布里渊区1
布里渊区通俗理解

布里渊区通俗理解-概述说明以及解释1.引言1.1 概述布里渊区是一个在物理和数学领域中具有重要意义的概念,它主要用来描述在给定条件下某一物体或物体集合的邻域。
布里渊区的概念源于法国物理学家亚历山大·布里渊的研究成果,他发现了一种描述物体在空间中的局部特性的方法。
布里渊区的概念不仅在物理学领域中被广泛应用,同时也在计算机图形学、材料科学、生物学等领域中具有重要作用。
在本文中,我们将深入探讨布里渊区的概念、应用以及重要性,希望能够对读者有所启发和帮助。
通过了解布里渊区的相关知识,我们可以更好地理解物体在空间中的局部结构和特性,为我们探索和应用这些知识提供了理论基础。
在日常生活中,布里渊区的概念也有着重要的意义,可以帮助我们更好地理解世界的复杂性,促进科学技术的发展和创新。
展望未来,布里渊区的研究和应用将会不断深化和拓展,为人类社会的进步和发展做出更大的贡献。
1.2 文章结构本文将分为三个主要部分来讨论布里渊区的通俗理解。
在引言部分,我们将简要介绍布里渊区的概念、文章结构和撰写本文的目的。
在正文部分,我们将详细探讨布里渊区的概念,其在实际应用中的情况以及在各领域中的重要性。
最后,在结论部分,我们将总结布里渊区的作用,讨论其在日常生活中的意义,并展望未来布里渊区的发展方向。
通过这样的结构安排,读者可以系统地了解布里渊区的相关知识,并深入理解其在现实生活中的应用和意义。
1.3 目的2.正文2.1 布里渊区的概念布里渊区(英文名为Boulevard区)是一种在计算机科学领域中常用的概念,用于描述一种数据结构的布局方式。
布里渊区是指内存中的一段连续地址空间,通常用来存储程序代码、全局变量和静态变量。
在操作系统中,布里渊区还可以用于存放动态链接库和共享库的代码段和数据段。
布里渊区的特点是具有一定的大小和位置,可以在运行时被操作系统动态地分配和回收。
布里渊区的概念主要用于优化内存管理和提高程序的执行效率。
布里渊区

可以展开为傅立叶级数
2
2
f (x) f0 p1 Cp cos( a
px)
p 1
S p sin( a
px)
(2.4.6)
其中 p 是整数, f0 ,Cp , S p 是傅立叶系数。
这个展开式可以写成更简洁的形式
2
f (x)
p
f p exp(i a
px)
(2.4.7)
系数 f p 由 f0 , Cp , S p 给出。
倒格子的原胞基矢为
b1
2
a
i
b2
2
a
j
离原点最近的的倒格点有四个:
b1 , -b1 , b2 , - b2 它们的垂直平分线围成的区域 就是简约布里渊区,即第一布里渊 区.显然,第一布里渊区是一个正 方形,面积为 S*=(2π)2/a2 .
二维方格子布里渊区
可以看出,倒格子点阵也是正方点阵,点阵常数为 2
a
正八面体的体积是 9 (2 )3
2a
比倒格子的原胞体积大 1 (2 )3
2a
可见这个八面体不是第一布里渊区。
必须再考虑次紧邻的六个倒格点,倒格矢为:2 (2i )
a
2 ( j )
a
2 (k )
a
它们的中垂面截去了正八面体的 6 个顶角,形成一个截角八面体,
它有八个正六边形和六个正方形,即十四面体。而截去的体积恰好是
2
a
i
b2
2
a
j
2
b3 a k
所以,倒格子也是简立方结构,其第一布里渊区仍然是一个简立方。
(4)体心立方结构晶体点阵的布里渊区 对于体心立方结构晶体点阵,如果正格子基矢取为:
晶体的倒格子和布里渊区

