材料力学 第4章 材料力学的基本假设与基本概念
工程力学C 第4章 材料力学的基本假设和基本概念

拉-弯组合变形
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
静载荷 交变载荷 即: 外力 动载荷 冲击载荷
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
应力 强度 外力 内力 应变 刚度
4.3.2 内力与截面法
F1
M1 F3
为什么?
Fn
答:它们的应力不同,细杆的应力大。
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
4.4
应力的概念
4.4.1 应力: 分布内力的集度或单位面积上的内力。 4.4.2 应力的定义 1. 截面上任一点C的全应力
DEPARTMENT OF ENGINEERING MECHANICS KUST
第二篇
Mechanics of Materials
材料力学
DEPARTMENT OF ENGINEERING MECHANICS KUST
第四章 材料力学的基本假设 和基本概念
Basic Assumptions and Concepts of Material Mechanics
FS FN M
第四章 材料力学的基本假设和基本概念Basic Assumptions and Concepts of Material Mechanics
材料力学
2. 截面法: 显示并求内力的方法。 步骤:P97 • 分二留一; • 内力代弃; • 内外平衡。 例4.1 :P97 注意: 内力与截面的形状和大 小无关,只与外力有关。
第4章 材料力学的基本概念

弹性杆件的外力与内力
材料力学中的内力不同于工程静力学中物体系统中各 个部分之间的相互作用力,也不同于物理学中基本粒子之 间的相互作用力,而是指构件受力后发生变形,其内部各
点(宏观上的点)的相对位置发生变化,由此而产生的附
加内力,即变形体因变形而产生的内力。 例如受拉的弹簧,其内力力图使弹簧恢复原状;人用手提
弹性杆件的外力与内力
作用在结构构件上的外力包括外加载荷和约束力, 二者组成平衡力系,外力分为体积力和表面力,简 称体力和面力。体力分布于整个物体内,并作用在 物体的每一个质点上。重力、磁力以及由于运动加 速度在质点上产生的惯性力都是体力。面力是研究 对象周围物体直接作用在其表面上的力。
Jiangsu Polytechnic University - Gao Guangfan
提出保证构件具有足够强度、刚度和稳定性的设计 准则与设计方法。 材料力学课程就是讲授完成这些工作所必需的基础 知识。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性
取任意一部分分析,由平衡方程计算出各个内 力分量的大小与方向。
考察另一部分的平衡,验证所得结果的正确性。
Jiangsu Polytechnic University - Gao Guangfan
材料力学概述
关于材料的基本假定
弹性杆件的外力与内力
弹性体受力与变形特征
杆件横截面上的应力 正应变与剪应变 构件受力与变形的四种基本形式 静力学原理在材力中的可用性与限制性
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学的任务、研究对象、基本假设、基本概念

单辉祖:材料力学Ⅰ
30
§2 材料力学的基本假设
单辉祖:材料力学Ⅰ
31
连续性假设
连续性:在构件所占有的空间内处处充满物质
构件内的一些力学量(例如各点的位移) 可用坐标的连续函数表示,也可采用无限小 的数学分析方法。
当空穴或裂纹不能
忽略时,采用断裂力
学方法专门研究。
裂纹
单辉祖:材料力学Ⅰ
33
均匀性假设 均匀性:材料的力学性能与其在构件中的位置无关
材料力学 :
研究在外力的作用下, 1)工程基本构件内部将产生什么力? 2)这些力是怎样分布的? 3)构件将发生什么变形? 4)这些变形对于工程构件的正常工作将会产生什么影响?
事关结构安全,重中之重!!!
单辉祖:材料力学Ⅰ
4
第1章 绪 论
本章主要内容:
(1)材料力学的任务与研究对象 (2)材料力学的基本假设 (3)材料力学的基本概念
➢ 外力与内力 ➢ 杆件变形形式 ➢ 应力、应变、胡克定律
单辉祖:材料力学Ⅰ
17
§1 材料力学的任务与研究对象
工程实例 构件的强度、刚度与稳定性 材料力学的任务 材料力学的研究对象
单辉祖:材料力学Ⅰ
18
构件的强度、刚度与稳定性
失效: 广义破坏,包括断裂与失稳等
强度失效是指构件在外力作用下发生不可恢复 的塑性变形或发生断裂。
G = 80 GPa,求 t = ?
解:
注意:g 虽很小,但因 G 很大,切应力 t 不小
单辉祖:材料力学Ⅰ
59
§7 杆件的变形形式
基本变形形式 组合变形形式
单辉祖:材料力学Ⅰ
60
基本变形形式
在外力作用下,杆件变形多种多样,但经分析,其变 形或属于下述基本形式之一,或为其组合
材料力学的基本假设

