用配方法求解一元二次方程导学案
2022年初中数学精品导学案《配方法 》导学案

第2课时配方法一、新课导入1.导入课题:情景:请把方程(x+3)2=5化成一般形式,并由一名学生口答.问题:(追问)那么你能将方程x2+6x+4=0转化为(x+3)2=5的形式吗?由此导入课题.(板书课题)2.学习目标:(1)知道用配方法解一元二次方程的一般步骤,会用配方法解一元二次方程.(2)通过配方进一步体会“降次〞的转化思想.3.学习重、难点:重点:用配方法解一元二次方程.难点:配方的方法.二、分层学习1.自学指导:(1)自学内容:教材第6页“探究〞到第7页例1上面的局部.(2)自学时间:6分钟.(3)自学方法:完成下面的探究提纲,如果觉得有困难就先完成②,③,再完成①.(4)探究提纲:①解方程x2+6x+4=0.移项:把常数项移到方程的右边,得x2+6x= -4;配方:两边都加9,使得左边配成x2+2b x+b2的形式,得x2+6x+9=;变形:把左边写成完全平方形式,得(x+3)2=5;降次:运用平方根的定义把方程转化为两个一元一次方程,得x+3=±;求解:解两个一元一次方程,得x1=-3, x2= --3.②回忆完全平方公式填空:a2+2ab+b2=(a+b )2,x2+6x+9=(x+3)2.③为什么要在x2+6x=-4两边加9而不是其他数?因为两边加9,式子左边可以恰好凑成完全平方式.2.自学:学生可参考自学指导进行自学.3.助学:①明了学情:了解学生配方时的难点和易错点.②差异指导:根据具体情况指导学生配方.(2)生助生:小组内相互交流研讨,订正错误.4.强化:(1)配方的依据和步骤.(2)试一试:对以下各式进行配方:1.自学指导:(1)自学内容:教材第7页到第9页的例1.(2)自学时间:10分钟.(3)自学方法:认真阅读分析和解答过程,注意把方程转化为你能解的形式.(4)自学参考提纲:①仿照方程x2+6x+4=0的解法解方程(1),然后对照课本纠错.②方程(2)、(3)中是怎样化二次项系数为1的?方程两边同除以原二次项的系数③方程(3)没有实数根的依据是什么?实数的平方是非负数.④用配方法解一元二次方程时,移项时要注意些什么?移项时需注意改变符号.⑤请小结用配方法解一元二次方程的一般步骤.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.⑥解方程(x+n)2=p.①当p>0时,那么x+n=±,方程的两个根为x1=-n, x2= --n.②当p=0时,那么(x+n)2=0,开平方得x+n=0,方程的两个根为x1=x2= -n.③当p<0时,那么方程(x+n)2= p无实数根.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:主要了解学生解方程配方时是否存在困难,计算是否错误,书写格式是否标准.②差异指导:针对学生在学习中出现的问题予以指导.(2)生助生:生生互动,交流研讨.(1)用配方法解一元二次方程的一般步骤.(2)用配方法解方程:三、评价1.学生的自我评价(围绕三维目标):你会用配方法解一元二次方程吗?本节课你学习了哪些知识?2教师对学生的评价:(1)表现性评价:点评学生的学习参与情况、小组交流协作状况、学习效果及缺乏等.(2)(教学反思):(1)本节课,重在让学生自主参与,进而获得成功的体验,在数学方法上,仍突出数学研究中转化的思想,激发学生产生合理的认知冲突,激发兴趣,建立自信心.(2)在练习内容上,有所改良,加强了核心知识的理解与稳固,提高了自己解决问题的能力,感受数学创造的乐趣,提高教学效果.(3)用配方法解一元二次方程是学习解一元二次方程的根本方法,后面的求根公式是在配方法的根底上推出的,配方法在使用时又与原来学习的完全平方式联系密切,用配方法解一元二次方程既是对原来知识的稳固,又是对后面学习内容的铺垫.在二次函数顶点坐标的求解中也同样使用的是配方法,因此配方法是一种根本的数学解题方法.(时间:12分钟总分值:100分)一、根底稳固(70分)1.(10分)用配方法解方程-x2+6x+7=0时,配方后得的方程为(B)A. (x+3)2=16B. (x-3)2=16C. (x+3)2=2D. (x-3)2=22.(20分)填空.(1) 4x2+4x+1=(2x+1)2(2) x2-x+=(x-)23.(40分)用配方法解以下方程.