桥梁抗震计算书
引桥抗震计算书

第1章抗震设防水平与性能目标1.1 工程场地地震动参数根据中国地震局地球物理研究所提供的《海南省文昌铺前大桥项目工程场地地震安全性评价报告之一(全线地震危险性分析及主桥塔设计地震动参数确定)》提供的地震动参数(见表1-1),本桥设计地震动加速度峰值(50年超越10%)为0.35g,竖向设计地震动参数取与水平向相同的数值。
表1-1工程场地地表水平向设计地震动峰值加速度及反应谱(5%阻尼比)参数值图1-7 50年超越10%地震波(E1)图1-7 50年超越2%地震波(E2)1.2 抗震设防水平与性能目标1.2.1 主桥参考《公路桥梁抗震设计细则》,主桥E1和E2地震超越概率分别为50年超越概率10%(地震重现期分别为475年)和50年超越概率2%(地震重现期分别为2450年)。
根据铺前大桥主桥梁结构的重要性,以及震后对桥梁结构的性能要求、修复(抢修)的难易程度,相应于E1和E2地震作用,主桥的性能目标如表1所示:表1 主桥不同构件抗震设防水准和性能目标抗震设防水准性能要求E1地震(50年超越概率10%)结构各构件保持弹性工作状态。
E2地震(50年超越概率2%)1、上部结构和塔身、基础、斜拉索等关键构件只允许发生轻微损伤。
2、过渡墩允许出现可修复性损伤,支座允许出现剪切失效和移位失效,但保证不落梁。
3、允许发生不影响桥梁正常通行的残余位移,允许伸缩缝、挡块及其它保险丝式单元发生破坏,但伸缩缝的破坏可以通过搭接钢板完成交通通行。
1.2.2 混凝土箱梁引桥参考《公路桥梁抗震设计细则》,引桥(不含跨断层)E1地震是在超越概率50年超越概率10%地震动的基础上考虑0.5的调整系数得到的; E2地震超越概率为50年超越概率2%(地震重现期分别为2450年)。
根据铺前大桥引桥的结构特点,相应于E1和E2地震作用,引桥的性能目标,参见表2表2 引桥抗震设防水准和性能目标1.2.3 跨断层桥梁推荐方案中引桥跨断层位置拟采用6孔简支钢箱梁,跨径布置为(50+60+50+50+50+50)m,其中60m跨跨越地震断层,其余50m跨均为缓冲跨。
桥梁抗震计算书解析

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程桥梁抗震计算书设计人:校核人:审核人:海口市市政工程设计研究院HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE2012年09月目录1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 -8.1 动力分析模型 (5)8.2 动力特性 (6)9地震反应分析及结果 ....................................................................................... - 6 -9.1 反应谱分析 (6)9.1.1E1水准结构地震反应 ........................................................................................ - 6 -9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 -10.1 墩身延性验算 (10)10.2 桩基延性验算 (10)10.3 支座位移验算 (11)11结论.............................................................................................................. - 11 -12抗震构造措施.............................................................................................. - 11 -12.1 墩柱构造措施 (12)12.2 结点构造措施 (12)1 工程概况海口湾景观桥全桥24m桥宽。
桥梁抗震算例

计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。
以下为该桥采用《公路工程抗震设计规范》(JTJ004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。
