第4章 电容式传感器
合集下载
第四章 电容式传感器及其信号调理

图4-11 运算放大器电路
uo
ui
Co Cx
ui
Co
S
d
【例4-2】 现有一只0~20mm的电容式位移传感器,其结
构如图例4-2所示,已知L=25mm,R1=6mm,R2=5.7mm, r=4.5mm,CRC构成固定电容CF,CRC随活动导杆的深入而
变化,拟采用理想运放电路,试回答:
1)要求运放输出电压与输入位移x成正比,在运放线 路中CF与Cx应如何连接?
C S 0r S
d0
d0
设动极板2位移 x ,参考方向为向 x 0 上运动,即动极板2上移,
动极板2下移,x 0。
则电容量为
1 x
C
S d
S d0 x
S 1
/ d0 x
C0
1
(
d0 x )2
d0
d0
按泰勒级数展开
C
C
C0
C0
x [1 d0
x d0
( x )2 d0
( x )3 d0
]
•它采用电荷补偿反馈环的原理,当电容传感器为差动 形式且中心值为25PF时,灵敏度最高,达200mV/PF。
•CS2001采用±2.5V双电源或+5V单电源供电,最大功 耗仅为17mW,输出电压与传感器电容呈线性关系。具 有低噪声、低漂移的优点,能在DC~17kHz的带宽内进 行高精度的测量。
图4-14 CS2001的内部电路框图
2 电容式液位计
3 电容式湿度计
传感元件由氧化铝薄膜制成,氧化铝薄膜吸水后, 电容值产生变化,故根据其电容值即可得到湿度 值。
4 电容法测厚度
图4-23 电容法测电介质材料的厚度
电容器的电容值为
传感器技术第4讲电容式传感器

特点: 1、 非接触 2、 精度高
Cx
S
d
3、 分辨率高(最小检测量为0.01微米)
第四节 应用举例 三、电容式测厚系统
Cx
S
d
第四节 应用举例 四、电容式测电缆偏心示意系统
C1 C2
C1 C2
C1 C2
C1 C2
Cx
S
d
完
第一节、工作原理及特性 三、类型
(一)变面积型(二种)
角位移式
直线位移式
第一节、工作原理及特性
三、类型
(一)变面积型
1、角位移式工作原理
当被测量的变化引起 动极板有一角度位移 θ时,两极间相互覆 盖的面积改变了 ,从
而也就改变了两极板 间的电容量C 。
C0
S
d
CdS1
由上式可见,电容量C与角位移θ呈线关系
隔离膜片
很高但差压很小的场合
隔离膜片
油硅
2.精度高、耐振动、耐冲击、
感压膜片
可靠好。
3.但制造工艺要求很高,尤 电极板
电极板
其是感压膜片的焊接是一工 绝缘体
艺难题。
第四节 应用举例 二、电容式测微仪
电容式测微仪原理如图3—18所示。圆柱 形探头外一般加等位环以减小边缘效应。 探头与被测件表面间形成的电容为:
第二节 测量电路
一、类型
1、调幅型 2、脉宽调制型 3、调频型
第二节 测量电Βιβλιοθήκη 1、调幅型这种电路输出的是幅度值,并且正比于或 近似正比于被测信号。该电路有两种:
(1)交流电桥电路
(2)运算放大器电路
第二节 测量电路
1、调幅型 (1)交流电桥电路----单臂接法
A
电容式传感器原理和应用

2(d)
d0
d0
比较以上式子可见,电容传感器做成差动式之 后,灵敏度提高一倍,而且非线性误差大大降 低了。
4.3 特点及应用中存在的问题
4.3.1 电容式传感器的特点
1.优点: ●温度稳定性好
电容式传感器的电容值一般与电极材料无关, 有利于选择温度系数低的材料,又因本身发热 极小,影响稳定性甚微。而电阻传感器有电阻, 供电后产生热量;电感式传感器有铜损、磁游 和涡流损耗等,易发热产生零漂。 ●结构简单 电容式传感器结构简单,易于制造,易于保证
4.1电容式传感器的工作原理和结构
4.1.2 变面积型电容式传感器