(1)x2+10x+9=0;(2)4x2-12x-7=0;解:移项,x2+10x=-9, 解:移项,4x2-12x=7,配方,x2+10x+25=16, 系数化为1,x2-3x=,(x+5)2=16, 配方,x2-3x+=4,x+5=±4, ( x-2=4,方程的两个根为x1=-1,x2= -9. x-=±2,方程的两个根为x1=72,x2= -12.(3) x2+4x-9=2x-11; (4) x(x+4)=8x+12解:移项,x2+2x= -2, 解:化简移项,x2-4x=12,配方,x2+2x+1= -1, 配方,x2-4x+4=16,(x+1)2= -1, (x-2)2=16,方程没有实数根. x-2=±4,方程的两个根为x1=6,x2= -2.二、综合应用(10分)4.(10分)用配方法解方程4x2-x-9=0.三、拓展延伸(20分)5.(20分) 当a为何值时,多项式a2+2a+18有最小值?并求出这个最小值.解:对原式进行配方,那么原式=(a+1)2+17∵(a+1)2≥0,∴当a= -1时,原式有最小值为17.第2课时单项式一、导学1.课题导入:我们的学习引言与上节例1中出现了如下一些式子:100t,0.8p,mn,a2h,-n,这些式子有什么特点呢?它叫做什么式呢?板书课题:单项式.2.三维目标:〔1〕知识与技能①能表达并理解单项式及单项式的系数,次数的概念.②会正确确定一个单项式的系数和次数.〔2〕过程与方法通过观察式子探究单项式的意义,学会归纳和总结.〔3〕情感态度培养应用数学的意识.3.学习重、难点:重点:单项式、单项式的系数、次数的意义.难点:确定单项式的次数和系数.4.自学指导:(1)自学内容:教材第56页“思考〞至第57页“思考〞上面的内容. 〔2〕自学时间:8分钟.〔3〕自学要求:仔细阅读课文,圈点重要内容和提示,结合例题进一步理解概念.(4)自学参考题纲:①什么叫做单项式?什么叫做单项式的系数和次数?式子是数字或字母的积,系数是单项式中的数字因数,次数是单项式中的所有字母的指数和.②以下各式是不是单项式?为什么?23, -m, 0, 2x , 12a 2b, 213x +, -2x y πa 3πabc, (π-3)aR 2 213x +和(π-3)aR 2因为含有加减号,所以不是单项式,而2x和-2x y πa 因为分母中有字母,所以也不是单项式.③填表二、自学学生结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:教师巡视课堂了解学生学习情况,针对性地抽查局部学生的自学提纲完成情况.〔2〕差异指导:对个别学生不能正确确定系数、指数的情况进行点拨指导.2.生助生:引导学生相互交流帮助解决一些疑难问题.四、强化1.概念:单项式;单项式的系数;单项式的次数.2.考前须知:(1)圆周率π是常数.(2)当一个单项式的系数是1或-1时,“1〞通常省略不写,如x2,-a2b等.(3)系数是-1时,1省略不写,但“-〞号不能省.(4)单项式次数只与字母指数有关.3.练习:〔1〕判断以下各式是否是单项式.如果不是,请说明理由;如果是,请指出它的系数和次数.x+1(×);1x (×) ;πr2(√);-32a2b(√);22(2)3x y(√)第三、四、五个式子是数字与字母乘积的形式所以是单项式. 系数和次数:πr2:系数:π;次数:2-3 2a2b:系数:-32;次数:322(2)3x y -:系数:2(2)3-;次数:3. 第一个式子有加号,第二个式子分母里有字母,都不是单项式. 〔2〕下面的判断是否正确?-7xy 2的系数是7;(×)-x 2y 3与x 3没有系数;(×)-ab 3c 2的次数是1+3+2 = 6(√);-a 3的系数是-1;(√) -32x 2y 3的次数是7;(×)13πr 2h 的系数是13.(×) 五、评价1.学生的自我评价〔围绕三维目标〕:学生自我评价本节课的学习表现和收获以及存在的缺乏.2.教师对学生的评价:〔1〕表现性评价:教师对本节课学习中大家在自主学习和交流学习中的表现进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时内容是概念学习课,教学过程要重点展示概念的形成过程,由学生观察、分析、比拟,找出单项式的共同特点,教学时可充分让学生利用小组交流的方式探索出法那么,并在应用时互相学习.一、根底稳固〔第1、2、3题每题10分,第4题20分,共50分〕1.