《二元一次方程组的应用》典型例题

合集下载

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得:x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(注:获利= 售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A的数量为x件、购进B的数量为y件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120答:略类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息%;第二种,三年期整存整取,这种存款银行年利率为%.三年后同时取出共得利息元(不计利息税),问小敏的爸爸两种存款各存入了多少元解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * %* 3 + Y * %* 3 =解得:X = 1500,Y = 2500。

(完整版)二元一次方程组的运用1(行程问题)

(完整版)二元一次方程组的运用1(行程问题)
等量关系1:火车完全过桥路程=桥的长度+火车的长度
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1:火车完全过桥路程=桥的长度+火车的长度 等量关系2:火车在桥=120 整理,得 X+y=120
3(x-y)=120
x-y=40
解得
x=80 y=40
答:巡逻车的速度是80千米/时,犯 罪团伙的车的速度是40千米/时.
例5、已知一铁路桥长1000米,现有一列火车从桥上通过, 测得火车从开始上桥到车身过完桥共用1分钟,整列火车 完全在桥上的时间为40秒,求火车的速度及火车的长度。
等量关系1: 快车行的路程+慢车行的
客车路程
路程=两列火车的车长和
货车路程
例6:客车和货车分别在两条平行的铁轨上行驶,客车长450米,货车 长600米,如果两车相向而行,那么从两车车头相遇到车尾离开共需21
秒钟;如果客车从后面追赶货车,那么从客车车头追上货车车尾到客车 车尾离开货车车头共需1分45秒,求两车的速度。
作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两
辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油
站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻
车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车
和犯罪团伙的车的速度各是多少?
解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,
货车路程
客车路程
等量关系1:快车行的路程+慢车行的路程=两列火车的车长和
等量关系2:快车行的路程-慢车行的路程=两列火车的车长和

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型

二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。

求甲、乙两人的速度。

设甲的速度是x千米/小时,乙的速度是y千米/小时。

相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。

这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。

2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。

求x和y的值。

把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。

两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。

又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。

这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。

3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。

求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。

因为总共购进50件商品,所以x + y = 50。

甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。

这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。

4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。

如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。

求x和y的值。

根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组的典型例题(五篇范文)

二元一次方程组的典型例题(五篇范文)