一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴ 2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1=s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h i iE C C K X Gβγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550== kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯= 3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。
桥梁抗震算例

计算简图某城市互通立交匝道桥上部结构采用预应力混凝土连续梁桥体系,跨径布置为2×25m ,梁宽从10.972m 变化到15.873m ;桥墩和桥台上都设置板式橡胶支座。
以下为该桥采用《公路工程抗震设计规范》(004—89)的简化计算方法手算的计算步骤及计算结果:附2.1 顺桥向地震力计算该联支座全部采用板式橡胶支座,故地震力由两部分组成:上部结构对板式橡胶支座顶面处产生的水平地震荷载及桥墩地震荷载。
一、上部结构对板式橡胶支座顶面处产生的水平地震荷载上部结构对D6号墩板式橡胶支座顶面处产生的水平地震荷载按下式计算:zsp h z i ni itpitpihs G K C C KK E 10β∑==(附2-1)式中,3.1=i C ,2.0=z C ,1.0=h K 1、确定基本参数(1)全联上部结构总重力:2353.4825)86.527.518(⨯+⨯+=zsp G 255023.0⨯⨯⨯+kN 2.16155=(2)实体墩对支座顶面顺桥向换算质点重力:()pff tp ztp GX X G G ⎥⎦⎤⎢⎣⎡-+==2131由于不考虑地基变形,即0=f X故 ()p pff tp G GX X G 311312=⎥⎦⎤⎢⎣⎡-+= 而 kN G p 3.57525346.4295.5=⨯⨯= 得 kN G G G p tp ztp 8.1913/===(3)一联上部结构对应的全部板式橡胶支座顺桥向抗推刚度之和1K :m kN K /103915.23.5756244.2480)23(41⨯=⨯+⨯+=(4)设置板式橡胶支座的D6号桥墩顺桥向抗推刚度2K :8015.01=I 4m ,088.12=I 4m ,676.13=I 4m083.105.06.045.01321=-+=I I I I e 从而,得 49233.0m I e =m kN l EI K e D /1055.8746.49233.0103.3335373⨯=⨯⨯⨯== m kN K K D /1055.852⨯==∴2、计算桥梁顺桥向自振基本周期T 1[]{}ZspZtp Zsp Ztp ZspZtp Zsp Ztp G G K K G G G K K K G G K K K G g24)()(2121221121121-++-++=ω-24.11s 1= s T 673.1211==ωπ3、计算动力放大系数1β根据1T 及规范三类场地土动力放大系数函数,计算1β:646.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β4、计算上部结构对D6号桥墩产生的水平地震力上部结构对D6号桥墩板式橡胶支座顶面处产生的顺桥向水平荷载按式(附2-1)计算:kN E E iihs hs 6.1302.16155646.01.02.03.1103915.23.575624=⨯⨯⨯⨯⨯⨯⨯==∑二、实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载实体墩由墩身自重在墩身质点i 的顺桥向水平地震荷载按下式计算:11hp i z h li i E C C K X G βγ=得 D6号墩kN E th 22.476.1910.10.18482.01.02.03.1=⨯⨯⨯⨯⨯⨯= 三、桥墩顺桥向地震剪力和弯矩第二联D6号桥墩墩底的顺桥向地震剪力和弯矩分别如下:kN Q D 82.13422.46.1306=+=()kN M D 93.585346.422.46.1306=⨯+=附2.2 横桥向地震力计算D6号桥墩横桥向水平地震荷载按下式计算(参见D6号墩计算简图):111i h p i z h iiE C C K X G βγ= (附2-2)式中,3.1=i C ,2.0=z C ,1.0=h K 1、计算i X 1由于5031.14606.474<==B H 故取 ()fi f i X H H X X -⎪⎭⎫⎝⎛+=13/11不考虑地基变形时:0=f X故有 3/11⎪⎭⎫ ⎝⎛=H H X i i得 889.06.4744.3333/111=⎪⎭⎫⎝⎛=X ,621.06.4747.1133/112=⎪⎭⎫ ⎝⎛=X2、计算桥墩各质点重力i GkN G 6.80772/2.161550==kN G 4.32825146.2122.61=⨯⨯=kN G 61.247252.2502.42=⨯⨯=3、计算横桥向基本振型参与系数1γ011.16.247621.04.328889.06.807716.247621.04.328889.06.80771220201=⨯+⨯+⨯⨯+⨯+⨯==∑∑==ni iini iiG XGX γ 4、计算D6号桥墩振动单元横桥向振动时的动力放大系数1β (1)计算横桥向柔度δ:934.11=I 4m ,700.32=I 4m ,254.103=I 4m 32105.06.045.01I I I I e -+= 得 4569.2m I e =H 2H 1HD6号墩计算简图563731076.81/5.11419/10412.1646.5569.2103.333-⨯===+⋅=⨯=⨯⨯⨯==KmkN K K K Ks K m kN l EI K DS De D δ (2)计算桥墩横向振动的基本周期T 1s gG T t 72.122/11=⎪⎪⎭⎫ ⎝⎛=δπ(3)确定动力放大系数1β根据T 1及规范三类场地土动力放大系数函数,得629.045.025.295.01=⎪⎭⎫⎝⎛⨯=T β5、计算各质点的水平地震力根据公式(附2-2)计算作用于D6号桥墩各质点的横桥向水平地震力:kNE kN E kN E hp hp hp 40.26.247586.0011.1629.01.02.03.156.44.328839.0011.1629.01.02.03.155.1336.8077011.1629.01.02.03.1210=⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯= 6、计算横桥向地震剪力和弯矩D6号墩墩底的横桥向地震剪力和弯矩分别如下:kN Q D 51.14040.256.455.1336=++=m kN M D ⋅=⨯+⨯+⨯=34.598137.140.2334.356.4346.455.1336。
桥梁结构抗震计算-1

1桥梁结构抗震Seismic Design for Bridge Structures土木工程学院2010.8第三章地震作用计算Seismic Action Calculation3. 1 概述3.2 静力法3.3 单自由度体系的地震反应3.4 单自由度体系的水平地震作用-反应谱法3.5 多自由度体系的地震反应3.6 多自由度体系的水平地震作用-振型分解反应谱法3.7 竖向地震作用计算3.8 地震反应时程分析法的概念3.9 结构自振频率的近似计算3.1 概述一、地震作用二、结构地震反应结构地震反应:三、结构动力计算简图及体系自由度a、水塔建筑d、多、高层建筑3.2 静力法静力法明显的优点是简单,其缺点是完全没有反映地基和结构的动力特征。
静力法只对刚度较大,且较低矮的结构才是合适的。
一般认为对于自振周期小于0.5秒的结构按静力法计算地震作用时,误差不会很大。
日本从20世纪20年代起始用静力法以来,为了表示场地、结构动力特性等众多因素的影响,对静力法作过多次修正,乘以多个系数,称之为震度法,并沿用至今。
我国鉴于当前路基和挡土墙、坝体等土木工程结构的动力观测资料和自振特性的试验研究尚少,故对它们的抗震验算,仍采用静力法计算地震作用。
3.3 单自由度体系的地震反应-----------------------单自由度体系的振动f cv cx=−=− f =−I f ma mx=−=−单自由度体系无阻尼自由振动:mxA:振幅单自由度体系无阻尼自由振动:2ξωωξ特征方程:(3)若一、运动方程二、运动方程的解初始条件:初始位移例题3-12.方程的特解II——冲击强迫振动图地面冲击运动地面冲击运动:⎩⎨⎧>≤≤=dtdt x xg g τττ00)(对质点冲击力:⎩⎨⎧>≤≤−=dtdtx m P g ττ0质点加速度(0~dt):自由振动初速度为t x)(图体系自由振动3.