根据矢量运算规则,从倒格矢定义即可说明。 2. 证明:
推得到二维正方格子的布里渊区图见下页。
用 k 表示从原点出发、端点落在布里渊区界面上的倒易空
间矢量,它必然满足方程:
由于布里渊区界面是某倒格矢 G 的垂直平分面,如果
1 2 k G G 2
该方程称作布里渊区的界面方程
布里渊区界面方程
布里渊区的界面是某一倒格矢 G 的垂直平分面,界面方 1 2 程式可以写成: k G G 12 即 k 在 G 上的投影是 G 的 2 。 k 是倒格子空间中的矢量。满足上式的 k 的端点将落在 G 的垂直平分面上,所有 k 的末端的格点构成布里渊区的界 面,只要给定 G ,就可以求出对应的布里渊区界面。
Rn Ghkl (n1a1 n2 a2 n3a3 ) (hb1 kb2 lb3 ) 2 (n1h n2 k n3l ) 2m
(m为整数)
3. 证明见习题1.11
4. 证明:先证明倒格矢 Gh1 ,h2 ,h3 h1 a1 h2 a2 h3 a3
上述第4点的图示。
5. 正点阵和倒易点阵是互易的:由正点阵 a1 , a 2 , a 3 给出倒易 点阵 b1, b2 , b3 现假定 b1, b2 , b3 为正点阵,则其 倒易点阵根据定义为: c 2 (b b ) 2 3 1 *
利用三重矢积公式: A ( B C) B( A C) C( A B)
的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中 的表述之间服从Fourier变换关系。
实际上,晶体结构本身就是一个具有晶格周期性的 物理量,所以也可以说:倒易点阵是晶体点阵的 Fourier变换,晶体点阵则是倒易点阵的Fourier逆变换。 因此,正格子的量纲是长度 L, 称作坐标空间,倒格子 的量钢是长度的倒数 L-1,称作波矢空间。例如:正点 阵取cm,倒易点阵是cm-1, 下一节我们将看到: 晶体的显微图像是真实晶体结构在坐标空间的映像。 晶体的衍射图像则是晶体倒易点阵的映像。
Corner point Center of a square face Body-centered cubic
H N P
Corner point joining four edges Center of a face Corner point joining three edges Hexagonal
现在定义 3个新的基矢 b1, b2 , b3 构成一个新点阵:
( h,k,l 是整数。) 位移矢量
a 2 a3 b1 2 a1 a 2 a3 a3 a1 b2 2 a1 a 2 a3 a1 a 2 b3 2 a1 a 2 a3
ห้องสมุดไป่ตู้
Léon Brilliouin
(1889-1969)
布里渊区定义:在倒易点阵中,以某一格点为坐标原点,做所有 倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原 点的多面体区域,这些区域称作布里渊区,其中最靠近原点 的平面所围成的区域称作第一布里渊区,第一布里渊区界面
与次远垂直平分面所围成的区域称作第二布里渊区,依次类
b2
a2 a1
b1
左图是一个二维斜方点阵和它的
倒易点阵, b1 a 2 , b2 a1 , a1 b1 a2 b2 2 a1 b2 a2 b1 0
简立方点阵: a1 ai, a2 a j, a3 ak
M R
Center of an edge Corner point
X
Center of a face
Face-centered cubic
K L
Middle of an edge joining two hexagonal faces Center of a hexagonal face
U
W X
Middle of an edge joining a hexagonal and a square face