材料力学的基本假设
1.应力-应变的线性关系假设:在小变形范围内,材料的应力与应变
之间存在线性关系,即应力是应变的线性函数。
2.同性与各向同性假设:材料在各个方向上具有相同的物理性质,即
同性;在任意方向上的物理性质相同,即各向同性。
3.材料的连续性假设:材料在微观层面上具有连续性,即认为材料是
由无数微小的质点组成的,而且质点之间的距离可以被忽略。
4.材料的弹性本质假设:材料在受力后会发生形变,但当去除作用力时,材料会恢复原始形态,即弹性本质。
5.应力状态的平衡假设:材料在受力时,应力状态必须处于平衡状态,即所受的所有内部力的合力必须为零。
6.多轴应力状态的等效假设:将多轴应力状态转化为等效单轴应力状态,使得应力状态的分析变得简单。
7.破坏准则的假设:材料在受到超过一定程度的应力时会发生破坏,
该程度可以通过破坏准则进行描述。
材料力学的一些基本概念

材料力学材料力学基本概念基本概念Simwe :lian20041、强度:在载荷作用下构件抵抗破坏的能力;刚度:在载荷作用下构件抵抗变形的能力;稳定性:在载荷作用下构件保持稳定平衡的能力;2、基本假设:连续性假设:物体在其整个体积内充满了物质而毫无空隙,其结构是密实的; 均匀性假设:从物体内任意一点处取出的体积单元,其力学性能都能代表整个物体的力学性能;各向同性假设:材料沿各个方向的力学性能相同。
3、力学性能:材料在外力作用下所表现出来的变形和破坏方面的特征。
4、应力:受力杆件某一截面上一点处的内力集度。
正应力:垂直于截面的法向分量切应力:与截面相切的切向分量5、圣维南原理:力作用于杆端方式的不同,只会使与杆端距离不大于杆的横向尺寸的范围内受到影响。
6、一点处的应力状态:通过一点的所有不同方位截面上应力的全部情况。
7、线应变:每单位长度的伸长(或缩短)。
LL ∆=ε 8、胡克定律:当杆内的应力不超过材料的某一极限值(比例极限)时,杆的伸长△L 与其所受外力F 、杆的原长L 成正比,而与其横截面面积A 成反比。
引进比例常数E ,故有:EAL F L N =∆ 9、泊松比:当拉(压)杆内的应力不超过材料的比例极限时,横向线应变ε’与纵向线应变ε的绝对值之比为一常数,称此值为横向变形因数或泊松比。
εεµ'= 10、应变能:伴随弹性变形的增减而改变的能量称为应变能。
11、应力应变曲线:纵坐标表示名义应力,横坐标表示名义应变,这种能反应材料的力学性能的曲线图称为应力应变曲线。
比例极限:在弹性阶段内,应力应变符合胡克定律的最高限,与之对应的应力称为比例极限;弹性极限:弹性阶段的最高点卸载后不发生塑性变形的极限,与之对应的应力称为弹性极限;屈服极限:在屈服阶段内,应力有幅度不大的波动,最高点的应力为上屈服极限,最低点的应力为下屈服极限,通常将下屈服极限称为屈服极限;强度极限:在强化阶段,最高点对应的应力称为强度极限。
《工程力学》材料力学的基本概念

4.2外力及其分类
4.2.1 外力按作用方式分类
可分为体积力和表面力。体积力是场力,包括白重和惯性力,连续分布在物体内部各点处。体积力通常由其集度来度量 其大小,体积力集度就是每单位体积内的力。
表面力则是作用在物体表面的力,包括直接作用在物体止和经由周围其他物体传递来的外力,又可分为分布力和集中力。 分布力是在物体表面连续分布的力,如作用于油缸内壁的油压力、作用于水坝和船体表面的水压力、屋面亡的雪载荷等。表 面分布力也由其集度来度量其大小,表面分布力集度就是每单位面积上的力。有些分布力是沿杆件轴线作用的,如楼板对梁 的作用力,这时工程上常用的单位是K/m。若表面力分布面积远小于物体表面尺寸或轴线长度,则可视作集中力(作用于一 点),如火车轮对钢轨的压力、车刀对工件的作用力等。
随着外力作用方式的不同,杆件受力后所产生的变形也有差异。杆件变形的基本形式有以下四种:
4.4.1轴向拉伸或压缩 一对大小相等、方向相反、作用线与杆件轴线重合的外力作用在杆的两端,使杆件产生伸长或缩短,这种变形称为轴
向拉伸或压缩。例如,理想格架杆、托架的吊杆、液压缸的活塞杆、压缩机蒸汽机的连杆、门式机床和起重机的立柱都属于 此类变形,如图4-4所示。
工程力学
--材料力学的基本概念
ห้องสมุดไป่ตู้
4.1 变形固体的基本假设
工程上所用的构件都是由固体材料制成的,如钢、铸铁、木材、混凝土等,它们在外力作用下会或多或少地产生变形, 有些变形可直接观察到,有些变形可以通过仪器测出。在外力作用下,会产生变形的固体称为变形固体。
变形固体在外力作用下会产生两种不同性质的变形:一种是外力消除时,变形随着消失,这种变形称为弹性变形;另一 种是外力消除后,不能消失的变形称为塑性变形。只产生弹性变形的固体称为弹性体。材料力学仅研究弹性体的变形。
工程力学--轴向拉压杆的应力及变形

