火焰法测定元素的方法
火焰光度法和原子吸收光度法

火焰光度法和原子吸收光度法火焰光度法和原子吸收光度法是常用的分析化学方法,可以用于测定样品中某些元素的含量。
本文将对这两种方法进行详细介绍。
一、火焰光度法1. 原理火焰光度法是利用物质在火焰中燃烧时放出的特定元素激发态原子发射特定波长的光线,通过测量这些光线的强度来确定样品中该元素的含量。
其基本原理为:(1)样品中所含元素在火焰中被氧化成激发态原子;(2)激发态原子回到基态时,会放出一定波长的特定光线;(3)通过测量这些特定波长的光线强度,可以确定样品中该元素的含量。
2. 操作步骤(1)准备标准溶液和待测溶液;(2)将标准溶液和待测溶液分别加入火焰光度计预先设定好的喷嘴中,并点燃火焰;(3)调节仪器,选择适当的滤镜和检测条件;(4)依次读取标准曲线上各点的光强值,并绘制标准曲线;(5)读取待测溶液的光强值,并根据标准曲线计算出样品中该元素的含量。
3. 优缺点火焰光度法具有以下优点:(1)灵敏度高,可以检测微量元素;(2)准确性高,误差小;(3)操作简便,适用范围广。
其缺点主要有:(1)只能检测单一元素;(2)对于样品矩阵影响较大;(3)易受气流、温度等因素干扰。
二、原子吸收光度法1. 原理原子吸收光度法是利用物质在火焰或电感耦合等离子体中燃烧时放出的特定元素激发态原子发射特定波长的光线,通过测量这些光线被样品中相应元素原子吸收后削弱的程度来确定样品中该元素的含量。
其基本原理为:(1)样品中所含元素在火焰或电感耦合等离子体中被氧化成激发态原子;(2)通过选择适当波长的特定光线,使其被样品中相应元素原子吸收后削弱;(3)通过测量这些特定波长的光线被吸收后削弱的程度,可以确定样品中该元素的含量。
2. 操作步骤(1)准备标准溶液和待测溶液;(2)将标准溶液和待测溶液分别加入原子吸收光度计预先设定好的喷嘴中,并点燃火焰或启动电感耦合等离子体;(3)选择适当波长的特定光线,并调节仪器,使其被样品中相应元素原子吸收后削弱;(4)依次读取标准曲线上各点的光强值,并绘制标准曲线;(5)读取待测溶液的光强值,并根据标准曲线计算出样品中该元素的含量。
火焰法测定元素的方法

火焰法测定元素的参数
备注:
1.以上所测元素系空气—乙炔火焰,最高温度为2300℃。
火焰类型分为:a贫焰,乙炔流量<1.2升/分;
b化学计量性火焰(氧化性火焰),乙炔流量1.2—1.7升/分;
c富燃性火焰(还原性火焰),乙炔流量>1.7升/分。
2.Al, B, Ba, Be, Dy(镝), Er(铒), Eu(铕),Gd(钆), Ge(锗), Hf(铪), Ho (钬), La(镧),
Mo(钼), Nb(铌), Nd(钕),Os(锇),P(磷),Pr(镨),Re(铼),Sc(钪),Si(硅),Sm(钐),
Ta(钽),Ti(钛), Tm(铥),U(铀),V(钒),W(钨), Y(钇), Yb(镱),Zr(锆)等元素需要氧化亚氮—乙炔火焰测定。
以上部分元素也可用石墨炉原子吸收法测定[使用热解涂层石墨管或金属(Ta,Zr等)涂层石墨管]。
3.火焰法(空气—乙炔火焰)测定的元素,当含量很低(ng/ml)时也可用石墨炉法来
测定。
火焰原子吸收法测定铜