方程的特解III ——动⎪⎩⎪⎨⎧≥−−<=−−ττωωττττξωt t d x e t t dx D D g t )(sin )(0)()( 地面运动脉冲引起的反应tdte xt x D Dtg ωωξωsin )(−−=叠加:体系在t 时刻的地震反应为:⎪⎨≥−−=−−ττωωτξωt t e t dx Dt )(sin )()(单自由度体系的水平地震作用一、水平地震作用的定义二、地震反应谱地震(加速度)反应谱可理解为一个确定的地面运动,通过一组相同但自振周期t地震动的影响频谱:地面运动各种频率(周期)成分与加速度幅值的对应关系不同场地条件下的平均反应谱不同震中距条件下的平均反应谱地震反应谱峰值对应的周期也越长场地越软震中距越大地震动主要频率成份越小(或主要周期成份越长)G —体系的重量;—地震系数;—动力系数。
抗震计算书4.18

十堰至天水咼速公路桥墩抗震计算书一、项目概况徽县(大石碑)至天水高速公路是十堰至天水国家高速公路(G7011)甘肃境内路段,我院承担了该项目第STSJ2合同段的勘察设计工作。
路线起于西和县城南五里铺,终点位于天水市秦州区皂郊镇,路线全长81.625km。
本项目直接或间接影响区域均为四川汶川“5.12 ”大地震的受灾区。
地震动加速度峰值0.30g (抗震设防烈度为毗度),抗震设防措施等级为9度。
地震动反应谱特征周期0.4s。
由于本项目地震烈度较高,桥梁抗震计算显得非常重要。
二、计算内容(1)、地震作用本项目大部分桥梁均为20米、30米预制预应力混凝土连续箱梁桥,现选取几种典型结构及墩高组合计算抗震,为本项目桥梁抗震设计提供参考。
详细选取类型见下表:注:墩高组合中“ 5+7+6'表示1号墩高5米,2号墩高7米,3号墩高6米。
以下类推。
根据公路桥梁抗震设计细则(JTG/T B02-01-2008 ),一般情况下,公路桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向和横桥向的地震作用。
在顺桥向地震作用影响下,由于矮墩相对刚度较大,承担的力也相应较大。
因此,高低墩搭配情况下对矮墩更不利;横桥向地震作用下,高低墩搭配情况下对高墩更不利。
据此考虑,选取上述几种跨径和墩高组合进行抗震计算。
(2)桥梁结构概况1、跨径:5-20米、4-30米2、桥梁宽度:12.25米3、桥梁右偏角:90°4、墩台结构:柱式台、双柱式桥墩5、地震烈度:地震动加速度峰值0.30g (抗震设防烈度为毗度),抗震设防措施等级为9度。
6、支座类型:本项目支座选型见下表7、墩柱配筋率8 桥梁上下部其他构造详见本项目上下部通用图及桥梁设计细则桥梁模型1、地震作用计算依据公路桥梁抗震设计细则(JTG/T B02-01-2008),分别计算E1、E2地震作用下结构内力及位移。
计算采用时程分析方法,因本项目暂无地震安全性评价报告,现使用武罐项目地震安全性评价报告中相关曲线。
中小跨径桥梁抗震计算

度为 1 2 . 2 5 m。
1 概 况
1 . 1 工 程 概 况 某高速公路全线 布设 大 中桥 共计 1 8座 , 桥 梁 上部结 构 均采
用跨径 2 0 m一 3 0 m 装配式 预应 力混凝 土先 简支后 连续 箱梁 , 下
Ab s t r a c t :T h e p a p e r i n t r o d u c e s t h e f e a t u r e s o f o v e r s e a t — s t y l e r a i l t r a n s i t a n d t y p i c a l c o mp o n e n t s i n c l u d i n g r a i l b e a m,s u p p o  ̄a n d u p r i g h t ,a n d ma i n l y d e s c r i b e s t h e c r a f t s ma n s h i p ,w i e l d i n g d e f o r ma t i o n a n d q u a l i t y c o n t r o l t e c h n o l o g i e s o f t h e t y p i c a l c o mp o n e n t s ,w h i c h h a s p r o v i d e d s o me
・
1 6 4・
第4 0卷 第 l 1期 2 0 1 4年 4月
山 西 建 筑
S HANXI ARCHI TECTURE
Vo 1 . 4 0 No . 1 1 Ap r . 2 0 1 4
