(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

合集下载

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)

2024专题4.4圆---利用“阿氏圆”模型求最值-中考数学二轮复习必会几何模型剖析(全国通用)
当BPD三点共线且P点位于BD之间时,PB+PD最小,此
时2PB+PC最小,最小值为2BD,延长CD交AB于H,则
CH⊥AB,
O D P
B
A
H


易求得DH= ,BH=3,∴BD= ,


C
O
P
∴2PB+PC的最小值为3 .
B
C
针对训练
变式一 系数需要转化(提系数)
知识点三
1.在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是△AOB外部的
P(x,y),PA=kPB,即:(x+m)2+y2 =k (x-m)2+y2
∴(x+m)2+y2=k2(x-m)2+k2y2
∴(k2-1)(x2+y2)-(2m+2k2m)x+(k2-1)m2=0
2m
2m+2k
∴x2+y2- k2-1 x+m2=0
知识点二
新知探究
解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.除
则 PD+4PC的最小值为_____.
D
A
P
B
C
典例精讲
变式三 求差最大的问题
知识点五
求带系数的两条线段差最大的问题,转化方法和前面所讲完全一样,只是
最后求最值时有所不同,前面求和最小都是运用两点之间线段最短的原理,
求差最大,我们需要运用“三角形两边只差小于第三边”这一原理来解决.
【例6】(1)如图1,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上
【引例】如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,⊙C半径为2,P为圆上

阿氏圆专题练习(含答案)

阿氏圆专题练习(含答案)

阿氏圆基础练习[类型一、向内构造]1. △ABC中,AC=6,BC=8,AB=10圆C的半径为4,点D是圆C上一动点,连接AD、BD,AD+!"BD的最小值为______,BD+"#BD的最小值为______2. 在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是△ABC内一动点,且满足CD=2,则AD+"#BD 的最小值为______。

3. ∠O=90°,圆O的半径为 √2,PO=√10,MO=2,Q为圆O上一点,PQ+√""QM的最小值为______。

4. 如图,已知菱形ABCD的边长为4,圆B的半径为2,∠B=60∘,P为圆B上一动点, PD+!"PC的最小值为______。

5. 如图,四边形ABCD是边长为4的正方形,圆B的半径为2,P是圆B上一动点,则√2PD+4PC的最小值为______。

6. 如图,边长为4的正方形的内切圆记为圆O,P是圆O上一动点,则√2PA+PB的最小值______7. 如图,等边△ABC的边长为6,内切圆记为圆O,P是圆O上一动点,则2PB+PC的最小值为______8. 如图,△ABC中AB=9,BC=8,∠ABC=60°,圆A的半径为6,P是圆A上一动点,连接PB、PC,则3PC+2PB的最小值为______。

9. 如图,在△ABC中∠B=90∘,AB=BC=2,以B为圆心作圆与AC相切,点P为圆B上任意一点,2PA+√2PC的最小值是______10.如图,已知P是边长为6的正方形ABCD内部的一个动点,PA=3,2PC+PD的最小值是______11.如图,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一个动点,MA=15,则5MC+3MD的最小值是______[类型二、向外构造]9上一点,2PA+PB的最小值是______ 12.如图,已知扇形COD,∠COD=90°,OC=6,OA=3,OB=5,点P是CD#一动点(不与C,B重合),则2PD+PB的最13.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为BC小值为_____14.如图,AB是⊙O的直径,且AB=4,C是OA中点,过C作CD⊥AB交圆于D点,DE是⊙O的另一条直径,P是圆上的动点,2PC+PE的最小值为[类型三、两次构造]15. 如图,△ABC中AC=BC=4,∠ACB=90°,圆C的半径为2,D是圆C上一动点,E在CB上,CE=1,AD+2DE的最小值为______。

11线段最值系列--阿氏圆 (1)

11线段最值系列--阿氏圆 (1)