4.1 材料力学的基 本假设及基本概念
构件:机器、结构中的零、部件的统称。
杆件( bar): 板(plate): 平板、壳 块体( body) 板 壳 块 体
杆 件
第4章 拉压杆的应力及变形
杆:一个方向的尺寸远大于其它两个方向的尺 寸
纵向(长的一个方向) 横向(短的两个方向)
第4章 拉压杆的应力及变形
AB段
0 N1 F1 10kN
x x
N1 N2
F
F2
N3 F4
BC段
F
N kN
+
10
–
25 CD段
+
0 N 2 F2 F1 N 2 F1 F2 10 20 10kN Fx 0
N3 25kN
10
x
2、绘制轴力图。
第4章 拉压杆的应力及变形
单位:
FN 牛顿(N) A 平方米(m2)
dA
帕斯卡(pa)
1MPa = 106Pa
FN dA
A
1GPa = 109Pa
正应力符号规定:
FN dA
A
为拉应力,规定为正, 当FN为拉力时, 为压应力,规定为负. 当FN为压力时,
FN A
第4章 拉压杆的应力及变形
(2)剪切 外力特点: 作用在构件两侧面上的外力 合力大小相等、方向相反且作 用线很近。 变形特点: 位于两力之间的截面发生 相对错动。
剪切变形
第4章 拉压杆的应力及变形
4.1 材料力学的基 本假设及基本概念
(3) 扭转
外力特点: 在垂直于杆件轴线的两个 平面内,作用一对大小相等、 转向相反的力偶。 变形特点: 各横截面绕轴线发生相对转动.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.4 应变的概念
引例:
图示拉杆F 中画上的微小正方形F
4.5 杆件变形的基本形式 四、剪切
螺 栓 连 接
图4-6
(b) b
n
FS 0 , FN F , M Fa
mO
an m
F
mO
F
思考:如何求解截面n-n上的内力?
(a) 图4-6
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.3 应力的概念
2
2 2
C 2
C
2
C
2
M2 FN2
MFMS222
FN2 FN2
FS2 FS2
若不计B、C截面的受力情况,随着外力的增加,构件
将在哪一段先被拉断?
4.3 应力的概念
轴力除以横截面面积而得到的物理量比轴力本身更接 近于揭示材料破坏的规律。但是这种笼统地取平均值的方 法没有体现出横截面上可能存在的内力分布不均匀的事实。
4.1 材料力学的基本假设 三、各向同性假设
假设物体内任一点处沿各个方向的力学性能都相同。
各方向力学性能相同的材料称为各向同性材料,反之则是各 向异性材料。
四、线性弹性假设
假设构件卸载后的所有变形都能恢复, 且在加载时力与变形成正比关系。
F
Dl 0
F kl
4.1 材料力学的基本假设
五、小变形条件
1. 定义 构件内部相连部分之间的相互作用力。
2 . 注意 静力学和材料力学内力的区别;
静力学中的内力是指同一系统不同构件的相互作用力; 材料力学中的内力是指同一构件不同部分的相互作用力。 材料力学中的内力是指由于外力作用所引起的内力的改 变量 , 又称为附加内力 。
4.2 内力与截面法
二、截面法
帽
传
的
动
对
轴
称
扳
手
4.5 杆件变形的基本形式 三、弯曲
Me
Me
受力特点:力(或力偶矩矢)垂直于杆件轴线。 变形特点:杆件的轴线由直线变成曲线。
4.5 杆件变形的基本形式 三、弯曲
重 庆 綦 江 彩 虹 桥
4.5 杆件变形的基本形式 三、弯曲
阳 台
4.5 杆件变形的基本形式 四、剪切
F
F
受力特点:作用在构件两侧面上的横向外力大 小相等、方向相反、作用线相距很近。 变形特点:两力间的横截面发生相对错动。
构件在外力作用下,其几何尺寸的改C变量和其原始尺C 寸相比是一个很微小的量。
优点:
C
1、研究物体的平衡和整体运动时,
完全可以忽略这种小变形,利用原始尺
寸进行分析和计算;
A
α
2、在研究物体的变形时,可以忽l 略 高阶无穷小量,建立起线性的变形几何 关系。
A
CC BA A
F
αB
A
C
l
α BB
A
Δ 2 Δ 2
F
F
F
l
F
l
Δ1
Δ1
FBC
α FBC B
α FBA
FBA
FF
F
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.2 内力与截面法