文章编号 : 1 0 0 9 — 6 8 2 5 ( 2 0 1 4 ) 1 1 - 0 1 6 4 — 0 2
第4章 桥梁墩台的抗震计算1

主要内容第四章桥梁抗震设计
《铁路工程抗震设计规范》的适用范围:
位于常水位水深超过5m的桥墩,应计入地震动水压力对抗震检算内容及方法抗震验算规定
3)建筑材料容许应力的修正系数,应符合下表的规定。
桥墩地震作用计算
图中,
h——基础底面位于地面以下或一般冲刷线以下的深度(m)。
(二)地震力计算公式
β——
根据场地类别和地震动参数区划确定的地震动反应谱特
桥梁抗震设计实例
桥梁抗震设计实例
桥梁抗震设计实例
185.1261.8418.990.6261.8418.990.62
⎡⎢⎢
=⎢⎢⎣桥梁抗震设计实例
桥梁抗震设计实例
地基变形引起的各质点水平位移
桥梁抗震设计实例桥梁抗震设计实例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程桥梁抗震计算书设计人:校核人:审核人:海口市市政工程设计研究院HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE2012年09月目录1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 -8.1 动力分析模型 (5)8.2 动力特性 (6)9地震反应分析及结果 ....................................................................................... - 6 -9.1 反应谱分析 (6)9.1.1E1水准结构地震反应 ........................................................................................ - 6 -9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 -10.1 墩身延性验算 (10)10.2 桩基延性验算 (10)10.3 支座位移验算 (11)11结论.............................................................................................................. - 11 -12抗震构造措施.............................................................................................. - 11 -12.1 墩柱构造措施 (12)12.2 结点构造措施 (12)1 工程概况海口湾景观桥全桥24m桥宽。
桥梁全长666.08米,等高梁跨径布置有4x35m,3x35m两种形式。
桥墩为标准双柱式桥墩,墩柱高度在5.297m~12.079m之间。
单柱墩底尺寸为2.2x2.0m。
桩基为8Φ1200钻孔灌注桩。
本报告截取最不利一联P12~P16进行计算。
桥梁部分桥跨布置图如下:图1-1桥梁部分桥跨布置图2 地质状况根据野外鉴别、原位测试结合室内土工试验成果,本次钻探揭露120m深度范围内的地层综合划分为5个岩性单元层,岩土层自上至下分别为:①素填土(Q4ml):灰黄色,稍湿,稍密状,主要由石英质中粗砂人工回填而成,含较多碎石块,已完成自身固结,人工填岛堤岸及施工便道均为抛石。
该层仅在ZK0钻孔有揭露,揭露厚度3.30m,层顶高程5.45m。
②淤泥(Q4m):深灰色,饱和,流塑-软塑状,主要由粘性土组成,切面光滑,干强度中等,韧性高,具有腐臭味,土质污手,该层层表呈现为淤泥混砂和流泥状,下套管时可依靠自重下落,层底呈软塑状粘土。
该层全场均有分布,厚度8.00~11.40m,平均厚度9.60m,层顶埋深0.00~3.30m,层顶高程2.15~-5.45m。
③粘土(Q2m):棕红色、灰黄、灰色,湿,可塑~可塑偏软,主要由粘性土组成,局部含较多中粗砂,韧性中等,干强度高,切面光滑,稍有光泽反应,无摇震反应。
该层在钻孔ZK0~ZK6、ZK7-左、ZK7-右、ZK8-左、ZK7~ZK9-补、ZK11-补、ZK13-补和ZK15-补有揭露,厚度1.20~4.90m,平均厚度2.59m,层顶埋深8.00~14.80m,层顶高程-8.50~-17.41m。