使 CD=1,则有 CD CP 1 ,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴ PD பைடு நூலகம் ,∴PD= 1 BP,
CP CB 2
BP 2
2
∴AP+ 1 BP=AP+PD. 2
请你完成余下的思考,并直接写出答案:AP+ 1 BP 的最小值为___________ . 2
2.【自主探索】:在“问题提出”的条件不变的情况下,1 AP+BP 的最小值为___________. 3
中考数学专题训练(1)
(线段最值系列---阿氏圆) 【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点 A、B,则所有满足 PA=kPB (k≠1)的点 P 的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿 氏圆。初中数学中常借助一动点 P 在某圆上运动,来解决 PA+kPB 的最小值问题。题型常 以压轴题形式出现,学生较难解决。 【构图模型】构造共边共角型相似
2
3.如图,半圆的半径为 1,AB 为直径,AC、BD 为切线,AC=1,BD=2,P 为 上一动点,求 的最小值为__________.
PC+PD
2 变式训练:其余数据不变,请求出 PC 6 PD 的最小值为__________.
5 2.如图,在直角坐标系中,以原点 O 为圆心作半径为 4 的圆交 X 轴正半轴于点 A,点 M 坐标 为(6,3),点 N 坐标为(8,0),点 P 在圆上运动,求 PM 1 PN 的最小值为__________.
构造△PAB∽△CAP 推出 PA2 AB AC
即:半径的平方=原有线段 构造线段 【热身练习】 1.【问题提出】:如图 1,在 Rt△ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为 2,P

中考专题 阿氏圆专题(解析版)

中考专题 阿氏圆专题(解析版)

阿氏圆专题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.【模型建立】如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=25OB ,连接 PA 、PB ,则当“PA+25PB ”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有25PB=PC 。