二元一次方程组的典型例题(五篇范文)第一篇:二元一次方程组的典型例题二元一次方程组的典型例题分析我们已经掌握一元一次方程的解法,那么要解二元一次方程组,就应设法将其转化为一元一次方程,为此,就要考虑将一个方程中的某个未知数用含另一个未知数的代数式表示.方程(2)中x的系数是1,因此,可以先将方程(2)变形为用含y的代数式表示x,再代入方程(1)求解.这种方法叫“代入消元法”.解:由(2),得 x=8-3y.(3)把(3)代入(1),得:2(8-3y)+5y=-21,16-6y+5y=-21,-y=-37,所以y=37.点评如果方程组中没有系数是1的未知数,那么就选择系数最简单的未知数来变形.分析此方程组里没有一个未知数的系数是1,但方程(1)中x的系数是2,比较简单,可选择它来变形.解:由(1),得2x=8+7y,(3)把(3)代入(2),得分析本题不仅没有系数是1的未知数,而且也没有一个未知数的系数较简单.经过观察发现,若将两个方程相加,得出一个x,y的系数都是100、常数项是200的方程,而此方程与方程组中的(1)和(2)都同解.这样,就使问题变得比较简单了.解:(1)+(2),得100x+100y=200,所以x+y=2(3)解这个方程组.由(3),得x=2-y(4)把(4)代入(1),得53(2-y)+47y=112,106-53y+47y=112,-6y=6,所以y=-1.分析经观察发现,(1)和(2)中x的系数都是6,若将两方程相减,便可消去x,只剩关于y的方程,问题便很容易解决、这种方法叫“加减消元法”.解:(1)-(2),得12y=-36,所以y=-3.把y=-3代入(2),得:6x-5×(-3)=17,6x=2,所以:点评若方程组中两个方程同一未知数的系数相等,则用减法消元;若同一未知数的系数互为相反数,则用加法消元;若同一未知数的系数有倍数关系,或完全不相等,则可设法将系数的绝对值转化为原系数绝对值的最小公倍数,然后再用加减法消元.在进行加减特别是进行减法运算时,一定要正确处理好符号.分析方程组中,相同未知数的系数没有一样的,也没有互为相反数的.但不难将未知数y的系数绝对值转化为12(4与6的最小公倍数),然后将两个方程相加便消去了y.解:(1)×3,得9x+12y=48(3)(2)×2,得10x-12y=66(4)(3)+(4),得19x=114,所以x=6.把x=6代入(1),得3×6+4y=16,4y=-2,点评将x的系数都转化为15(3和5的最小公倍数),比较起来,变y的系数要简便些.一是因为变y的系数乘的数较小,二是因为变y的系数后是做加法,而变x的系数后要做减法.例6 已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n 的值.分析根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以解这个方程组.整理,得(4)-(3),得2m=8,所以m=4.把m=4代入(3),得2n=6,所以n=3.所分析因为x+y=2,所以x=2-y,把它代入方程组,便得出含y,m的新方程组,从而求出m.也可用减法将方程组中的m消去,从而得出含x,y的一个二元一次方程,根据x+y=2这一条件,求出x和y,再去求m.解:将方程组中的两个方程相减,得x+2y=2,即(x+y)+y=2.因为x+y=2,所以2+y=2,所以y=0,于是得x=2.把x=2,y=0代入2x+3y=m,得m=4.把m=4代入m2-2m+1,得m2-2m+1=42-2×4+1=9.例8 已知x+2y=2x+y+1=7x-y,求2x-y的值.分析已知条件是三个都含有x,y的连等代数式,这种连等式可看作是二元一次方程组,这样的方程组可列出三个,我们只要解出其中的一个便可求出x和y,从而使问题得到解决.解:已知条件可转化为整理这个方程组,得解这个方程组.由(3),得x=y-1(5)把(5)代入(4),得5(y-1)-2y-1=0,5y-2y=5+1,所以y=2.把y=2代入(3),得x-2+1=0,所以x=1.2x-y=0.二元一次方程组的典型例题二元一次方程组复习题例题:1、下列方程是二元一次方程的是()1+1=0(A)x2+x+1=0(B)2x+3y-1=0(C)x+y-z=0(D)x+y2、下列各组数值是x-2y=4方程的解的是()⎧x=2⎧x=-1⎩⎨⎧x=0⎧x=4⎨(A)y=1(B)⎩y=1⎨(C)⎩y=-2⎨(D)⎩y=-1⎧x=2⎨3、以⎩y=1为解的二元一次方程的个数是()(A)有且只有一个(B)只有两个(C)有无数个(D)不会超过100个4、二元一次方程3x+2y=7的正整数解的组数是()(A)1组(B)2组(C)3组(D)4组⎧x=4⎨5、已知⎩y=-2是二元一次方程mx+y=10的一个解,则m的值为6、已知3xm-1-4y2m-n+4=1是二元一次方程,则m=,n=.7、下列方程组中,属于二元一次方程组的是()。

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)

二元一次方程组应用题(50题)1. 婆婆家的流水问题婆婆家有一个流水池,从自来水管道接入流水池中,再从流水池中通过自来水管道供应给家中的各个水龙头。

假设自来水管道的水流速度为x,流水池的容积为y,通过自来水管道流出的水量为z。

已知当自来水管道的水流速度为8升/分钟时,流水池会在20分钟内完全注满。

求出流水池的容积和通过自来水管道流出的水量之间的关系。

解题思路:设流水池的容积为y升,通过自来水管道流出的水量为z升。

根据题意得到以下方程组: 1. 自来水管道的水流速度与流水池的注水时间关系:8升/分钟 = y/20分钟 2. 流水池的容积与自来水管道流出的水量关系:z = y根据方程组可以求得:y = 160升,z = 160升。

2. 兰兰购买书籍兰兰去书店购买了几本书,每本书的价格不等。

已知兰兰购买的这几本书的总价格为x元,当其中两本书的价格分别减少5元和增加7元后,他们的价格相等。

求出每本书的原始价格。

解题思路:设第一本书的价格为y元,第二本书的价格为z元。

根据题意得到以下方程组: 1. 兰兰购买的这几本书的总价格:x = y + z 2. 当其中两本书的价格分别减少5元和增加7元后,他们的价格相等:y - 5 = z + 7将第二个方程式代入第一个方程式中,求解可以得到:y = (x + 12) / 2,z = (x - 12) / 2。