图4-3 变面积型电容传感器原理图
上图是变面积型电容传感器原理结构示意图。 被测量通过动极板移动引起两极板有效覆盖面 积S改变,从而改变电容量。
4.1电容式传感器的工作原理和结构
当动极板相对于定极板延长度a方向平移Δx时,
可得:
图4-1 变极距型电容传感器原理图
4.1电容式传感器的工作原理和结构
若电容器极板间距离由初始值d0缩小Δd,电容量增大
Δ由C式,(则4C -3有)知C0传 感C器d的00输rA出d特C1性0(1(Cdd =0d2)d02f()d)不是(4线3)性关系,
而是如图4-2所示的曲线关系。
C d 1d
(1 )
C0 d0
d0
由此可得出传感器的相对非线性误差δ为:
(d)2 d
100%
d
100%
d
d0
d
由以上三个式可以看出:要提高灵敏度,应减 小起始间隙d0,但非线性误差却随着d0的减小而 增大。在实际应用中,为了提高灵敏度,减小 非线性误差,大都采用差动式结构。
第4章-电容式传感器资料

,
D1
L :筒长
C0
rL
1.80ln D0
(L/
cm ; C
/
pF )
D1
D1 a
L
当覆盖长度变化时,电容量也随之变化。当
内筒上移为a 时,内外筒间的电容C1为:
D0
圆柱形电容式线位移传感器
C1
2
0r L
ln D0
a
C
0
1
a L
,
与a成线性关系。
D1
1.3 变介质型电容式传感器
厚度传感器
聚四氟乙烯外套
设定按钮
智能化液位传感器的设定方法十分简单: 用手指压住设定按钮,当液位达到设定值 时,放开按钮,智能仪器就记住该设定。正 常使用时,当水位高于该点后,即可发出报 警信号和控制信号。
4-1 电容式传感器的工作原理
由绝缘介质分开的两个平行金属板组成的平板 电容器,如果不考虑边缘效应,其电容量为:
电 容式传感器
变间隙型
变面积型
变介质型
在实际使用时,电容式传感器常以改变平行板间 距d来进行测量,因为这样获得的测量灵敏度高 于改变其他参数的电容传感器的灵敏度。
改变平行板间距d的传感器可以测量微米数量级 的位移,而改变面积A的传感器只适用于测量厘 米数量级的位移。
1. 变极距型电容传感器
下图为变极距型电容式传感器的原理图。当传感器的εr
概述
电容式传感器是实现非电量到电容量转 化的一类传感器。 可以应用于位移、振动、角度、加速度等参 数的测量中。 由于电容式传感器结构简单、体积小、分辨 率高,且可非接触测量,因此很有应用前景。
电容式液位计
棒状电极(金属管)外面包裹聚 四氟乙烯套管,当被测液体的液面上 升时,引起棒状电极与导电液体之 间的电容变大。
第4章 电容式传感器

二、变极距型电容传 极距型电容传 感器
+ + +
+ + +
C =
ε 0εA δ
A
d
初始电容量C0为 :
εr
C0 =
∆C,则有
ε 0ε r S
d0
若电容器极板间距离由初始值d0缩小了∆d,电容量增大了
C0 = C = C0 + ∆C = d 0 − ∆d 1 − ∆d d0
ε 0ε r S
C C
20~100pF之间, 极板间距离在25~200µm 的范围内。最大 位移应小于间距的1/10, 故在微位移测量中应用最广。
在实际应用中,为了提高灵敏度,减小非线性误差, 大都采用差动式结构。 在差动式平板电容器中,当动极板位移∆d时,电容器 C1的间隙d1变为d0-∆d,电容器C2的间隙d2变为d0+∆d, 则
δ
(a)
(b)
(c)
(d )
δ2
(e)
δ1
(f)
(g)
(h)
(i)
(j)
( k)
(l)
电容式传感元件的各种结构形式
一、变面积式电容传感器
1、角位移型
+ + +
2、平面线位移型
3、柱面线位移型. 柱面线位移型.