故本题求“PA+25PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。

【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM△△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④= EABC DP例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),△C 的半径为10,点B 在△C 上一动点,AB OB 55的最小值为________.[答案]:5. 变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,△AB=BD=4,BD是切线,△△ABD=90°,△BAD=△D=45°,△AB是直径,△△APB=90°,△△P AB=△PBA=45°,△P A=PB,PO△AB,△AC=PO=2,AC△PO,△四边形AOPC是平行四边形,△OA=OP,△AOP=90°,△四边形AOPC是正方形,△PM=PC,△PC+PD=PM+PD=DM,△DM△CO,△此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,△B的半径为2,P是△B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:△如图,连接PB、在BC上取一点E,使得BE=1.△PB2=4,BE•BC=4,△PB2=BE•BC,△=,△△PBE=△CBE,△△PBE△△CBE,△==,△PD+PC=PD+PE,△PE+PD≤DE,在Rt△DCE中,DE==5,△PD+PC的最小值为5.△连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF △BC 于F .△PB 2=4,BE •BD =×4=4,△BP 2=BE •BD ,△=,△△PBE =△PBD ,△△PBE △△DBP , △==,△PE =PD ,△PD +4PC =4(PD +PC )=4(PE +PC ),△PE +PC ≥EC ,在Rt△EFC 中,EF =,FC =,△EC =,△PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152.AB CDPABCDP MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,△B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.△==,==,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG==.△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF△BC于F.△==2,==2,△=,△△PBG=△PBC,△△PBG△△CBP,△==,△PG=PC,△PD+PC=DP+PG,△DP+PG≥DG,△当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,△DCF=60°,CD=4,△DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==△PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴=,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=或p=﹣(由于E(﹣2,0),所以舍去),∴P(,﹣1),∵C(0,﹣6),∴PC==,即:AM+CM=.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM△AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y =0,则ax 2+(a +3)x +3=0, △(x +1)(ax +3)=0,△x =﹣1或﹣,△抛物线y =ax 2+(a +3)x +3(a ≠0)与x 轴交于点A (4,0), △﹣=4,△a =﹣.△A (4,0),B (0,3), 设直线AB 解析式为y =kx +b ,则,解得,△直线AB 解析式为y =﹣x +3.(2)如图1中,△PM △AB ,PE △OA ,△△PMN =△AEN ,△△PNM =△ANE ,△△PNM △△ANE ,△=,△NE △OB ,△=,△AN =(4﹣m ),△抛物线解析式为y =﹣x 2+x +3,△PN =﹣m 2+m +3﹣(﹣m +3)=﹣m 2+3m ,△=,解得m =2.(3)如图2中,在y 轴上 取一点M ′使得OM ′=,连接AM ′,在AM ′上取一点E ′使得OE ′=OE . △OE ′=2,OM ′•OB =×3=4, △OE ′2=OM ′•OB , △=,△△BOE ′=△M ′OE ′,△△M ′OE ′△△E ′OB , △==,△M ′E ′=BE ′,△AE ′+BE ′=AE ′+E ′M ′=AM ′,此时AE ′+BE ′最小 (两点间线段最短,A 、M ′、E ′共线时), 最小值=AM ′==.1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O,P是⊙O上一动点,则2PA+PB的最小值为________.[答案]:3. 如图,等边⊙ABC的边长为6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为________.[答案]:2.4. 如图,在Rt△ABC中,∠C=90°,CA=3,CB=4,C的半径为2,点P是C上的一动点,则12 AP PB的最小值为?5. 如图,在平面直角坐标系中,()2,0A,()0,2B,()4,0C,()3,2D,P是△AOB外部第一象限内的一动点,且∠BPA=135°,则2PD PC+的最小值是多少?[答案]6. 如图,Rt△ABC,△ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC△△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,△四边形CDEF是正方形,△CF=CD,△DCF=△ACB=90°,△△ACF=△DCB,△AC=CB,△△FCA△△DCB(SAS).(2)解:△如图2中,当点D,E在AB边上时,△AC=BC=2,△ACB=90°,△AB=2,△CD△AB,△AD=BD=,△BD+AD=+1.△如图3中,当点E,F在边AB上时.BD=CF=,AD==,△BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.△CD=,CM=1,CA=2,△CD2=CM•CA,△=,△△DCM=△ACD,△△DCM△△ACD,△==,△DM=AD,△BD+AD=BD+DM,△当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;△AB=AC,AE=EC,AD=CD,△AE=AD,△AB=AC,△A=△A,AD=AE,△△BAD△△CAE(SAS),△BD=CE.(2)如图2中,在AD上截取AE,使得AE=.△P A2=9,AE•AD=×6=9,△P A2=AE•AD,△=,△△P AE=△DAP,△△P AE△△DAP,△==,△PE=PD,△PC+PD=PC+PE,△PC+PE≥EC,△PC+PD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=6,DE=,△EC==,△PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.△MA2=225,AE•AD=9×25=225,△MA2=AE•AE,△=,△△MAE=△DAM,△△MAE△△DAM,△===,△ME=MD,△MC+MD=MC+ME,△MC+ME≥EC,△MC+MD的最小值为EC的长,在Rt△CDE中,△△CDE=90°,CD=18,DE=16,△EC==2,△MC+MD的最小值为2.。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

阿氏圆问题 知识点 例题 含答案(全面 非常好)

 阿氏圆问题 知识点 例题 含答案(全面 非常好)