3. 成绩排名班级里有30个学生,数学和英语两门课的成绩分别用x和y表示。

已知数学成绩平均分为80分,英语成绩平均分为85分。

学生成绩排名中,有10个学生的数学成绩高于平均分,有15个学生的英语成绩高于平均分。

求出数学和英语成绩中,既高于平均分,又相等的学生人数。

解题思路:设数学成绩高于平均分且相等的学生人数为y,英语成绩高于平均分且相等的学生人数为z。

根据题意得到以下方程组: 1. 数学成绩平均分为80分:(80 * 30 + y) / 30 =80 2. 英语成绩平均分为85分:(85 * 30 + z) / 30 = 85 3. 学生成绩排名中,有10个学生的数学成绩高于平均分:y = 10 4.学生成绩排名中,有15个学生的英语成绩高于平均分:z =15求解方程组可以得到:y = 10,z = 15,既高于平均分,又相等的学生人数为10。

《二元一次方程组的应用》各环节配题

《二元一次方程组的应用》各环节配题

《二元一次方程组的应用》各环节配题
以下是《二元一次方程组的应用》各环节的配题:
引入环节:
1. 小明和小华去公园玩,他们想买一些饮料。

小明想买3瓶可乐和2瓶果汁,小华想买2瓶可乐和3瓶果汁。

他们各自带了足够多的钱。

你能帮他们算出每种饮料的价格吗?
2. 某班有男生25人,女生20人,如果每排站5人,可以站几排?
探索环节:
1. 某班共有50名学生,每人都至少定一份报纸,其中23人订了《人民日报》,25人订了《光明日报》,那么同时订这两种报纸的有多少人?
2. 甲、乙两地相距100公里,汽车和自行车先后从甲地出发前往乙地。

汽车出发1小时后,自行车才从甲地出发。

已知汽车的速度是60公里/小时,自行车的速度是20公里/小时。

那么自行车追上汽车需要多少时间?
应用环节:
1. 某商店出售一种品牌的空调,其中某一型号的进价为2500元,商店将进价提高30%后作为定价进行销售,一段时间后,商店又进行促销活动,决定将定价降低10%出售。

促销活动后,每台空调的售价为多少元?
2. 甲、乙两地相距40公里,A、B两人同时从甲地出发前往乙地。

A选择普通道路骑自行车前往乙地,B选择高速公路驾车前往乙地。

A骑车的速度是20公里/小时,B驾车的速度是100公里/小时。

那么B比A早到多少时间?
小结环节:
1. 你能总结一下解决二元一次方程组应用问题的一般步骤吗?
2. 通过这节课的学习,你对于二元一次方程组的应用有了哪些新的认识?
以上配题覆盖了引入、探索、应用和小结四个环节,旨在帮助学生理解和掌握二元一次方程组的应用。

二元一次方程应用题应用精题(附答案)

二元一次方程应用题应用精题(附答案)

