第11讲阿氏圆最值模型(解析版)

合集下载

最值系列之阿氏圆问题

最值系列之阿氏圆问题

DB DC 05最值系列之阿氏圆问题在前面的“胡不归〃问题中,我们见识Y“kPA+PB〃最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆〃问题.所谓“阿氏圆〞,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值〔不为1〕的点的集合叫做圆.如下列图,A、B两点,点P满足PA:PB=k〔七1〕,那么满足条件的所有的点P构成的图形为圆.下给出证明法一:首先了解两个定理〔1〕角平分线定理:如图,在4ABC中,AD是N BAC的角平分线,那么AB = DB .AC DCS.BD S A AB x DE AB AB DB证明:----- A BD-一, ----- A BD-一, 即——S CD S AC x DF AC AC DCACD ACD〔2〕外角平分线定理:如图,在4ABC中,外角CAE的角平分线AD交BC的延长线于点证明:在BA延长线上取点E使得AE=AC,连接BD,那么△ACD/^AED〔SAS〕,ED那么ABCD =ED 且AD 平分.归那么DE = AE ,即AC = DC 接下来开始证明步骤:如图,PA : PB=k ,作N APB 的角平分线交AB 于M 点,根据角平分线定理,3=PA = k , MB PB 故M 点为定点,即N APB 的角平分线交AB 于定点;作N APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA = PA = k ,故N 点为 NB PB定点,即N APB 外角平分线交直线AB 于定点; 又N MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A 〔-m , 0〕,那么B 〔m , 0〕,设P 〔x ,y 〕,PA=kPB ,即:+ y 2 = k %(% — m(% + m >+ y 2 = k 2 (% - m '+ k 2 y 2(k 2 -1)42 + y 2)- (2m + 2k 2m )% + (k 2 -1)m 2 = 02m + 2k 2m % 2 + y 2 --------- % + m 2 = 0 k 2 -1解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt^ABC中,N C=90°, AC=4, BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,那么1PA + PB的最小值为.2【分析】这个问题最大的难点在于转化1PA,此处P点轨迹是圆,故转化方法与之前有所2不同,如下,提供两种思路.法一:构造相似三角形注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的4CPA,在CA边上取点M使得CM=2,连接PM,可得^CPA s^CMP,故PA:PM=2:1,即PM=1 PA .2问题转化为PM+PB最小值,直接连BM即可.【问题剖析】〔1〕这里为什么是1PA ?2答:因为圆C半径为2, CA=4,比值是1:2,所以构造的是1PA,也只能构造1PA .22〔2〕如果问题设计为PA+kPB最小值,k应为多少?答:根据圆C半径与CB之比为2:3, k应为2.3【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型比照一下这个题目的条件,P点轨迹是圆,A是定点,我们需要找出另一个定点M使得PM:PA=1:2,这不就是把“阿氏圆〃的条件与结论互换了一下嘛!已知PA、PB之比确定圆而且这种问题里,给定的圆的位置、定点A的位置、线段的比例等,往往都是搭配好的! P点轨迹圆的圆心C点和A点在直线AC上,故所求M点在AC边上,考虑到PM:PA=1:2, 不妨让P点与D点重合,此时DM=1 DA =1,即可确定M点位置.2如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下列图,此时PM=3,PA=6, 亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在其是阿氏圆的前提下,通过特殊点找出所求M点位置,虽不够严谨,却很实用.【练习1】如图,在A ABC中,N ACB=90°, BC=12, AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,那么2AD+3BD的最小值是..... ........................ ........ ..... (2、…,、2 ___ ___【分析】首先对问题作变式2AD+3BD=3 —AD + BD,故求—AD + BD最小值即可.13 ) 32 考虑到D点轨迹是圆,A是定点,且要求构造三AD,条件已经足够明显.当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,那么在点D运动过2程中,始终存在DM = -DA .3问题转化为DM+DB的最小值,直接连接BM, BM长度的3倍即为此题答案.A【练习2】如图,正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,那么PD -1PC的最大值为.2【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造1PC,在BC上取M 2使得此时PM=1,那么在点P运动的任意时刻,均有PM=1 PC ,从而将问题转化为求PD-PM2的最大值.连接PD,对于△PDM, PD-PM V DM,故当D、M、P共线时,PD-PM=DM为最大值.P。