倒易点阵仍是简立方点阵:
2 2 2 b1 i, b2 j , b3 k, a a a
所以倒格子也是布拉菲格子。 六角点阵: 六角点阵的倒易点阵: 见Ashcroft p88 c 轴方向不变,a 轴在垂直于c 轴的 平面上旋转30度。
正格子空间六方结构,在倒格子空间亦为六方结 构。不过其基矢尺寸关系发生变化,基矢方向也转了 一个角度。
五. 布里渊区: 第一布里渊区的确定:取法和正点阵中Wigner-Seitz 原胞取法相同。它是倒易点阵的原胞。
Léon Brilliouin
(1889-1969)
布里渊区定义:在倒易点阵中,以某一格点为坐标原点,做所有 倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原 点的多面体区域,这些区域称作布里渊区,其中最靠近原点 的平面所围成的区域称作第一布里渊区,第一布里渊区界面
Face-centered cubic
K L
Middle of an edge joining two hexagonal faces Center of a hexagonal face
U
W X
Middle of an edge joining a hexagonal and a square face
与正格子的晶面系 (h1h2h3 ) 正交。 如图所示,晶面系 (h1h2h3 ) 中最靠近原点的晶面(ABC) 在正格子基矢 a1 , a 2 , a 3 的截距分别为: a1 , a 2 , a 3 h1 h2 h3
a1 a 3 CA OA OC h1 h3 a 2 a 3 CB OB OC h2 h3
二. 倒易点阵和晶体点阵之间的关系:
1-6 倒格子与布里渊区

(3)正格子元胞与倒格子元胞 倒格子元胞体积:
b1 (b2 b3 ) (2 )3 (a2 a3 ) [(a3 a1 ) (a1 a2 )] 3 A ( B C ) ( A C ) B ( A B) C
(a3 a1 ) (a1 a2 ) {(a3 a1 ) a2 } a1 {(a3 a1 ) a1} a2 a1 0 a1 (2 ) (a2 a3 ) a1 3 (2 )3
三、典型晶格的倒格子与布里渊区
1、一维格子的布里渊区
a ai
2 b i a
2、二维正方格子的布里渊区 二维正方格子的原胞基矢为:
a1 ai , a2 aj
则其相应的倒格子原胞基矢为:
2 2 b1 i , b2 j a a
在倒格子空间中,距离原点最近的倒格点 有四个,其相应的倒格矢为:b , b , b
1 1 2
, b2
这四个倒格矢的垂直平分线的方程为:
kx
a
, ky
a
由这四个垂直平分线所围成的区域就是第一布 里渊区。
第一布里渊区
原点的次近邻四个到格点相应的倒格矢为:
b1 b2 , (b1 b2 ), b1 b2 , (b1 b2 )
它们的垂直平分线以及第一布里渊区边界 所共同围成的区域称为第二布里渊区。
二、特性:
1、第一布里渊区: 在倒格子点阵中,做某一倒格点到其最近邻 倒格点连线的垂直平分面,由这些垂直平分面所 围成的多面体就是第一布里渊区。 除第一布里渊区之外,还有第二布里渊区、第 三布里渊区以及更高阶的布里渊区。
2、第二、第三布里渊区可以由平移倒格矢的 整数倍至第一布里渊区。 3、每个布里渊区的体积都等于倒格子原胞的 体积。 4、布里渊区应选尽可能高的对称性。
倒格子与布里渊区