火焰原子吸收法测定铜火焰原子吸收法是一种常用的分析方法,常用于测定金属元素含量。
本文将介绍使用火焰原子吸收法测定铜的方法。
火焰原子吸收法是一种光谱分析方法,利用金属原子的吸收光谱特性来测定其含量。
在火焰燃烧的过程中,试样中的铜原子被激发而产生原子态,当吸收一个固定波长的光时,就会发生能量跃迁,这种跃迁就是铜原子的吸收光谱。
通过测量被吸收的光的强度,可以计算出样品中铜的含量。
1. 样品准备将铜样品称重,加入盛有10mL浓盐酸和2mL硝酸的100mL锥形瓶中,加热至完全溶解,然后用去离子水稀释至100mL。
如果样品不纯,需要进行前处理,去除干扰性元素。
2. 光谱仪设置将火焰原子吸收光谱仪设置为铜的波长,通常铜的波长为324.7nm。
使用氩气作为惰性气体,以增加灵敏度。
3. 校准用有机铜溶液分别制备一系列铜的标准品,浓度分别为1、5、10、20和50ug/mL。
将标准品分别喷入火焰中,测量吸收强度和波长,建立铜的吸收曲线,利用标准曲线计算出样品中铜的含量。
4. 测量样品将样品喷入火焰中,测量铜元素的吸收光谱强度和波长,然后根据铜的标准曲线计算出样品中铜的含量。
5. 结果分析根据测得的样品铜含量,可以计算出样品中铜的总量。
如果需要进一步分析,可以进行其他方法的检测,如ICP-MS、ICP-AES等等。
1. 样品的前处理。
如果样品中有其他干扰元素,需要进行前处理去除干扰物。
2. 校准过程。
建立标准曲线是必要的,要注意标准品的质量和浓度,以及吸收波长的选择。
3. 测量过程。
测量样品时,需要保证火焰稳定和恒温,以及分析区域中原子数量的稳定。
总之,火焰原子吸收法是一种简单、准确、灵敏的分析方法,在工业生产和科学研究中得到广泛应用。
使用该方法测定铜的含量,可以为工程师和科学家提供准确的数据,帮助他们制定计划和决策。
原子吸收分光光度计(火焰法)使用分析

18畳爱龛ZHILIANG ANQUAN原子吸收分光光度计(火焰法)使用分斬平顶山市农产品质量监测中心崔娟原子吸收分光光度计即原子吸收光谱仪,是目前应用较广泛的一种光谱仪器,可应用于食品、农产品、医药卫生、环保、化工、地质等各个领域相关元素的微量分析和痕量分析,其主要原理为朗伯-比尔定律。
即利用高温火焰或高温石墨炉,将样品中的元素加热原子化,利用基态原子对该元素的特征谱线的选择性吸收,对该元素进行定量测定,定量关系在一定浓度范围内符合朗伯-比尔定律,其吸收强度A与原子化程度成正比,而原子化程度与试液中被测元素的含量C成正比。
即A=-\曲o=-\gT=KCL。
原子吸收分光光度计型号不同,结构也有区别,但大致都由4个部分组成,即光源(提供待测元素的共振吸收光)、原子化器(将样品待测元素原子化,形成基态自由原子)、光学系统(形成稳定精细的单色光)和检测器(将检测到的光信号转换为电信号)O 光源一般有锐线光源和连续光源,最常用为空心阴极灯(锐线光源)。
原子化器最常用的原子化技术为火焰法和石墨炉法。
光学系统由单色器和一系列透镜、反射镜及狭缝组成。
检测器使用最成熟、最具代表性的则是光电倍增管。
—、光源使用前确认待测元素,选择对应元素的空心阴极灯,进行灯的安装(更换),最好是在关机条件下进行,避免带电操作,保障仪器及人员安全。
开机运行程序后在软件中点击光谱仪器图标,点击灯座进入界面确认灯的位置、灯元素类型等信息。
原子吸收分光光度计灯架为8只灯旋转灯架,使用时可根据需要在软件中设置各灯位置。
建立分析方法后,选择光谱仪器图标,在数据来源中选择载入方法元素,并在预热灯位置选择所需要预热的灯(可不选),然后点设置点亮灯,在能量菜单下进行灯位置及自动增益控制的调节,然后点击转移到方法,点击关闭。
如需对灯的性能进行查看,可点击能量扫描,进行能量扫描看灯能量是否稳定等。
二、波长校正波长校正是指对整台仪器的波长进行校正,理论上仪器应每6个月进行1次波长校正。
原子吸收火焰法石墨炉法测定元素的方法