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25 OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DPMPDCBA【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=37例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF ⊥BC 于F .∵PB 2=4,BE •BD =×4=4,∴BP 2=BE •BD ,∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴==,∴PE =PD ,∴PD +4PC =4(PD +PC )=4(PE +PC ),∵PE +PC ≥EC ,在Rt △EFC 中,EF =,FC =,∴EC =,∴PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCD P MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.[答案]:25.3. 如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.[答案]37.4. 如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C 的半径为2,点P 是C 上的一动点,则12AP PB+的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?[答案]426. 如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵P A2=9,AE•AD=×6=9,∴P A2=AE•AD,∴=,∵∠P AE=∠DAP,∴△P AE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

初中数学阿氏圆最值模型归纳

初中数学阿氏圆最值模型归纳

几何模型:阿氏圆最值模型【模型来源】“阿氏圆"又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件得所有得点P得轨迹构成得图形为圆。

这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆"。

A BPO【模型建立】如图1 所示,⊙O 得半径为R,点A、B 都在⊙O外,P为⊙O上一动点,已知R=OB,连接PA、PB,则当“PA+PB”得值最小时,P 点得位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=R,则可说明△BPO与△PCO相似,则有PB=PC。

故本题求“PA+PB”得最小值可以转化为“PA+PC”得最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算得最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得得值最小,解决步骤具体如下:1.如图,将系数不为1得线段两端点与圆心相连即OP,OB2.计算出这两条线段得长度比3.在OB上取一点C,使得,即构造△POM∽△BOP,则,4.则,当A、P、C三点共线时可得最小值典题探究启迪思维探究重点例题1、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P就是圆C上一个动点,则得最小值为__________。

EABCDPMPDC BA【分析】这个问题最大得难点在于转化,此处P点轨迹就是圆,注意到圆C半径为2,CA=4,连接CP,构造包含线段AP得△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=.问题转化为PM+PB≥BM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得.变式练习〉>>1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C得半径为2,点P为圆上一动点,连接AP,BP,求①,②,③,④得最小值。

第11讲阿氏圆最值模型(解析版)

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11:阿氏圆最值模型在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A B P O【模型建立】如图 1 所示,⊙O 的半径为R,点 A、B 都在⊙O 外,P为⊙O上一动点,已知R=25OB,连接 PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC使 OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB+的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得PA k PB+的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP,OB2.计算出这两条线段的长度比OPk OB=3.在OB上取一点C,使得OCkOP=,即构造△POM∽△BOP,则PCkPB=,PC k PB=4.则=PA k PB PA PC AC++≥,当A、P、C三点共线时可得最小值例题1. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则12PA PB+的最小值为__________.EABCDPMPDC BA【分析】这个问题最大的难点在于转化12PA,此处P点轨迹是圆,注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=12PA.问题转化为PM+PB≥BM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得13.变式练习>>>1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C的半径为2,点P为圆上一动点,连接AP,BP,求①BPAP21+,②BPAP+2,③BPAP+31,④BPAP3+的最小值.[答案]:①=37,②=237,③=3372,④=237.例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠PAB=∠PBA=45°,∴PA=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为 5 ;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB 2=4,BE •BD =×4=4,∴BP 2=BE •BD ,∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴==,∴PE =PD ,∴PD +4PC =4(PD +PC )=4(PE +PC ),∵PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,∴EC =,∴PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCDP MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +的最小值为 ,PD ﹣的最大值为 .(2)如图2,已知菱形ABCD 的边长为4,∠B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x 轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∴=,∵NE ∥OB ,∴=,∴AN =(4﹣m ),∵抛物线解析式为y =﹣x 2+x +3,∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,∴=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE .∵OE ′=2,OM ′•OB =×3=4, ∴OE ′2=OM ′•OB , ∴=,∵∠BOE ′=∠M ′OE ′, ∴△M ′OE ′∽△E ′OB ,∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P 是⊙O 上一动点,则2PA+PB 的最小值为________.[答案]:25.3. 如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:37.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()C,()D,P是△AOB外部第一象限内4,03,22,0A,()0,2B,()的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]426. 如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵PA2=9,AE•AD=×6=9,∴PA2=AE•AD,∴=,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在R t△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