4、面心立方格子的布里渊区
(1)面心立方格子的格子常数(立方边长)为a,倒格子为体心 立方,倒格子常数(立方边长)为4/a。 (2)第一布里渊区为截角八面体(十四面体) (3) 几个点的坐标 : 2/a(0,0,0) X: 2/a(1,0,0) L: 2/a(-½,½ ,½ ) K: 2/a(0,¾,¾ )
2、倒格子
布拉维格子的基矢a1、 a2 、a3为正格子基矢,称Rl=l1a1+l2a2+l3a3决 定的空间为正格子,=a1· (a2×a3)为正格子原胞体积。 × 2 × × 定义 1 2 3 3 1
b
1
= 2π a a Ω
为倒格子基矢,由Kh=h1b1+h2b2+h3b3决定的空间为倒格子, =b1· (b2×b3)为倒格子原胞体积。 正格子空间的长度量纲是m,倒格子空间的长度量纲为m-1。
3、两种格子原胞间的关系
Ω
*
2π =
Ω
3
倒格子原胞体积与正格子原胞体积存在倒数关系。
4、正格子与倒格子互为对方的倒格子 根据倒格子基矢的定义,倒格子的倒格子基矢
b
* 1
×b b = 2π
2
3
Ω*
a1
同理,可以证明 b2*=a2, b3*=a3 倒格子的倒格子就是正格子。
5、正格子(h1h2h3)晶面族与倒格矢Kh正交 Kh•CA=(h1b1+h2b2+h3b3) •(a1/h1-a3/h3)=0 Kh•CB=(h1b1+h2b2+h3b3) •(a2/h2-a3/h3)=0
矢量的乘积
标量积或点积 A· B=|A||B|cos(A,B) 矢量积或叉积 任何两个矢量A和B的矢量积是一个矢量,它的大小等于这两个矢 量作成的平行四边形的面积,方向与这个平行四边形所在的平面的 垂线方向平行。 |AB|=|ABsin(A,B)|
布里渊区

布里渊区
主讲人: 主讲人:许本超 答疑人: 答疑人:李海龙 封福明
固体物理 固体物理
内容
• • • • • • • • • 1.倒易空间 2. 布里渊区基本概念 3. 典型格子的第一布里渊区 4.布里渊区的几何性质 5. 衍射条件在布里渊区诠释 6.布里渊区中的K点 7.布里渊区和能带的关系 8.布里渊区和费米面 9.MS计算能带实例图
14
固体物理 固体物理
7.2布里渊区和能带的关系
能带论的基本出发点: 能带论的基本出发点 固体中的电子可以在整个固体中运动 电子在运动过程中要受晶格原子势场的作用 由于周期场的微扰, 由于周期场的微扰,
E
E6
E(k)函数在布里渊区 函数在布里渊区
允许带
E5
边界k=± 边界 ±nπ/a处出现 处出现
3.2体心立方晶格的F.B.Z 体心立方晶格的F.B.Z 体心立方晶格的 体心立方晶格的倒格子为面心立方晶格
可以看出, 可以看出,面心立方倒 格子(即体心立方晶格) 格子(即体心立方晶格) 的F.B.Z为正菱形十二 为正菱形十二 面体(非正十二面体) 面体(非正十二面体)
8
固体物理 固体物理
3.3面心立方晶格的F.B.Z 面心立方晶格的 面心立方晶格的F.B.Z 面心立方晶格的倒格子为体心立方晶格
如右图所示, 如右图所示,黑框为体心立方 倒格子,取其体心(黄点) 倒格子,取其体心(黄点)作 为原点,红点(8个 为原点,红点(8个)为此原 点最相邻的倒格点,蓝点(6 点最相邻的倒格点,蓝点( 个)为此原点次相邻倒格点 可以看出, 可以看出,体心立方倒 格子(即面心立方晶格) 格子(即面心立方晶格) 的F.B.Z为截角的八面体 为截角的八面体 十四面体) (十四面体)
30 布里渊区的知识

*简谐近似是晶格动力学处理许多物理问题的出发点!
* 对热膨胀和热传导等问题必须考虑高阶项 --- 特别是3次和4次项的作用 → 这称为非谐项或非谐作用 – V非谐 * 具体处理问题时,把非谐项看成是对起主要作用 的简谐项的微扰!
简正振动模式:在简谐近似下, 由N个原子构成的晶体的晶格振 动, 可变为3N个独立的谐振子的振动. 每个谐振子的振动模式称 为简正振动模式 简正振动模式对应着所有的原子都以该模式的频率做振动, 它是 晶格振动模式中最简单最基本的振动方式. 原子的振动 —格波振动通常是这3N个简正振动模式的线形迭加.
2
a
i
倒格矢的垂直平分面 构成第一布里渊区
a
O
一维晶格点阵
b
-π/a
O
倒格子点阵
π/a
二维晶格点阵的布里渊区 取正格子基矢为 a1 ai 和a2 a j 可求出倒格子基矢为
2 2 b1 i 和b2 j a a
作原点0至其它倒格点连线的中垂线,它们将二维倒 格子平面分割成许多区域
第三章 晶格动力学和 晶体的热学性质
固体的许多性质都可以基于静态模型来理解(即晶体点阵模型), 即认为构成固体的原子在空间做严格的周期性排列,在该框架内, 我们讨论了X 光衍射发生的条件,求出了晶体的结合能,以后还将 在此框架内,建立能带论,计算金属大量的平衡性质。然而它只 是实际原(离)子构形的一种近似,因为原子或离子是不可能严 格的固定在其平衡位置上的,而是在固体温度所控制的能量范围 内在平衡位置附近做微振动。只有深入地了解了晶格振动的规律, 更多的晶体性质才能得到理解。如:固体热容,热膨胀,热传导, 融化,声的传播,电导率,压电现象,某些光学和介电性质,位 移性相变,超导现象,晶体和辐射波的相互作用等等。
§5.5 布里渊区