二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二元一次方程组的应用》典型例题
例1 小明家去年结余5000元,估计今年可结余9500元,并且今年收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少?
例2 要配制成浓度为30%的烧碱溶液50千克,需要浓度为10%和60%的两种烧碱溶液多少千克?
例3 一辆汽车在相距70千米的甲、乙两地往返行驶,由于行驶中有一坡度均匀的小山,该汽车由甲地到乙地需用2小时30分,而从乙地回到甲地需用2小时18分.若汽车在平地上的速度为30千米/时,上坡的速度为20千米/时,下坡的速度为40千米/时,求从甲地到乙地的行程中,平路、上坡路、下坡路各多少千米?
例4 某中学初三(1)班计划用66元钱同时购买单价分别为3元、2元、1元的甲、乙、丙三种纪念品,奖励参加艺术节活动的同学,已知购买乙种纪念品的件数比购买甲种纪念品的件数多2件,而购买甲种纪念品的件数不少于10件,且购买甲种纪念品的费用不超过总费用的一半.若购买甲、乙、丙三种纪念品恰好用了66元钱,那么可有几种购买方案?每种方案中,购买的甲、乙、丙三种纪念品各是多少件?
例5 某工程队计划在695米线路上分别装25.8米和25.6米长两种规格的水管共100根,问这两种水管各需多少根?
例6 若甲、乙两库共存粮95吨,现从甲库运出存粮的3
2,从乙库运出存粮的40%,那么乙库所余粮食是甲库的2倍,问甲、乙两库原各存多少吨粮食?
例7 甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发后经2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后经3小时相遇;求甲、乙两人的速度.
例8 通讯员在规定的时间内由A地前往B地.如果他每小时走35公里,那么他就要迟到2小时;如果他每小时走50公里,那么他就可以比规定时间早到1小时,求A、B两地间的距离.
例9 某车间加工螺钉和螺母,当螺钉和螺母恰好配套(一个螺钉配一个螺母)时就可以运进库房.若一名工人每天平均可以加工螺钉120个或螺母96个,该车间共有工人81名.问应怎样分配人力,才能使每天生产出来的零件及时包装运进库房?
例10要修一段420千米长的公路.甲工程队先干2天乙工程队加入,两队再合干2天完成任务;如果乙队先干2天,甲、乙两队再合干3天完成任务,问甲、乙两个工程队每天各能修路多少千米?
例11甲乙两物体分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两物体反向运动时,每15秒钟相遇一次,当两物体同向运动时,每1分钟相遇一次,求各物体的速度?
参考答案
例1 分析 若设去年收收x 元,支出y 元,则可由去年结余5000元,今年结余9500元这两个条件列出两个方程.
解 设去年收入x 元,支出y 元,根据题意,得