初中数学阿氏圆最值模型归纳讲课讲稿

初中数学阿氏圆最值模型归纳讲课讲稿

初中数学阿氏圆最值模型归纳几何模型:阿氏圆最值模型【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A BPO【模型建立】如图 1 所示,⊙O 的半径为R,点 A、B 都在⊙O 外,P为⊙O上一动点,已知R=25OB,连接 PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC使 OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB =,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DPMPDCA【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2, 连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=237.例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55+的最小值为________.[答案]:5.变式练习>>>2为半径画圆,O为2.如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,2原点,P是⊙M上一动点,则PO+2PA的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠PAB=∠PBA=45°,∴PA=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则12PD PC的最大值为_______.ABCD P【分析】当P点运动到BC边上时,此时PC=3,根据题意要求构造12PC,在BC上取M使得此时PM=32,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM 的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值152.AB CDPM MPDCBA AB CDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB 解析式为y =kx +b ,则,解得,∴直线AB 解析式为y =﹣x +3.(2)如图1中,∵PM ⊥AB ,PE ⊥OA , ∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∴=,∵NE ∥OB ,∴=,∴AN =(4﹣m ), ∵抛物线解析式为y =﹣x 2+x +3,∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,∴=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE .∵OE ′=2,OM ′•OB =×3=4,∴OE ′2=OM ′•OB ,∴=,∵∠BOE ′=∠M ′OE ′,∴△M ′OE ′∽△E ′OB ,∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小(两点间线段最短,A 、M ′、E ′共线时),最小值=AM ′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22 的最小值. [答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:25.3. 如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:37 2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12AP PB的最小值为?4,0C,()3,2D,P是△AOB外部第一B,()5. 如图,在平面直角坐标系中,()0,22,0A,()象限内的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]426. 如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵PA2=9,AE•AD=×6=9,∴PA2=AE•AD,∴=,∵∠PAE=∠DAP,∴△PAE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

第11讲阿氏圆最值模型(解析版)

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11 :阿氏圆最值模型名师点睛--------------------------------- 拨开云雾开门见山在前面的胡不归〞问题中,我们见识了“kPA+PB最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的阿氏圆〞问题.【模型来源】“阿氏圆〞又称为“阿波罗尼斯圆〞,如下列图,A、B两点,点P满足PA: PB=k ( k^l),那么满足条件的所有的点P的轨迹构成的图形为圆•这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆〞如图1所示,O O 的半径为R ,点A 、B 都在O O 夕卜,P 为O O 上一动点,2连接PA PB,那么当“ PA+—PB 〞的值最小时,P 点的位置如何确定?52 2 解决方法:如图2,在线段 OB 上截取OC 使OC= — R ,那么可说明△ BPO 与厶PCO 相似,那么有一 PB=PC 。

552故此题求“ PA+—PB 〞的最小值可以转化为 “PA+PC 〞的最小值,其中与A 与C 为定点,P 为动点,故当A 、5P 、C 三点共线时,“ PA+PC 〞值最小。

【技巧总结】计算PA kgPB 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点 P 使得PA kgPB 的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB2R=_ OB,5【模型建OP2. 计算出这两条线段的长度比 k OB OCPC 3. 在OB 上取一点C ,使得k ,即构造△ POM s\BOP ,贝yk , PC kgPBOPPB4. 那么PA kgPB=PA PC AC ,当A 、P 、C 三点共线时可得最小值— _ 一一 1【分析】这个问题最大的难点在于转化 -PA ,此处P 点轨迹是圆,注意到圆 C 半径为2, CA=4 ,2典题探究启迪思维 例题1.如图,在Rt ^ABC 中,/ C=90 , AC=4 ,BC=3,以点C 为圆心, 2为半径作圆C ,分别交探究重点AC 、BC于D 、E 两点,点P 是圆C 上一个动点,那么 1-PA PB 的最小值为 ______________ 2B连接CP ,构造包含线段 AP 的A CPA ,在CA 边上取点M 使得CM=2 , 连接 PM ,可得 A CPA s^ CMP ,故 PA : PM=2:1,即 PM= 1 PA2问题转化为PM+PB > BM 最小值,故当B , P , M 三点共线时得最小值,直接连BM 即可得13 .变式练习>>>1.如图 1,在 RT A ABC 中,/ ACB=90°1 1求①AP -BP ,②2AP BP ,③一 AP BP ,④AP 3BP 的最小值.3_ 1_ 2 ; 37 [答案]:①=寸37 ②=2空37 ,③= --------- ,④=2 丁37 ., 3解答'如图2,建接CP,因为纤也AC=^ 眩=4,简单推算得冬=£,拓二£ •而题 AC 3 CR 2 目中悬求角严丄站穴其中的壮二丄j 故舍弃在丄「上取点,应用“—所以在2 2 CB 2a?上取•点D 使CD=1,那么有得二着二詈无论P 如何移动,,△PCD 与MCP 始歿相似‘敌PD丄RP 始终成立・所\^AP^-fiP^AP^PD.扛中儿 Q 为定点.故A 、P 、2 2。