火焰法测定元素的参数备注:1.以上所测元素系空气—乙炔火焰,最高温度为2300℃。
火焰类型分为:a贫焰,乙炔流量<1.2升/分;b化学计量性火焰(氧化性火焰),乙炔流量1.2—1.7升/分;c富燃性火焰(还原性火焰),乙炔流量>1.7升/分。
2.Al, B, Ba, Be, Dy(镝), Er(铒), Eu(铕),Gd(钆), Ge(锗), Hf(铪), Ho (钬), La(镧),Mo(钼), Nb(铌), Nd(钕),Os(锇),P(磷),Pr(镨),Re(铼),Sc(钪),Si(硅),Sm(钐),Ta(钽),Ti(钛), Tm(铥),U(铀),V(钒),W(钨), Y(钇), Yb(镱),Zr(锆)等元素需要氧化亚氮—乙炔火焰测定。
以上部分元素也可用石墨炉原子吸收法测定[使用热解涂层石墨管或金属(Ta,Zr等)涂层石墨管]。
3.火焰法(空气—乙炔火焰)测定的元素,当含量很低(ng/ml)时也可用石墨炉法来测定。
石墨炉法测定元素的参数备注:1.基体改进剂进样量与改进剂配法表格中所提到的基体改进剂的量(毫克)为进入石墨炉中的量a1,a2:为纵向加热石墨炉仪器的进样量20μl;b:为横向加热石墨炉仪器的进样量5μl。
改进剂配法:例1.0.015mgMg(NO3)2公式如下:改进剂的百分浓度=改进剂(mg)×100/注入体积(μl)则0.015mgMg(NO3)2应为0.015×100/5=0.3g/100ml例2.0.005mgpd+0.003mg Mg(NO3)2按公式计算出pd应为0.1g,Mg(NO3)2应为0.06g,将两种物质溶解后,定容100ml即可。
Pd试剂必须使用硝酸钯(钯含量不少于40%)。
称取时应将硝酸钯换算成Pd称取,Mg(NO3)2应是优级纯以上试剂。
2.石墨炉原子吸收分析技术中的基体改进技术(现称化学改进剂技术)及石墨炉改进技术。
请参考李述信主编的“原子吸收光谱分析中的干扰及消除方法”(P279—299) 北京大学出版社.19873.原子吸收分析中的背景校正技术还请参考杨啸涛等编注的“原子吸收分析中的背景吸收及其校正”北京大学出版社,19884.灵敏度: a1为产生0.3Abs时的浓度a2为产生0.1—0.2Abs时的浓度。
原子吸收分光光度计火焰发射法测定钠的含量

原子吸收分光光度计火焰发射法测定钠的含量原子吸收分光光度计和火焰发射法是常见的化学分析技术。
它们可以用于测定各种物质中的元素含量。
本文将介绍如何使用原子吸收分光光度计和火焰发射法测定钠的含量。
一、实验原理原子吸收分光光度法是一种常见的分析方法,它利用原子或离子吸收特定波长的电磁辐射的能量来测定元素的含量。
在原子吸收分光光度计中,样品被转化为气态原子或离子,通常需要先将样品蒸发,然后通过加热,将其分子分解成原子。
钠是一种常见的元素,在钠的原子吸收分光光度法中,以钠的D线(波长为589.0 nm)为测试波长。
样品经过气化,钠原子通过火焰,吸收D线波长的光,产生诱导的原子吸收信号。
从阳极钠层产生的电流与吸收的光强成正比,而吸收的光强则与钠的浓度成正比。
二、实验步骤1. 蒸发样品将1 mL 钠试液置于 1 cm2 金片上,将金片放在 Bunsen 灯上蒸发干燥,并重复该过程一次。
将干燥的样品称入50 mL 锥形瓶中,并用近似等量的二氧化硫(SO2)溶液溶解(浓度为0.2 mol/L),使得钠的最终浓度在10-30 mg / L 范围内。
2. 炉管和电极组装将钠灯炉管插入炉体中。
然后将钠灯放入炉管中,固定在底部的钠灯座上。
将两个阳极电极(电极之间距离应为相等)分别固定在炉体左右两侧的电极夹上,并将电极加到高压电源上。
3. 标定仪器调整波长选择钮,将其转动到标定位置。
设置光强知反锁,使得其无法转动。
用钠标准溶液制备,以0.5、1、2、4、6 mg/L的浓度系列制成标准曲线。
标准曲线应包括零点和5个偏移点。
在每个解决方案的浓度和关联的吸光度值之间作图得到标准曲线。
4. 测量样品调整波长选择钮,使其达到设置要测量的钠元素的波长。
调节光源强度,使得钠D线的读数在0.5-1.5微安培之间。
取50mL标准溶液,转移进入测量瓶中,从样品溶液中读取吸收峰,并且记录其强度。
根据标准曲线计算钠浓度。
5. 数据处理将每个测量结果的吸收峰强度转换为钠离子的浓度(mg / L)。
火焰光度法