〔40分〕在代数式3ab ,x,xy-1,1, 2a b +,3x 中,单项式有3ab ,x,1. 2.(30分)填表:二、综合应用〔每题15分,共30分〕3.〔20分〕(1)假设2x 2y m-2a 是6次单项式,试求m 的值;(2)假设〔m-5〕x2y|m|-2a是6次单项式,试求m的值. 解:〔1〕∵2+m-2+1=6,∴m=5.〔2〕∵|m|-2=3且m≠5,∴m=-5.三、拓展延伸〔20分〕4.(10分)以下单项式:-x,2x2,-3x3,4x4,…(1)根据它们的排列规律,写出第101,102个单项式;(2)写出第n个单项式的表达式.解:〔1〕-101x101,102x102.〔2〕n(-x)n.。
配方法第二课时

数学八年级下册 用配方法解方程第2课时导学案一、学习目标:1、理解配方法,会用配方法解简单的数字系数的一元二次方程.2、 经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界数量关系的一个有效数学模型,增强学生运用数学的意识和能力.3、体会转化的数学思想方法。
二、重点、难点:重点:利用配方法解一元二次方程。
难点:把一元二次方程通过配方转化为(x +m )2=n(n ≥0)的形式. 三、教学过程: 1、 温故解惑: (1)将一元二次方程转化为(x+m)2=n(n ≥0)的形式后,再利用 就可以求解。
(2)方程(x+4) 2 =25的解为(3)完全平方式:式子a 2±2ab+b 2叫完全平方式,且 a 2±2ab+b 2 =(4)①x 2+8x+ =(x+4)2 ② x 2-4x+ =(x - )2③x 2- ___ x+9=(x - _ )2④x 2-3x + =(x - )2 ⑤ x 2+x+ =(x + )2 2、探究点拨:(1)、在上面等式的左边,常数项和一次项系数有什么关系? (2)、填空① x 2+4x+1= x 2+4x + - + 1=(x + )2-3② x 2-8x-9 =x 2-8x + - - 9 =(x - )2-③x 2+3x-4 = x 2+3x+ - - 4 =(x + )2-(3)你能将方程x 2+8x -9=0你能将它转化为(x+m)2=n(n ≥0)的形式吗?例2:解方程:015122=-+x x巩固练习:解方程(1)162=+x x (2)132-=-x x例3:解方程:03832=-+x x巩固练习:(1)x x 7622=+ (2)x x 2452-=3、整合拓展:(1)学生归纳用配方法解一元二次方程的步骤: (2)、一小球以15m/s 的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系: h=15t-5t 2 .小球何时能达到10m 的高度? 4、信息反馈:①+-x x 222 =-x ( 2)②0136422=+-++y x y x ,y x y x 为实数,则,=(3)、解方程:① 09922=--x x ② 2322=+x xB 、一面积为120m 2的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少?。
配方法解一元二次方程导学案

5.已知(x+y)(x+y+2)—8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.(这种方法叫换元法)
6、用配方法解方程:
(1)x2+8x-2=0 (2)3x2-5x-6=0.
原方程的解是x1=_____,x2=_1.
方程左边配方,得x2+3x+( )2=-1+____,
即_____________________
所以__________________
原方程的解是x1=____________;x2=___________.
总结规律
1、请说出完全平方公式
我们知道,形如 的方程,可变形为 ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如 的一类方程(注意其中二次项的系数为1),化为上述形式求解呢?这正是我们这节课要解决的问题.
2、配方、填空:
(1) +6x+( )=(x+ ) ;
(2) —8x+( )=(x—) ;
(3)x2-8x+( )=(x- )2;
(4)x2+ x+( )=(x+ )2;
填完后,想一想你所填写的常数项与一次项系数有什么关系吗?说出你的想法。
的是().