④粗砂(Q2m):灰黄、灰色,湿,中密状,主要由石英质粗砂组成,含少量粘性土,分选性较差,颗粒级配一般,胶结性一般。
该层在钻孔ZK9~ZK14、ZK8-右、ZK7~ZK9-补、ZK11-补、ZK13~ ZK15-补有揭露,厚度0.50~6.10m,平均厚度2.12m,层顶埋深10.60~14.80m,层顶高程-10.98~-19.41m。
⑤粉质粘土(N2m):深灰色、青灰色,可塑-硬塑-坚硬状,以硬塑和坚硬状为主,主要由粘性土组成,含少量中粗砂,岩芯呈土柱状-坚硬薄饼状,局部夹半岩状硬夹层,切面稍有光滑,具有光泽反应,无摇振反应,干强度较高,韧性中等。
该层全场均有揭露,未钻穿,层顶埋深9.90~19.20m,层顶高程-10.40~-20.61m。
3 技术标准1)荷载等级:城市—A级;2)人群荷载:2k5.3N;/m3)抗震设防烈度:8度,设计基本地震加速度峰值:0.3g;4)抗震设防类别:丁类,设计方法:B类,抗震设防措施等级:8级;5)场地类型:Ⅱ类;6)环境类别:Ⅲ类;7)桥梁设计基准期:100年;4 计算资料1)计算软件:Midas Civil—20112)支座类型:铅芯隔震橡胶支座。
3)支座参数:中墩支座高度为320mm,平面尺寸1320mm×1320mm,水平刚度12kN5.mm/边墩支座高度为268mm,平面尺寸770mm×770mm,水平刚度1.4kN;mm/4)立柱:立柱底平面尺寸:2000×2200mm,立柱顶平面尺寸:2000×2400mm(中墩),2000×2600mm(边墩),墩柱高度在5.297m~12.079m之间;墩柱底部截面配两层Φ32钢筋,共80根。
延伸至墩身以上4米处内层钢筋截断,4米以上墩身变为一层钢筋,共40根。
墩身底以上4米范围内箍筋采用Φ16@100钢筋,4米以上采用Φ16@150钢筋。
5)承台:承台尺寸为横桥向长14.4m,纵桥向宽5.4m,高2.5m。
横桥向底层主筋为单层Φ32@130钢筋,顶层为主筋为Φ16@130钢筋;横桥向底层主筋为单层Φ32@130钢筋,顶层为主筋为Φ16@130钢筋;箍筋为Φ16@130钢筋,全部采用HRB335钢筋。
主筋保护层厚度为60mm,箍筋保护层厚度30mm。
6)桩基:桥墩位处一共8根钻孔灌注桩,桩长为L=51.0m,桩径1.2m。
桩身配筋为:主筋Φ28共22根,其中11根为通长筋,11根在距桩底20m处截断;箍筋为Φ10螺旋钢筋,在距承台底2m范围内为加密段,间距为@100mm,其余部分间距为@200mm。
主筋保护层厚度为8mm,箍筋保护层厚度30mm。
5 作用效应组合地震作用为偶然作用,根据《公路桥涵通用设计规范》、《城市桥梁抗震设计规范》、《公路桥梁抗震设计细则》(下简称抗震细则)的规定,确定以下4种偶然效应组合。
➢E1纵向组合:恒载+E1纵向地震效应;➢E1横向组合:恒载+E1横向地震效应;➢E2纵向组合:恒载+E2纵向地震效应;➢E2横向组合:恒载+E2横向地震效应;6 设防水准及性能目标1)根据《城市桥梁抗震设计规范》,该桥的抗震设防标准为丁类,因为该桥为大桥,本次设计同样考虑E2地震作用效应。
2)根据抗震细则,该桥的抗震性能分析,采用二水准设防、两阶段设计和基于结构性能的抗震设计思想。
根据震后结构修复的难易程度以及相应的经济损失所决定的风险程度。
结合《城市桥梁抗震设计规范》于抗震细则,本次抗震重要性系数Ci 取值如表 6-1所示。
桥梁主要构件的性能目标如表 6-2所示。
表 6-1抗震重要性系数Ci7 地震输入根据抗震细则规定,阻尼比0.05的水平设计加速度反应谱取为:⎪⎩⎪⎨⎧+=)/()45.05.5(max max max T T S S T S S g其中,m ax S 为水平设计加速度反应谱最大值A C C C S d s i 25.2max =,g T 为特征周期。
i C 为抗震重要性系数,s C 为场地系数,d C 为阻尼调整系数,A 水平向设计基本地震动加速度峰值。
根据设计原则和地质报告,桥梁场地为Ⅱ类场地,设防烈度区为8度区,按8度设防。
g T 取为0.55s ,场地系数s C 取为1.0;桥梁阻尼比为0.05,阻尼调整系数d C 为1,水平向设计基本地震动加速度峰值A 为0.3g 。
E1和E2水准下,主桥水平向设计加速度反应谱如4-1、4-2所示。
图 7-1 E1水准下水平向设计加速度反应谱图 7-2 E2水准下水平向设计加速度反应谱8 动力特性分析8.1动力分析模型桥梁动力特性分析采用离散结构的有限单元方法,有限元计算模型均以顺桥向为X 轴,横桥向为Y 轴,竖向为Z 轴。