a d ∆x S b
∆C = C − C0 =
x
ε 0ε r ∆x ⋅ b
d
式中C0=ε0εr ab/d 为初始电容。电容相对变化量为
可见,输出电容的相对变化量∆C/C0与输入位移∆d之间成 非线性关系,当|∆d/d0|<<1时可略去高次项,得到近似的 线性关系:
∆C ∆d ≈ C0 d0
传感器与检测技术-第4章 电容式传感器

4.1 电容式传感器的工作原理和类型
平板电容器是由金属极板及板间电介质构成的。若忽略边缘效应,其 电容量为
改变电容器电容C的方法: 一是为改变介质的介电常数ε; 二是改变形成电容的有效面积S; 三是改变两个极板间的距离d。
电容式传感器基本类型
通过改变电容得到电参数的输出为电容值的增量ΔC,从
• 4.2.1 电容式传感器的等效电路
• 在低频时,传感器电容的阻抗非常大,因此L和r的影响可以忽略。
• 其等效电路可简化为图 b,其中等效电容Ce=C0 + CP,等效电阻Re≈Rg。 • 在高频时,传感器电容的阻抗就变小了,因此L和r的影响不可忽略,而漏电
阻的影响可以忽略。
• 其等效电路可简化为图c,其中等效电容Ce=C0+CP,而等效电阻re ≈ rg。
• 在实际应用中,为了提高测量精度,减动极板与定极板之间 的相对面积变化而引起的测量误差,大都采用差动式结构。
• 3.变介电常数型电容传感器
• 变介电常数式电容传感器的极距、有效作用面积不变,被测量 的变化使其极板之间的介质情况发生变化。
• 传感器的总电容量C为两个电容C1和C2的并联结果,即
若传感器的极板为两同心圆筒,传感器的总电容C等于上、下部分电容C1 和C2的并联,即
2.变面积型电容传感器
与变极距型相比,它们的测量范围大。可测较大的线位移或角位移。 平板型电容传感器两极板间的电容量为
• 可见,变面积型电容传感器的输出特性是线性的,适合测量较 大的位移
• 增大极板长度b,减小间距d,可使灵敏度提高
• 极板宽度a的大小不影响灵敏度,但也不能太小,否则边缘影 响增大,非线性将增大。
而完成由被测量到电容量变化的转换。
《自动检测技术及应用》第4章 电容式传感器及其应用

4
两平行板组成的平行板电容器,电容传感 器的基本理想公式为:
C A 0r A
dd
请思考:上式中,哪几个参量是变量?可
以做成哪几种类型的电容传感器?
4/14/2020
5
C A 0r A
dd
改变A、d、 三个参量中的任意一个量,均可 使平板电容的电容量C 改变。
固定三个参量中的两个,可以做成三种类型的 电容传感器。
4/14/2020
8
变面积式电容传感器的特性
变面积式电容传感器的输出特性是线性的, 灵敏度是常数。这一类传感器多用于检测直线位 移、角位移、尺寸等参量。
你能否画出变面积式电容传感器的输出特性 曲线??
4/14/2020
9
2、变极距(d)式电容传感器
当动极板受被测物体作用引起位移时,改变了两
极板之间的距离d,从而使电容量发生变化。
成差动形式后,能使灵敏度提高一倍。
请思考:我们已经学习了哪些差动形式?
4/14/2020
18
休息一下
4/14/2020
19
§4.2 电容式传感器的 测量转换电路
4/14/2020
20
被测非电量
电容式 传感器
转换电路
电容变化
电量
转换电路实现将微小的电容变化转换为电压、 电流或频率等信号。
电容转换电路有电桥电路、调频电路、运算 放大器式电路、二极管双T型交流电桥等。
4/14/2020
16
4、差动电容传感器
在实际应用中,为了提高传感器的灵敏度,减 小非线性,常常把传感器做成差动形式。
变极距式差 动电容器
4/14/2020
旋转形差 动电容器
圆柱形差 动电容器
传感器原理及应用第四章 电容式传感器

11
电容式油量表
电容 传感器
油箱
液 位 传 感 器
12
同轴连接器 刻度盘
伺服电动机
电容式压差传感器
外
结
形
构
应Leabharlann 用1-硅油 2-隔离膜 3-焊接 密封圈 4-测量膜片(动电
测 量 液
极) 5-固定电极
位
13
电容式加速度传感器
结构 1-定极板 2-质量块 3-绝缘体 4-弹簧片
钻地导弹
14
轿车安全气囊
ΔC U0 C0 U