初中数学最值一阿氏圆模型

初中数学最值一阿氏圆模型

初中数学最值一阿氏圆模型初中数学中的最值问题是数学中的重要问题之一。

数学教学中经常涉及到最大值和最小值的求解,而阿氏圆模型是解决这类问题的一种方法。

阿氏圆模型是一种简便的方法,可以用来解决初中数学中的最值问题。

它可以帮助我们更好地理解和解决这类问题。

下面我将通过详细的论述来介绍阿氏圆模型的原理和应用。

首先,我们来看最大值问题。

最大值是一组数中的最大数,我们要找出这个最大值。

在阿氏圆模型中,我们可以通过绘制一个圆形来表示一组数。

圆的半径表示这组数中的最大值。

圆心表示这组数的平均值。

通过观察圆的大小和位置,我们可以快速确定最大值。

例如,给定一组数{3,5,7,9},我们可以计算它们的平均值为6。

然后,我们绘制一个以6为圆心的圆,然后找到圆上的最大值。

在这种情况下,最大值为9。

我们可以通过阿氏圆模型很容易地找到最大值。

接下来我们来看最小值问题。

最小值是一组数中的最小数,我们要找出这个最小值。

阿氏圆模型同样可以用来解决这类问题。

与最大值问题类似,我们也是通过绘制一个圆形来表示一组数。

圆的半径表示这组数中的最小值。

圆心代表平均值。

通过观察圆的大小和位置,我们可以迅速确定最小值。

例如,给定一组数{2,4,6,8},我们计算它们的平均值为5。

然后,我们可以绘制以5为圆心的圆,并找到圆上的最小值。

在这种情况下,最小值为2。

阿氏圆模型同样帮助我们很容易地找到最小值。

阿氏圆模型不仅可以用来解决最大值和最小值问题,还可以扩展到其他数学问题中。

例如,我们可以用阿氏圆模型来求一组数的平均值。

通过将这组数放在一个圆的周围,我们可以找到圆心的位置,这个位置就是这组数的平均值。

这使得求平均值变得非常简单。

此外,阿氏圆模型还可以用来解决其他问题,如中位数、众数等统计问题。

阿氏圆模型在初中数学中的应用非常广泛,通过它我们可以更好地理解和解决各种数学问题。

总结起来,阿氏圆模型是一种在初中数学中解决最值问题的简便方法。

它通过绘制一个圆形来表示一组数,圆心代表平均值,圆的半径代表最大值或最小值。

阿氏圆最值模型

阿氏圆最值模型

中考数学几何模型:阿氏圆最值模型在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值. EABC DPEABC DP例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55+的最小值为________.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.AB CDP例题3. 如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC =1,BD =2,P 为上一动点,求PC +PD的最小值.变式练习>>>3.如图,四边形ABCD 为边长为4的正方形,⊙B 的半径为2,P 是⊙B 上一动点,则PD +PC 的最小值为 ;PD +4PC 的最小值为 .例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.当堂训练1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,则PC AP 22+的最小值________.2. 如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.3. 如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.4. 如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C 的半径为2,点P 是C 上的一动点,则12AP PB+的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学几何模型11:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25 OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB+的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得PA k PB+的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=237.例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55+的最小值为________.[答案]:5.变式练习>>>2为半径画圆,O为原点,P是⊙2.如图,在平面直角坐标系xoy中,A(6,-1),M(4,4),以M为圆心,2M上一动点,则PO+2PA的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCD P MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD 的边长为9,圆B 的半径为6,点P 是圆B 上的一个动点,那么PD +的最小值为,PD ﹣的最大值为.(2)如图2,已知菱形ABCD 的边长为4,∠B =60°,圆B 的半径为2,点P 是圆B 上的一个动点,那么PD +的最小值为,PD ﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC 上取一点G ,使得BG =4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F ,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m , ∴=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . ∵OE ′=2,OM ′•OB =×3=4,∴OE ′2=OM ′•OB , ∴=,∵∠BOE ′=∠M ′OE ′,∴△M ′OE ′∽△E ′OB , ∴==,∴M ′E ′=BE ′,∴AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小(两点间线段最短,A 、M ′、E ′共线时),最小值=AM ′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22 的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:25.3. 如图,等边△ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:37 2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?[答案]426. 如图,Rt △ABC ,∠ACB =90°,AC =BC =2,以C 为顶点的正方形CDEF (C 、D 、E 、F 四个顶点按逆时针方向排列)可以绕点C 自由转动,且CD =,连接AF ,BD(1)求证:△BDC ≌△AFC ;(2)当正方形CDEF 有顶点在线段AB 上时,直接写出BD +AD 的值; (3)直接写出正方形CDEF 旋转过程中,BD +AD 的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵P A2=9,AE•AD=×6=9,∴P A2=AE•AD,∴=,∵∠P AE=∠DAP,∴△P AE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

相关文档
最新文档