PC OPC O点 P 在圆上运动-----“阿氏圆”问题如图所示 2-1-1,⊙O 的半径为 r ,点 A 、B 都在⊙O 外,P 为⊙O 上的动点, 已知 r =k ·OB.连接 P A 、PB ,则当“PA+k ·PB ”的值最小时,P 点的位置如何确定?A》BB图 2-1-1图 2-1-2 图 2-1-31、“阿氏圆”构造共边共角型相似构造△PAB ∽△CAP 推出PA 2=AB ·AC即:半径的平方=原有线段 ×构造线段 2、“阿氏圆”一般解题步骤:第一步:连接动点至圆心 O (将系数不为 1 的线段的两个端点分别与圆心 相连接),则连接 O P 、OB ; 第二步:计算出所连接的这两条线段 O P 、OB 长度;第三步:计算这两条线段长度的比k OB OP= 第四步:在 O B 上取点 C ,使得OBOPOP OC = 第五步:连接 A C ,与圆 O 交点即为点 P .APBO1、(2016江阴期中)如图,在 Rt△ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为 2,P 为圆上一动点,连结 AP,BP,求BPAP21的最小值.根号372、如图,在RT △ABC 中,B ∠=90°,AB=CB=2,以点B 为圆心做圆B 与AC 相切,P 为圆B 上一动点,则PC PA 22+的最小值为_____.根号53、如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任意取一点P ,则PD PB 23的最小值为_____.二分之根号37AF=3/24、已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求2PA+PB 的最小值.135、如图,在边长为4的正方形中,内切圆记为圆O ,P 为圆O 上一动点,PC PB 2最小值为多少? 666、边长为6的正三角形,内切圆记为圆O ,P 为圆O 上的动点,2PB+PC 最小值为多少3倍根号72倍根号77、如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC=1,BD=2,P 为弧AB 上一动点,求PD PC 22的最小值2分之3倍根号28、在平面直角坐标系中,A(2,0),B(0,2),C(4,0),D(3,2),P是三角形AOB外部的第一象限内一动点,且 BPA=135°,则2PD+PC的最小值为4倍根号29.(2016济南)如图1,抛物线y=ax 2+(a+3)x+3(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点E (m ,0)(0<m <4),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)求a 的值和直线AB 的函数表达式;43-=a ,AB: 343+-=x y(2)设△PMN 的周长为C 1,△AEN 的周长为C 2,若=,求m 的值;(3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ′,旋转角为α(0°<α<90°),连接E ′A 、E ′B ,求E ′A+E ′B 的最小值.(2)m=2或4(舍)(3)3分之4倍根号1010.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值; 5,5(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.根号106,根号106(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.根号37,根号3711、如图所示,抛物线y=-x 2+bx+c 与直线AB 交于(-4,-4),b(0,4)两点,直线AC :y=-21x-6交y 轴于点C 。

九年级数学专题-阿氏圆最值问题

九年级数学专题-阿氏圆最值问题

1AB +kCD 求最值之阿氏圆问题几何中求线段之和的最值问题是我们在初中阶段十分常见的一种类型题目,常见类型包含“将军饮马问题”、“阿氏圆问题”、“胡不归问题”。

此类题目一般综合性、灵活性、应用性较强,一般学生做起来会感觉比较困难。

通过总结我们不难发现此类题目一般的解法都是通过转换或构造把线段之和问题转化为点到点的距离最小或点到线的距离最小问题。

“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,=λPA PB 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。

(1=λ时P 点的轨迹是线段AB 的中垂线)如图:36.0=APBP 为固定值,则此时点P 的运动轨迹为ΘΟ。

证明:设B 点坐标为(0,0);A 点坐标为(m,0);P(x,y).则22+=y x PB ,22+)-(=y m x PA .由λPA PB =得λym x y x =+)-(+2222整理得:0=-2-)+)(-1(222222m λx λm y x λ222222-1(=+-1-(λλm y λλm x 所以当0>λ且1≠λ时,P 点的轨迹是个圆,圆心为)0,-1(22λλm ,半径2-1=λλm r 。

所以此时有λPAPB AO OP OP OB ===所以一定会有△OPB∽△OAP。

在初中阶段我们不要求学生能够证明,只要求学生能够记住这个模型中有这样一对相似三角形,并且能够利用这个固定结论构造这样的相似三角形来解决实际问题就可以了。

2例1:问题提出:如图1,在ABC Rt Δ中,∠ACB=90°,CB=4,CA=6,C Θ的半径为2,P为圆上一动点,连接AP、BP,求BP AP 21+的最小值。

自主探索:在“问题提出”的条件不变的情况下,BP AP +31的最小值为__________;拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求PB AP +2的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。

相关文档
最新文档