火焰光度法火焰光度法是一种常用的分析化学方法,广泛应用于金属元素的分析、无机化合物的定量分析,以及有机化合物中人工添加的金属元素的分析等领域。
本文拟就火焰光度法的基本原理、仪器设备和样品处理等方面进行介绍。
一、基本原理火焰光度法是利用金属元素或其化合物在高温火焰中,由于电子的跃迁而发射出特定的光谱线的现象,通过测量元素的光谱强度、发射光谱线的位置和宽度等特性,进行定性、定量分析。
在光谱分析中,要求样品进入到氢气火焰或乙炔-氧气火焰等具有足够高温度的平衡火焰中。
火焰中的烟气成分和温度,是光谱分析中十分关键的参数。
火焰光度法的关键在于它对金属元素的测定灵敏度非常高,精度高且常用仪器简单,使其成为了元素分析的重要手段之一。
二、仪器设备火焰光度法的主要仪器包括火焰光度计和样品处理装置。
火焰光度计主要包括火焰燃烧器、摄像机、分光镜和光电探测器。
火焰燃烧器可以由氢气和空气、乙炔和氧气等组成。
样品处理装置由自动加样装置、酸性溶液洗涤液等系统组成。
这两个设备一起工作,提供了火焰光度法进行测定所需要的样品和环境。
三、样品处理在火焰光度法中,样品处理起着关键作用。
样品中的金属元素需要先用酸(如盐酸、硝酸等)或碱(如氢氧化钠、氢氧化铝等)进行溶解,然后加入适量的载体(如钠、钾等),并调整pH值(如pH=2~3),以便于去除非金属干扰元素和增加金属元素的稳定性。
目前市场上很多样品已经现成提供,供使用者在操作前不需要进行复杂处理。
四、应用范围火焰光度法广泛应用于多种领域的金属元素分析,包括生物样品、环境样品、工业废水分析、冶金学等。
特别是在生物、环境和医疗领域,火焰光度法是一种非常重要的定量分析方法。
例如,火焰光度法可以用于测定生物组织中的养分元素(如钙、镁、磷等)以及有毒元素(如铅、汞、镉等)的含量,这对于生物学研究、食品安全管理以及环境形势评估都具有重要的应用价值。
总之,火焰光度法具有操作简单、准确度高、灵敏度高等优点,因此在元素分析中有着广泛的应用。
火焰光度法

火焰光度法1. 引言火焰光度法是一种广泛应用于化学分析和光谱分析领域的方法。
通过测量火焰中产生的光线的强度,可以准确、快速地测定样品中某种元素的含量。
本文将详细介绍火焰光度法的原理、仪器设备和分析过程,并探讨其在实际应用中的优缺点和限制。
2. 原理火焰光度法基于火焰中金属离子的激发和跃迁过程。
当金属样品进入火焰后,在高温条件下被气体氧化成金属阳离子,然后以放射的形式返回基态。
这个过程中释放出的能量在可见光范围内,并通过光谱仪测量光的强度。
3. 仪器设备火焰光度法所需的主要仪器设备包括: 1. 火焰光度计:用于测量火焰中光的强度。
2. 光谱仪:用于分析光的频谱,确定所需要测量的元素的特定波长。
3. 气体源:提供所需的燃料和氧化剂,如乙炔和氧气。
4. 分析过程火焰光度法的分析过程包括以下步骤: 1. 准备样品:将待测样品处理成适合进行火焰光度法分析的形式,如溶解、研磨等。
2. 调整仪器:根据样品的特点和分析要求,选择适当的燃料和氧化剂,调整火焰的大小和温度。
3. 收集光谱:打开光谱仪,选择所需元素的特定波长,收集火焰中产生的光谱信号。
4. 测量光强度:使用火焰光度计,测量光谱中特定波长的强度。
5. 校准和计算:使用标准样品进行校准,根据测量结果计算待测样品中所需元素的含量。
5. 优缺点火焰光度法具有以下优点: - 快速:分析过程简单迅速,准确度高。
- 灵敏度高:可以测定低至微克级别的元素含量。
- 适用性广:适用于金属和非金属元素的分析。
然而,火焰光度法也存在一些缺点和限制: - 可选择元素的范围有限:受仪器设备和元素的光谱特性限制,不能对所有元素进行分析。
- 干扰效应:由于火焰中存在其他元素和化合物,可能对测量结果产生干扰。
- 样品准备的要求较高:样品的处理和前处理过程要求严格,可能对分析速度和准确度产生影响。
6. 应用领域火焰光度法在许多领域中得到广泛应用,包括但不限于: 1. 环境监测:用于检测土壤、水体等环境中的重金属污染物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火焰法测定元素的参数
备注:
1.以上所测元素系空气—乙炔火焰,最高温度为2300℃。
火焰类型分为:a贫焰,乙炔流量<1.2升/分;
b化学计量性火焰(氧化性火焰),乙炔流量1.2—1.7升/分;
c富燃性火焰(还原性火焰),乙炔流量>1.7升/分。
2.Al, B, Ba, Be, Dy(镝), Er(铒), Eu(铕),Gd(钆), Ge(锗), Hf(铪), Ho (钬), La(镧),
Mo(钼), Nb(铌), Nd(钕),Os(锇),P(磷),Pr(镨),Re(铼),Sc(钪),Si(硅),Sm(钐),
Ta(钽),Ti(钛), Tm(铥),U(铀),V(钒),W(钨), Y(钇), Yb(镱),Zr(锆)等元素需要氧化亚氮—乙炔火焰测定。
以上部分元素也可用石墨炉原子吸收法测定[使用热解涂层石墨管或金属(Ta,Zr等)涂层石墨管]。
3.火焰法(空气—乙炔火焰)测定的元素,当含量很低(ng/ml)时也可用石墨炉法来
测定。