一、内力
1. 定义
构件内部相连部分之间的相互作用力。
2 . 注意
二、截面法
F1
m
F3
m
F1
A
m
B
F3 F1
对于平面问题求解步骤:
A
B
A
F2
m
Fn
截 ,取 ,代,平 F1
m
F2
m
F3
m (a) (a)
Fn F1
F2 m
FN ————轴力; A
B
F1
m
F1
m
FS ————剪力;F2
m
Fn
(a)
m
F2
m
m F2 m
FM3
C
F1
F3 Fm
m
(c) Fn
M
————弯矩。 F1
m
F1 F3
m
F2
m
F1
m F3 m
(b) (b)
m F2
F1
m Fn m
A
B
M
C
m
F2
m
F2 Fn
m F2
F m Fn
(a)
(b)
(c)
M FN C
FS m F2
(d)
F1 F1
B F2
F2 F (a)
F1 m F1
F2 m
F2 (b)
4.2 内力与截面法
例4-1 小型压力机的框架如图所示。在F力的作用下,试求
静力学和材料力学内力的区别
静力学中的内力是指同一系统不同构件的m相互作用力;
材料力学中的内力是指同一构件不同部分的相互作用力。
A
B
m
4.2 内力与截面法
一、内力
1. 定义
构件内部相连部分之间的相互作用力。
2 . 注意
A
r
E
B
45°
D
C
2r
2r
2r
m
A
B
m
FP
注意B处约束力
4.2 内力与截面法
一、内力
z,m
w z
σ
K
Dz
σ Dy
x
z Dx
σ
Dx Dx+Du
σ
(c)
(d)
y
一点处的线应变
x
lim
x0
u x
y
lim v y0 y
τ'
Dy
z
τO
τ'
Dx z
τ
Dz
x
w lim x0 z
τ
γ τ
(c)
(d)
2 切应变
xy
lim
x0
y 0
yz
lim y 0
z 0
zx
lim
z 0
x0
4.4 应变的概念
截面法的步骤:
截 ,取 ,代,平
F1
m
FN ——轴力; A
FSy 、FSz ——剪力; F2
m
(a)
T ——扭矩; F1
m
F3 F1
m
My 、Mz A——弯矩。B
F2
m
Fn
F2
m
(a)
(b)
F1
m
F3
AF1
m
B F3
F2 A
m
Fn B
(a)
F2
m
Fn
F1F3
m
(a)
B
F1F1
mm
FFn 2
m
(b)
F2F2
4.5 杆件变形的基本形式
二、扭转
Me
Me
受力特点:力偶的作用面垂直于杆轴线。 变形特点:各横截面绕轴线发生相对转动。
4.5 杆件变形的基本形式 二、扭转
汽 车 中 的 传 动 轴
4.5 杆件变形的基本形式 二、扭转
汽 车 中 的 传 动 轴
4.5 杆件变形的基本形式 二、扭转
车
拧
床
紧
中
镙
的
引例:
图示构件由材料相同,横截面面积不同的AB、BC两段
构成,受轴向力F作用。 1-1截面上的内力: FN1 F,FS1 0,M1 0 2-2截面上的内力: FN2 F,FS2 0,M 2 0
1 F
1
FA
1
B
F
FA
M11 FN1
B
A
1
B
F F
MFMS111
FN1 FN1
F
FS1
FS1
F F
F1 F1
m m
DF DF
KK
FF2 2
mm
((aa))
y y
σ σK
K
σ Dy σ Dy x
x
DzDz
zz DDxx (a(c) ) yy
ττ' '
ττ KO ττ''
DDzz
DDy y
ττ x x
zz DDxx
(e(c) )
y y
KK
D
yD x
y x
Dz Dz
z z DxDx (b)(b)
σ
σ
σ
4.5 杆件变形的基本形式 一、轴向拉伸或压缩
拉伸 F
F
压缩 F
F
受力特点:外力作用线与杆轴重合。 变形特点:杆件沿轴线方向伸长或缩短。
4.5 杆件变形的基本形式 一、轴向拉伸或压缩
桥 梁 结 构 中 的 拉 杆
4.5 杆件变形的基本形式
一、轴向拉伸或压缩
抽 油 机 中 的 光 杆 和 抽 油 杆
第4章 材料力学的基本假设 和基本概念
4.1 材料力学的基本假设 4.2 内力与截面法 4.3 应力的概念 4.4 应变的概念 4.5 杆件变形的基本形式
4.1 材料力学的基本假设
对材料力学的研究对象(变形固体)进行力学分析, 必须要建立力学模型,建立力学模型就要进行简化处理, 而简化处理的理论基础就是材料力学的基本假设。