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1
C.x2+8x+42=1 D.x2-4x+4=-11
3.方程x2+4x-5=0的解是________.
(3) +8x-2=0(4) -5x-6=0.
2、用配方法解下列方程:
用公式法+配方法求解一元二次方程 导学案

3 用公式法求解一元二次方程第1课时1.会用配方法解一般的字母系数的一元二次方程,掌握ax2+bx+c=0(a≠0)形式的方程的解法.2.知道一元二次方程的求根公式,会用公式法解一元二次方程.3.重点:一元二次方程的求根公式.知识点一阅读教材本课时“例题”前面的内容,完成下列问题.用配方法解方程ax2+bx+c=0(a≠0).两边都除以一次项系数a,得x2+x+=0.1.为什么可以两边都除以一次项系数a?a≠0.配方:加上再减去一次项系数一半的平方,x2+x+()2-+=0,即 (x+)2-=0,(x+)2=.2.现在可以两边开平方吗?不可以,因为不能保证≥0.3.什么情况下≥0?并完成后面的解答过程.∵a≠0,∴ 4a2>0,要使≥0,只要使b2-4ac≥0即可.4.用配方法解ax2+bx+c=0(a≠0),两边直接开平方可得x= ,这个式子称为一元二次方程的求根公式.【归纳总结】一般地,对一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是知识点二阅读教材本课时“例题”及其后面的内容,完成下列问题.1.在例题第(2)小题中,方程变形为一般形式是为确定a、b、c的值.2.公式法解一元二次方程的一般步骤:(1)化简:把方程化为一般形式,从而确定a、b、c的值;(2)定根:求出b2-4ac的值,并与0比较大小,判断方程是否有根;(3)代值:在b2-4ac≥0的前提下,把a、b、c的值代入求根公式x=,计算后得到方程的根.3.若b2-4ac <0,则求根公式无意义,即一元二次方程无实数根.【归纳总结】一元二次方程ax2+bx+c=0(a≠0)的根可以由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母“Δ”表示.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.互动探究一:若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是(A )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断互动探究二:方程x(x+3)=14的解是(B)A.x=B.x=C.x=D.x=互动探究三:已知k≠1,一元二次方程(k-1)x2+kx+1=0有实数根,则k的取值范围是(D)A.k≠2B.k>2C.k<2且k≠1D.k为一切不是1的实数互动探究四:关于x的一元二次方程ax2-3x-2=0有实数根,求a的取值范围.解:当a≠0时,Δ=9+8a≥0,有实数根,解得a≥-,又∵ax2-3x-2=0是一元二次方程,∴a≠0.即a≥-且a≠0.第2课时1.通过一元二次方程的建模过程,体会方程的解必须符合实际意义,增强用数学的意识,巩固用配方法解一元二次方程.2.判断一元二次方程的根符合代数意义的同时是否符合实际意义.3.重点:一元二次方程的根是否符合实际意义.知识点阅读教材本课时“习题2.6”之前的内容,完成下列问题.1.如图所示的是小明设计的方案,其中花园四周小路的宽度都相等.(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?(16-2x)(12-2x)=×16×12.(2)一元二次方程的解是什么?x1=2,x2=12.(3)(16-2x)和(12-2x)分别表示矩形花园的长和宽,则x的取值范围是什么?解得x<6,又x>0,所以x的取值范围是0<x<6.(4)这两个解虽然都符合代数意义,但x= 12不符合实际意义.2.小亮的设计方案如图所示,其中花园每个角上的扇形都相同.(1)设花园四周小路的宽度均为x m,可列怎样的一元二次方程?πx2=×16×12.(2)一元二次方程的解是什么?x1=,x2=-.(3)符合x>0的实际意义的解是多少?x1=.3.小颖设计的方案如下:在矩形的四个角上建造花园,中间用互相垂直且宽度相同的两条通路隔开.请你帮她求出通路的宽.解:设通路的宽为x m.根据题意列方程:(16-x)(12-x)=×16×12,解得x1=4,x2=24.当x= 24时,24-x<0,所以不符合题意,舍去.【归纳总结】对于方程ax2+bx+c=0(a≠0),若Δ>0,则方程的两根x1、x2都符合代数意义,但在实际的一元二次方程应用中,符合代数意义的根不一定符合实际意义.