差动脉冲调宽测量转换电路
初始时,C1=C2,输出电压平均值为零。 测量时, C1≠C2 ,输出电压Uo与电容的
差值成正比。
7
差动脉冲调宽测量转换电路
与电桥电路相比,差动脉宽电路只采用 直流电源,不需要振荡器,只要配一个 低通滤波器就能工作,对矩形波波形质 量要求不高,线性较好,不过对直流电 源的电压稳定度要求较高。
16
指纹识 别手机
汽车防盗 指纹识别
趣味小制作-电容式接近开关
电阻 电容 三极管 二极管 电感 继电器 电极片 电源 开关、导线。
17
制作提示
为了较好地演示制作好的电路,将继电 器触点(虚线所连的触点)所在的控制 电路接上,为了直观,控制对象可选择 灯或喇叭。 接近开关的检测物体,并不限于金属导 体,也可以是绝缘的液体或粉状物体。 制作时要考虑环境温度、电场边缘效应 及寄生电容等不利因素的存在。
8
运算放大器式测量转换电路
输出电压
Uo
C Cx
Ui
如果传感器为平板形
电容器,则
Uo
CU i
A
d
此电路能解决变极距型电容式传感器的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
另外,由式( 4-4 )可以看出,减小 d0 ,可 以提高传感器的灵敏度。但 d0 过小,容易引起 电容器击穿,可在极间加云母片(其击穿电压 >103kV/mm )或塑料膜来提高电容器的耐压性 能。
一般变极板间距电容式传感器的起始电容在 20~100pF之间, 极板间距在 25~200μm 的范围 内。最大位移应小于间距的 1/10, 故在微位移 测量中应用最广。
C0
0 r S 0
d0
(4-8)
式中: S0——两极板间初始覆盖面积。
15
当θ≠0时, 则
0 r S0 1 C d0 C (1 ) 0
(4-9)
从式(4-9)可以看出,传感器的电容量C与角位 移θ呈线性关系。
16
4.1.3 变介质型电容式传感器
r1 ( L0 L) r 2 L
d0
C C1 C2 0b0
(4-11)
21
式中:L0和b0——极板的长度和宽度; L——第二种介质进入极板间的长度。 若电介质εr1=1, 当被测介质εr2进入极板间L 深度后,引起电容相对变化量为
C C C0 ( r 2 1) L C0 C0 L0
S——两平行板所覆盖的面积;
d——两平行板之间的距离。
2
原理:如果保持式( 4-1 )等号右边两个参数不 变,而仅改变另一个参数,就可把该参数的变化 转换为电容量的变化,通过测量电路就可转换为 电量输出。
类型:变极距型、变面积型和变介电常数型。
结构:常用电容器的结构形式如图4-1所示。
3
(a )
21h 2 ( H h) 2H 2h(1 ) 2h(1 ) C C0 D D D D D 1n 1n 1n 1n 1n d d d d d
(4-10)
18
式中:ε——空气介电常数; C0决定的初始电容, 即
2H C0 D 1n d
11
电容相对变化量为
C x C0 a
(4-7)
很明显,这种形式的传感器其电容量C与水平 位移Δx呈线性关系。 由于边缘效应的存在,其关系实际上是非线 性的。
12
a d x S
b
x
图4-5 变面积型电容传感器原理图
13
动极 板 定极 板
图4-6 电容式角位移传感器原理图
14
图 4-6 是电容式角位移传感器原理图。当动 极板有一个角位移θ时,与定极板间的有效覆盖 面积就发生改变,从而改变了两极板间的电容 量。当则 θ=0时,
(b )
(c)
(d)
2
(e)
1
(f)
(g )
(h )
(i)
(j)
( k)
(l)
图4-1 电容式传感元件的各种结构形式
4
4.1.1 变极距型电容传感器
图 4-2为变极距型电容式传感器的原理图。 当传感器的εr 和S为常数,初始极距为d0时,由 式(4-1)可知其初始电容量C0为
C0
0 r S
4.1 工作原理和结构
电容式传感器是将被测量的变化转换成电容量 变化的一种装置,实质上就是一个具有可变参 数的电容器。 对于平板电容器,如果不考虑边缘效应,其电 容量为
C
S
d
(4-1)
1
式中: ε——电容极板间介质的介电常数,
又ε=ε0εr ,