§5.5 布里渊区本节我们举例说明二维和三维晶格的布里渊区。
一、二维正方格子正格子原胞基矢 a a a a == 2,1; 倒格子原胞基矢 ab a b π=π=22,21 。
如图5.10所示,倒格子空间离原点最近的倒格点有四个,相应的倒格矢为b b b b 2,2,1,1--, 它们的垂直平分线的坐标是 ak x π±= 及 a k y π±= 这些垂直平分线围成的区域就是简约布里渊区。
它也是一个正方形,其中一些特殊点和线有惯用的符号表示,中心:Γ; 边界线中心:X ; 角顶点:M; ΓX 线:∆; ΓM 线:∑。
离Γ点次近邻的四个倒格点相应的倒格矢是b b b b b b b b 21,21),2(1,21+--+-+它们的垂直平分线,同第一布里渊区边界围成的区域合起来成为第二布里渊区,这个区的各部分别平移一个倒格矢,可以同第一个区重合。
同理可得第三,第四,……,一系列布里渊区。
二、体心立方格子正基矢 )(21k j i a a ++-=, )(22a a +-= , )(23a a -+= 。
可证倒基矢 )(21k j ab +π= , )(22k i ab +π= , )(23i j ab +π= 。
(习题:证明bcc 的倒格子是fcc 。
)倒格矢:图5.10])21()31()32[(2332211k n n j n n i n n ab n b n b n G n +++++π=++= 离原点最近的有12个倒格点,其坐标可一般地写为)21,31,32(2n n n n n n a +++π. 具体写出是)0,1,1(2a π, )0,1,1(2aπ )0,1,1(2a π, )0,1,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,1,0(2a π, )1,1,0(2aπ )1,1,0(2a π, )1,1,0(2aπ 相应的倒格矢长度为 π=22),,(321an n n G 这12个倒格矢的中垂线围成菱形正面体,称为简约布里渊区,如图5.11所示,其体积正好是倒格子原胞的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—— 简单立方格子 —— 第一布里渊区
2) 体心立方格子 —— 正格子基矢 —— 倒格子基矢
第一布里渊区 —— 边长
的面心立方格子
—— 第一布里渊区 原点和12个近邻格点连线的垂直平分面围成的正十二面体
—— 体心立方格子第一布里渊区各点的标记
3) 面心立方格子 —— 正格子基矢 —— 倒格子基矢
布里渊区和能带 —— 在k空间把原点和所 每个区域内 E ~ k 是连续变化的
而在这些区域的边界上能量E(k)发生突变 这些区域称为布里渊区
—— 布里渊区
简单立方晶格k空间的二维示意图
—— 属于同一个布里渊区的能级构成一个能带 —— 不同的布里渊区对应不同的能带 —— 每一个布里渊区的体积相同___倒格子原胞的体积 —— 每个能带的量子态数目 _____ 2N (计入自旋)
第一布里渊区 —— 边长
的体心立方格子
—— 第一布里渊区为原点和8个近邻格点连线的垂直平分 面围成的正八面体,和沿立方轴的6个次近邻格点连 线的垂直平分面割去八面体的六个角, 形成的14面体
面心立方格子 —— 第一布里渊区 —— 八个面是正六边形 —— 六个面是正四边形