互动探究一:如图①,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为 1 米.图①图②互动探究二:在一幅长80 cm,宽50 cm的长方形风景画的四周镶一条宽度均匀的金色纸边,制成一幅长方形挂图(如图②),若整幅挂图的面积为5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是(80+2x)(50+2x)=5400.互动探究三:如图,利用一面长25 m的墙,用50 m长的篱笆,围成一个长方形的养鸡场.怎样才能围成一个面积为300 m2的长方形养鸡场?解:(1)设养鸡场的宽为x m,则长为(50-2x)m.由题意列方程,得x(50-2x)=300,解得x1=10,x2=15.当x1=10时,50-2x=30>25不合题意,舍去;当x2=15时,50-2x=20<25符合题意.答:当宽为15 m,长为20 m时可围成面积为300 m2的长方形养鸡场.互动探究四:小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2,他的说法对吗?请说明理由.解:(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x ) cm.由题意得x2+( 10-x )2=58 .解得x1=3,x2=7.4×3=12,4×7=28.所以小林应把绳子剪成 12 cm和28 cm的两段.( 2 )假设能围成.由(1)得,x2+( 10-x )2=48 .化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0 ,所以此方程没有实数根,所以小峰的说法是对的.2 用配方法求解一元二次方程1.会用直接开平方法解形如(x+m)2=n(n≥0)的方程.2.会用配方法解一元二次方程,知道配方法的解题步骤.3.重点:会用配方法解一元二次方程.【旧知回顾】若一个数的平方等于4,则这个数是±2 ,若一个数的平方等于7,则这个数阅读教材本课时“议一议”,完成下列问题.1.根据平方根的定义填空:如果方程能够化成x2=n(n≥0)或(x+m)2=n(n≥0)的形式,那么x=±或x+m= ±.2.你会解下列一元二次方程吗?试一试.(1)x2=5;(2)2x2+3=5;(3)x2+2x+1=5;(4)(x+6)2+72=102.(1)x1=,x2=-;(2)x1=1,x2=-1;(3)x1=-1,x2=--1;(4)x1=-6,x2=--6.【归纳总结】在解上面方程的过程中,都可以将方程转化为(x+m)2=n的形式,它的一边是阅读教材本课时第一个“做一做”与“例1”,完成下列问题.1.填上适当的数,使下列等式成立.(1)x2+12x+ 36=(x+6)2;(2)x2-2x+ 1=(x- 1)2;(3)x2+8x+ 16=(x+ 4)2.2.上面等式的左边,常数项和一次项系数有什么关系?常数项等于一次项系数的一半的平方.3.用配方法解一元二次方程的步骤:(1)将方程化为一般形式;(2)将常数项移到等号的右阅读教材本课时“例2”,完成下列问题.1.在“例2”中,第一步的作用是什么?把二次项的系数化为1.2.如果第二步移项,第三步配方,能得到方程(x+)2=吗?试一试.可以.第一步:两边都除以3,得x2+x-1=0,第二步:移项,得x2+x=1,第三步:配方,得x2+x+()2=1+()2,(x+)2=.3.完成教材本课时第二个“做一做”.当h=10时,10=15t-5t2,解这个方程,得t1=1,t2=2.因此在1秒或2秒时,小球才能达到10 m高.【归纳总结】用配方法解二次项系数不为1的一元二次方程的步骤:(1)将方程化为一般形式,化二次项系数为1,即方程两边同时除以二次项系数;(2)配方;(3)移项,使方程变形为(x+m)2=n的形式;(4)利用直接开平方解方程即可.互动探究一:关于x的方程x2=m的解为(D)A.B.-C.±D.当m≥0时,x=±,当m<0时,方程没有实数根互动探究二:运用直接开平方法解方程:(2x-3)2=(x+2)2.解:2x-3=x+2或2x-3=-(x+2)∴x1=5,x2=.【方法归纳交流】原方程可看作(x+m)2=n的形式,运用直接开平方就可将原方程转化为两个一元一次方程,即可求解.互动探究三:用配方法证明x2-4x+5的值不小于1.证明:x2-4x+5=x2-4x+4+1=(x-2)2+1,∵无论x取何值,(x-2)2≥0,∴(x-2)2+1≥1,即x2-4x+5的值不小于1.