ε0为真空介电常数=8.85x10-12F/m, εr极板间介质的相对介电常数;
d0
(4-2)
5
若电容器极板间距由初始值d0缩小Δd,则电 容量增大ΔC,此时有
d C0 1 d 0 r S C0 0 C C0 C 2 d 0 d 1 d d 1 d0 d 0
(4-3)
变介质型电容传感器有较多的结构形式, 除可以用来测量液位外,还可以用来测量纸张、 绝缘薄膜等的厚度, 也可用来测量粮食、纺织 品、木材或煤等非导电固体介质的湿度。
17
图 4-7 是一种变极板间介质的电容式传感器 用于测量液位高低的结构原理图。设被测介质 的介电常数为ε1,液面高度为h, 传感器总高度为 H ,内筒外径为 d ,外筒内径为 D ,此时传感器 电容值为
由式(4-10)可见,此传感器的电容增量 正比于被测液位高度h。
19
D d
H h
1
图4-7 电容式液位传感器结构原理图
20
图4-8是另一种常用的结构形式。 图中两平 行电极固定不动,间距为 d0 ,相对介电常数为 εr2 的电介质以不同深度插入电容器中,从而改 变两种介质的极板覆盖面积。 传感器总电容量 C为
6
S
d r
图4-2 变极距型电容式传感器
7
C C
C1 C1 C 2 C2
OO
d 1 d1 d2 d2
d
图4-3 电容量与极板间距离的关系
8
在式(4-3)中,若Δd/d0<<1时,分母≈1,则式 (4-3)改写为
d C C0 C0 d0
(4-4)
此时 C 与 Δd 近似呈线性关系,所以变极距型 电容式传感器只有在 Δd/d0 很小时,才有近似的 线性关系。
(4-12)
可见,电容量的变化与电介质εr2的移动量L成线性关系。
22
L0 L
r2 r1Fra bibliotekd0图4-8 变介质型电容式传感器
23
表4-1 电介质材料的相对介电常数
24
4.2 传感器的特性及设计要点 一、灵敏度与非线性 由式(4-4)可知, 电容的相对变化量为
C 1 C0 1 d d0
10
4.1.2 变面积型电容式传感器 图4-5是变面积型电容传感器原理结构示意 图。 被测量通过动极板移动引起两极板有效覆 盖面积S改变,从而得到电容量的变化。当动极 板相对于定极板沿长度方向平移 Δx 时,则电容 变化量为
C C C0
0 r (a x)b
d
(4-6)
式中C0=ε0εra b/d为初始电容。
(4-13)
25
4.2 传感器的特性及设计要点 一、灵敏度与非线性 由式(4-3)可知, 电容的相对变化量为
C d 1 C0 d 0 1 d d0
(4-13)
26
当|Δd/d0|<<1时,上式可按级数展开,可得
2 3 C d d d d 1 C0 d0 d0 d0 d0
另外,由式( 4-4 )可以看出,减小 d0 ,可 以提高传感器的灵敏度。但 d0 过小,容易引起 电容器击穿,可在极间加云母片(其击穿电压 >103kV/mm )或塑料膜来提高电容器的耐压性 能。
一般变极板间距电容式传感器的起始电容在 20~100pF之间, 极板间距在 25~200μm 的范围 内。最大位移应小于间距的 1/10, 故在微位移 测量中应用最广。
C0
0 r S 0
d0
(4-8)
式中: S0——两极板间初始覆盖面积。
15
当θ≠0时, 则
0 r S0 1 C d0 C (1 ) 0
(4-9)
从式(4-9)可以看出,传感器的电容量C与角位 移θ呈线性关系。
16
4.1.3 变介质型电容式传感器
r1 ( L0 L) r 2 L
d0
C C1 C2 0b0
(4-11)
21
式中:L0和b0——极板的长度和宽度; L——第二种介质进入极板间的长度。 若电介质εr1=1, 当被测介质εr2进入极板间L 深度后,引起电容相对变化量为
C C C0 ( r 2 1) L C0 C0 L0
S——两平行板所覆盖的面积;
d——两平行板之间的距离。
2
原理:如果保持式( 4-1 )等号右边两个参数不 变,而仅改变另一个参数,就可把该参数的变化 转换为电容量的变化,通过测量电路就可转换为 电量输出。
类型:变极距型、变面积型和变介电常数型。
结构:常用电容器的结构形式如图4-1所示。
3
(a )