⎨⎧=--+=-)2( .9500%)101(%)151()1( ,5000y x y x 解得⎩⎨⎧==.
15000,20000y x 答:去年小明家收入20000元,支出15000元.
例2 分析 本题中要抓住两个数量关系,一是两种烧碱溶液重量和为50千克,二是10%和60%的烧碱溶液中纯烧碱的量的和等于50千克30%的烧碱溶液中的纯烧碱量.
解 设需要浓度为10%的烧碱溶液x 千克,浓度为60%的烧碱溶液y 千克,
根据题意,得 ⎩⎨⎧+=+=+)2(
).%(30%60%10)1( ,50y x y x y x 解得 ⎩
⎨⎧==.20,30y x 答:需要浓度为10%的烧碱溶液30千克,浓度为60%的烧碱溶液20千克.
例3 解 设甲地到乙地的上坡路为x 千米,下坡路为y 千米,则平路为)70(y x --千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧=--++=--++.3.2307020
40,5.230704020y x y x y x y x
解得 ⎩
⎨⎧==,4,12y x 则.5470=--y x 答:从甲地到乙地上坡路12千米,下坡路4千米,平路54千米.
例4 分析 可设购买甲、乙、丙三种纪念品的件数分别为x 、y 、z .在题目中有两个相等关系:“购买乙种纪念品的件数比购买甲种纪念品的件数多2件”,“购买甲、乙、丙三种纪念品恰好用了66元钱”.根据这两个相等关系可以列出两个关于x 、y 、z 的方程.但这里有三个未知数,只列出了两个方程是无法求出它们的解的,注意到题目中还有两个限制条件:“购买甲种纪念品的件数不少于10件”,“购买甲种纪念品的费用不超过总费用的一半”.有了这两个条件,就确定了x 的取值范围,而x 必为正整数,因此可求出x 的值,从而求出另外两个求知数.
解 设购买的甲、乙、丙三种纪念品的件数分别为x 、y 、z ,根据题意,有 ⎩⎨⎧+==++.2,6623x y z y x 则⎩
⎨⎧-=+=.562,2x z x y ∵ 10≥x ,且2
663≤x ,∴ 1110≤≤x ,又∵ x 为整数,∴ 10=x 或11=x . (1)当10=x 时,;121056212210=⨯-==+=z y ,
(2)当11=x 时,.71156213211=⨯-==+=z y ,
答:可有两种购买方案:第一种方案:购买甲种纪念品10件、乙种12件、丙种12件;第二种方案:购买甲种纪念品11件、乙种13件、丙种7件.
例 5 分析 本题中有两个未知数——规格为25.8米长水管的根数与规格为
25.6米长水管的根数.题目中恰有两个相等关系:
(1) 25.8米长的水管根数十25.6米长水管根数=100根
(2) 25.8米长水管总米数十25.6米长水管的总米数=线路的总米数 解 设25.8米长规格的水管需x 根,25.6米长规格的水管y 根,
根据题意,得⎩⎨⎧=+=+695
25.625.8100y x y x 解这个方程组,得⎩
⎨⎧==6535y x 答:需规格为25.8米长的水管35根,需规格为25.6米长的水管65根.
说明:在实际生活中,我们常常遇到象例1这样的问题,我给出的解法是列出二元一次方程组求解.同学们想一想,还有没有其他的方法?能不能列出一元
一次方程来解呢?如果能,比较两者的不同,看一看哪种方法简单?然后自己归纳出列二元一次方程组解应用题的步骤.
例6 分析 本题有两个未知数——甲仓库原存粮与乙库原存粮;有两个相等关系:
(1)甲仓库原存粮吨数+乙仓库原存粮吨数=95吨
(2)乙仓库剩余粮食吨数=2倍甲库剩余粮食吨数
解 设甲仓库原存粮食x 吨,乙仓库原存粮食y 吨, 根据题意,得⎪⎩
⎪⎨⎧-=-=+x y y x )321(2%)401(95 解这个方程组,得 ⎩⎨⎧==40
45y x 答:甲仓库原存粮食45吨,乙仓库原存粮食50吨.
例7 分析 这里有两个未知数——甲、乙两人的速度.有两个相等关系:
(1)甲先走2小时的行程+甲乙在2.5小时内走的行程=36千米
(2)甲乙3小时走的行程+乙在2小时内走的行程=36千米
解 设甲的速度为x 千米/小时,乙的速度为y 千米/小时,
根据题意,得⎩⎨⎧=+=+36
53365.25.4y x y x 解方程组,得 ⎩
⎨⎧==6.36y x 答:甲的速度为6千米/小时,乙的速度为3.6千米/小时.
例8 分析 这里有两个未知数——规定时间和A 、B 两地间距离.有两个相等关系:
(1)员速度以35公里/小时走完全程用的时间-2小时=规定时间
(2)通讯员速度为50公里/小时走完全程用的时间+1小时=规定时间
解 设A 、B 两地间的距离为x 公里,规定时间为y 小时.
根据题意,得⎪⎪⎩⎪⎪⎨⎧=+=-y x y x 150
235
解方程组,得 ⎩
⎨⎧==8350y x 答:A 、B 两地间的距离为350公里.
例9 分析 这里有两个未知数——生产螺钉的人数和生产螺母的人数.有两个相等关系:
(1)生产螺钉的人数+生产螺母的人数=总人数(81名)
(2)每天生产的螺钉数=每天生产的螺母数
解 设生产螺钉的工人有x 名,生产螺母的工人有y 名,
根据题意,得⎩
⎨⎧==+y x y x 9612081 解方程组,得 ⎩⎨⎧==45
36y x 答:生产螺钉的工人有36名,有45名工人生产螺母,才能使每天生产出来的零件及时包装运进库房.
例10 分析 这里有两个未知数——甲工程队每天修路的千米数和乙工程队每天修路的千米数;有两个相等关系:
(1)甲2天修路的长+甲、乙合修2天的公路长=公路总长
(2)乙2天修路的长+甲、乙合修3天的公路长=公路总长
解 设甲每天修公路x 千米,乙每天修公路y 千米,
根据题意,得 ⎩
⎨⎧=++=++420)(32420)(22y x y y x x 解方程组,得 ⎩
⎨⎧==3090y x 答:甲每天修公路90千米,乙每天修公路30千米.
例11 分析 题中有两个未知数,即甲乙两物体速度,题中“每15秒相遇一次”就是15秒两物体经过路程之和是600米,“每分钟相遇一次”就是60秒甲物体要比乙物体多运动一周,故有两个等量关系.
解 设甲物体速度为x 米/秒,乙物体为y 米/秒.
根据题意得解得⎩
⎨⎧=-=+,60060606001515y x y x 解得⎩⎨⎧==.
1525y x 答:甲乙两物体速度为25米/秒,15米/秒.
说明:解此题关键是找出甲、乙两物体同向、反向运动路程之间的相等关系,必要时可画出两物体运动的轨迹示意图,帮助找相等关系.。

相关文档
最新文档