互动探究四:如图,在一块长92 m,宽60 m的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为885 m2的6个矩形小块,水渠应挖多宽?解:设水渠的宽度为x m.(92-2x)(60-x)=885×6.解得x1=105(不合题意,舍去),x2=1,∴x=1.答:水渠的宽度为1 m.*互动探究五:如果多项式P=2a2-8ab+17b2-16a+4b+1999,那么P可以等于800吗?解:P=2a2-8ab+17b2-16a+4b+1999=(a2-16a+64)+(b2+4b+4)+(a2-8ab+16b2)+1931=(a-8)2+(b+2)2+(a-4b)2+1931.∵(a-8)2和(b+2)2和(a-4b)2均为非负数,∴P不能等于800.【方法归纳交流】最值问题在下册将会细讲,此处带星号稍作了解.求代数式的最值问题,需要先配方,然后再利用平方数的非负性去判断最值的情况.见《导学测评》P12。
2 用配方法求解一元二次方程 第1课时 用配方法解二次项系数为1的一元二次方程 导学案

2用配方法求解一元二次方程第1课时 用配方法解二次项系数为1的一元二次方程 导学案学习目标1、会用配方法解二次项系数为1的一元二次方程,探究配方法的意义。
2、通过以前所学的开平方方法,初步了解配方法;3、牢记配方法的一般步骤.学习过程一.复习回顾:1.利用直接开平方法解下列方程(1)9x 2=1 (2)(x+3)2=52.能利用直接开平方法求解的一元二次方程具有什么特征?3.下列方程能用直接开平方法来解吗?(1)x 2+12x+36=9(2)x 2+6x-15=0二.新课学习:1.例题练习交流探讨并回答问题:(1)你会如何解此方程:x 2-6x-40=0 呢?移项,得 x 2-6x= 40方程两边都加上32(一次项系数一半的平方),得x 2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =±7即 x-3=7或x-3=-7所以 x 1=10,x 2=-4(2)做一做,填一填(1)x 2+2x+ =(x+ )2(2)x 2-8x+ =(x- )2(3)y 2+5y+ =(y+ )2(4)y 2-21y+ =(y- )2问题:你能从中总结出什么规律吗?2、例题学习并思考下列问题:例1: 用配方法解方程:x 2+12x-15=0解:移项得x 2+12x=15,两边同时加上62得,x 2+12x+62=15+36,即(x+6)2=51两边开平方,得x 1=651-;x 2=-651-(1)配方法的特点?(2)配方法的步骤?三.尝试应用:1、用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x +=B .2(2)9x +=C .2(1)6x -=D .2(2)9x -= 2、用配方法把方程210x x +-=化为21()2x m +=,则m= .3、用配方法解方程:x 2-23x+118=0;四.自主总结:1、配方法:通过配成 的方法得到了一元二次方程的根,这种解一元二次方程的方法称为 .2、用配方法解一元二次方程的步骤::把常数项移到方程的右边;:方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式:根据平方根意义,方程两边开平方;:解一元一次方程;:写出原方程的解.五.达标测试一、选择题1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x+2)2=3B .(x-2)2=3C .(x-2)2=5D .(x+2)2=52.用配方法解一元二次方程x 2-4x+3=0时可配方得( )A .(x -2)2=7B .(x -2)2=1C .(x+2)2=1D .(x+2)2=23.用配方法将代数式a 2+4a-5变形,结果正确的是( )A. (a+2)2-1B.(a+2)2-5 C.(a+2)2+4 D.(a+2)2-9 二、填空题4.填上适当的数,使下面各等式成立:(1)x 2+3x+_______=(x+________)2;(2)_______-3x+14=(3x_______)2; (3)4x 2+_____+9=(2x________)2; (4)x 2-px+_______=(x-_______)2;(5)x 2+b a x+_______=(x+_______)2.5.x 2x+_____=(x-______)2.6.在横线上填上适当的数或式,使下列等式成立:(1)x 2+px+________=(x+_______)2;(2)x 2+b ax+_________=(x+_______)2 三、解答题7.用配方法解方程:(1)x 2+4x-3=0(2)x 2﹣4x+1=0.达标测试答案:一、选择题1.A .【解析】试题分析:移项得,x 2+4x=-1,配方得,x 2+4x+22=-1+4,(x+2)2=3,故选A .2.B 【解析】原方程化为22441,(2)1,x x x -+=-=故选B3.D 【解析】a 2+4a-5=a 2+4a+4-4-5=(a+2)2-9,故选D .二、填空题 4.(1)93,42;(2)9x 2,12-;(3)12x ,+3;(4)2,42p p ;(5)22,42b b a a5.12;2 【解析】试题分析:根据常数项等于一次项系数一半的平方,即可得到结果。