21h 2 ( H h) 2H 2h(1 ) 2h(1 ) C C0 D D D D D 1n 1n 1n 1n 1n d d d d d
(4-10)
18
式中:ε——空气介电常数; C0决定的初始电容, 即
2H C0 D 1n d
11
电容相对变化量为
C x C0 a
(4-7)
很明显,这种形式的传感器其电容量C与水平 位移Δx呈线性关系。 由于边缘效应的存在,其关系实际上是非线 性的。
12
a d x S
b
x
图4-5 变面积型电容传感器原理图
13
动极 板 定极 板
图4-6 电容式角位移传感器原理图
14
图 4-6 是电容式角位移传感器原理图。当动 极板有一个角位移θ时,与定极板间的有效覆盖 面积就发生改变,从而改变了两极板间的电容 量。当则 θ=0时,
(b )
(c)
(d)
2
(e)
1
(f)
(g )
(h )
(i)
(j)
( k)
(l)
图4-1 电容式传感元件的各种结构形式
4
4.1.1 变极距型电容传感器
图 4-2为变极距型电容式传感器的原理图。 当传感器的εr 和S为常数,初始极距为d0时,由 式(4-1)可知其初始电容量C0为
C0
0 r S
4.1 工作原理和结构
电容式传感器是将被测量的变化转换成电容量 变化的一种装置,实质上就是一个具有可变参 数的电容器。 对于平板电容器,如果不考虑边缘效应,其电 容量为
C
S
d
(4-1)
1
式中: ε——电容极板间介质的介电常数,
又ε=ε0εr ,
ε0为真空介电常数=8.85x10-12F/m, εr极板间介质的相对介电常数;
d0
(4-2)
5
若电容器极板间距由初始值d0缩小Δd,则电 容量增大ΔC,此时有
d C0 1 d 0 r S C0 0 C C0 C 2 d 0 d 1 d d 1 d0 d 0
(4-3)
变介质型电容传感器有较多的结构形式, 除可以用来测量液位外,还可以用来测量纸张、 绝缘薄膜等的厚度, 也可用来测量粮食、纺织 品、木材或煤等非导电固体介质的湿度。
17
图 4-7 是一种变极板间介质的电容式传感器 用于测量液位高低的结构原理图。设被测介质 的介电常数为ε1,液面高度为h, 传感器总高度为 H ,内筒外径为 d ,外筒内径为 D ,此时传感器 电容值为
由式(4-10)可见,此传感器的电容增量 正比于被测液位高度h。
19
D d
H h
1
图4-7 电容式液位传感器结构原理图
20
图4-8是另一种常用的结构形式。 图中两平 行电极固定不动,间距为 d0 ,相对介电常数为 εr2 的电介质以不同深度插入电容器中,从而改 变两种介质的极板覆盖面积。 传感器总电容量 C为
6
S
d r
图4-2 变极距型电容式传感器
7
C C
C1 C1 C 2 C2
OO
d 1 d1 d2 d2
d
图4-3 电容量与极板间距离的关系
8
在式(4-3)中,若Δd/d0<<1时,分母≈1,则式 (4-3)改写为
d C C0 C0 d0
(4-4)
此时 C 与 Δd 近似呈线性关系,所以变极距型 电容式传感器只有在 Δd/d0 很小时,才有近似的 线性关系。
(4-12)
可见,电容量的变化与电介质εr2的移动量L成线性关系。
22
L0 L
r2 r1Fra bibliotekd0图4-8 变介质型电容式传感器
23
表4-1 电介质材料的相对介电常数
24
4.2 传感器的特性及设计要点 一、灵敏度与非线性 由式(4-4)可知, 电容的相对变化量为
C 1 C0 1 d d0
10
4.1.2 变面积型电容式传感器 图4-5是变面积型电容传感器原理结构示意 图。 被测量通过动极板移动引起两极板有效覆 盖面积S改变,从而得到电容量的变化。当动极 板相对于定极板沿长度方向平移 Δx 时,则电容 变化量为
C C C0
0 r (a x)b
d
(4-6)
式中C0=ε0εra b/d为初始电容。
(4-13)
25
4.2 传感器的特性及设计要点 一、灵敏度与非线性 由式(4-3)可知, 电容的相对变化量为
C d 1 C0 d 0 1 d d0
(4-13)
26
当|Δd/d0|<<1时,上式可按级数展开,可得
2 3 C d d d d 1 C0 d0 d0 d0 d0