初中数学_用配方法求解一元二次方程教学设计学情分析教材分析课后反思

《用配方法解一元二次方程》教学设计一、教材内容分析配方法是以直接开方法为基础的对一元二次方程解法的探究,是一个由特殊到一般的思考和发现过程。
首先,对继续学习后面的公式法有着指导和铺垫的作用,同时也是学习二次函数等知识的基础,所以它既是第三学段数与代数的重点内容,更是今后继续学习的重要基础。
其次,在探索配方法以及用配方法解一元二次方程的过程中所体现转化的数学思想方法,以及归纳的数学思维方法,不仅有助于学生掌握知识、技能和方法,而且体会学习数学和研究数学的一般规律,提升数学的思维能力。
二、学情分析在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了一些利用方程解决实际问题的经验,解决了一些实际问题。
但生活中有关方程的模型并不都是线性的,另一种方程——一元二次方程在现实生活中具有同意广泛的应用。
本章研究一元二次方程的有关概念、解法和应用等。
本节课是在学生已经学习了本章的第一课——认识一元二次方程的基础上进行的。
并且七年级已经学过的一元一次方程的解法、完全平方公式,八年级学习的平方根的定义都为本节课的学习打下基础。
三、教学目标确定知识与技能目标:1. 能够根据平方根的意义解形如2()(0)x m n n +=≥ 的方程。
2. 理解配方法,会用配方法解简单的数字系数的一元二次方程。
过程与方法目标:经历配方法解一元二次方程的过程,进一步体会转化的数学思想方法以及归纳的思维方法。
情感、态度与价值观目标:培养学生主动探究的精神与积极参与的意识,增强学生学好数学的自信,体会用数学解决问题的乐趣。
四、教学重点、难点确定1. 教学重点:理解配方法,会用配方法解简单的数字系数的一元二次方程。
2. 教学难点:准确地对一元二次方程进行配方,关键是掌握完全平方式的结构特征。
五、教学方法分析本节课堂教学的过程着重关注了两个方面的情况:一是关注学生对配方法的自主探究与合作交流的过程,发展学生思维能力。
《一元二次方程的解法—配方法(2)》导学案

第3课时一元二次方程的解法一、知识目标1、会用配方法二次项系数不为1的一元二次方程.2、经历探究将一般一元二次方程化成()0()2≥=+n n m x 形式的过程,进一步理解配方法的意义。
3、在用配方法解方程的过程中,体会转化的思想。
重点:使学生掌握用配方法解二次项系数不为1的一元二次方程 难点:把一元二次方程转化为的(x +m )2= n (n ≥0)形式二、知识准备1、用配方法解下列方程:(1)x 2-6x-16=0; (2)x 2+3x-2=0;2、请你思考方程x 2-25x+1=0与方程2x 2-5x+2=0有什么关系三、学习内容如何解方程2x 2-5x+2=0点拨:对于二次项系数不为1的一元二次议程,我们可以先将两边同时除以二次项系数,再利用配方法求解四、典型例题例1、解方程:01832=++x x例2、-01432=++x x五、知识梳理1、对于二次项系数不为1的一元二次方程,用配方法求解时要注意什么2、用配方法解一元二次方程的步骤是什么系数化一,移项,配方,开方,解一元二次方程六、达标检测1、填空:(1)x 2-31x+=(x-)2, (2)2x 2-3x+=2(x-)2. (3)a 2+b 2+2a-4b+5=(a+)2+(b-)22、用配方法解一元二次方程2x 2-5x-8=0的步骤中第一步是。
3、方程2(x+4)2-10=0的根是.4、用配方法解方程2x 2-4x+3=0,配方正确的是()+4=3+4 B. 2x 2-4x+4=-3+4 +1=23+1 D. x 2-2x+1=-23+1 5、用配方法解下列方程:(1)04722=--t t ;(2)x x 6132=-(3)x x 10152=+(4) 3y 2-y-2=06、已知(a+b)2=17,ab=3.求(a-b)2的值.七、学习反馈:1、本节课有困惑的题目是:2、本节课的学习收获是:。
一元二次方程的解法——配方法

自组
主内
预交
习流
(8’)
一、复习提问:
问题1:一元二次方程的一般形式是什么?
问题2:具有什么结构特征的一元二次方程能用直接开平方法解?
二、自主学习:
1、用直接开平方法解方程:①(x-2)²=5②x2-4x+4=5
2、思考:怎样解方程:x2-4x-1=0
二
合
作
探
究
10'
(三)
分合
配作
任探
务究
(10’)
A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1
5、若a2+2a+b2-6b+10=0,则a=,b=。
6、证明:代数式x2+4x+ 5的值不小于1.
7、用配方法解下列方程:(1)x2-3x-1=0(2)y2+ y-2=0
(六)
知构
识建
归网
纳络
课堂小结(会思考、会总结,才会有收获哦!)
一、填上适当的数或式,使下列各等式成立.
(1) =()2(2) =()2
(3) =()2(4) =()2
(5) =()2
二、分析讨论:①等式左边的多项式中二次项的系数都是;
②等式左边所填的常数(或式)都有什么特点:;
三、现在你会解方程:x2-4x-1=0吗?
四、知识点归纳:
我们把一元二次方程的左边配成一个完全平方式,然后用开平方法求解,这种解一元二次方程的方法叫做
三
展
示
提
升
15’
(四)
展拓
示展
质提
疑升
(15’)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)x2+3x=1
(4)x2+2x+x=8x+4
四、练习 1.解方程 (1)x2+12x+25=0
(2)x2+4x=10
(3)x2-6x=11
(4)x2-9x+19=0
2/3
【作业布置】 【达标检测】
解方程: (1)12x+27=x2
(2)(x-2)2=(2x+3)2
【学习反思】
本节课你收获了什么?
1/3
2.学以致用 (1)x2+12x=1
(2)x2―12x=5
(3)x2+8x=—12
归纳 在例 1 中,我们通过______________________的完全平方式的方法得到了一元二次
方程的根,这种解一元二次方程的方法称为配方法。
三、巩固提高
解下列方程:
(1)x2-10x+25=7
(2)x2-14x=8
2.若 2x2=32 , 则 x=_____; 若 2 x2=8 2 ., 则 x=_____; 我发现:若 ax2=n ( n ≥0),则可以通过___________的办法求一元二次方程的解. a 思考:那么,形如 x2+12x=1,x2―12x=5,x2+8x=—12 这样的方程该如何求出它们的根
用配方法求解一元二次方程
【学习目标】
会用开方法解形如 (x m)2 n (n 0) 的方程,理解配方法,会用配方法解二次项系数为 1 的一元二次方程;
【学习重点】
用配方法解一元二次方程。
【学习难点】
理解配方法
一、学习准备
1.若 x2=1,则 x=______; 若 x2=28,则 x=______; 若 x2=a(a≥0),则 x=______;
3ቤተ መጻሕፍቲ ባይዱ3
____________________________________________________________________________________________ ____________________________________________________________________________________________ ____________________________________________________________________________________________ _______________________________________
呢?
二 、讲授新课
1.探索:配方:填上适当的数,使下列等式成立:
(1)x2+12x+
=(x+6)2
(2)x2―12x+
=(x―
)2
(3)x2+8x+
=(x+
)2
以上可知:当二次项系数为 1 时,常数项配上__________________________就可
配成一项完全平方
例 1 解方程:x2+8x-9=0.