实验五-三点正弦振荡电路

合集下载

正弦波振荡器实验报告

正弦波振荡器实验报告

正弦波振荡器实验报告姓名:学号:班级:一、实验目的1.掌握LC三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡电路设计及电参数计算。

2.掌握振荡回路Q 值对频率稳定度的影响。

3.掌握振荡器反馈系数不同时,静态工作电流IEQ对振荡器起振及振幅的影响。

二、实验电路图三、实验内容及步骤1. 利用EWB软件绘制出如图1.7的西勒振荡器实验电路。

2. 按图设置各个元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率,并做好记录3. 改变电容C 6的值,观察频率变化,并做好记录。

填入表1.3中。

4.改变电容C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。

填入表1.3中。

5.将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。

填入表1.4中。

四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图(2)交流通路图2、改变电容C 6的值时所测得的频率f的值如下:3、C4 0.033μF 0.33μF 0.01μFC6(pF)270 470 670 270 470 670 270 470 670F(Hz)494853.5 403746.8 372023.8 32756.8 32688.2 32814.4 486357.7 420875.4 373357.2(1)、当C4=0.033uF时:C6=270pF时,f=1/T=1000000/2.0208=494853.5HZC6=470pF 时,f=1/T=1000000/2.4768=403746.8HZC6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ(2)、当C4=0.33uF时:C6=270pF时,f=1/T=1000000/30.5280=32756.8HC6=470uF时,f=1/T=1000000/30.5921=32688.2HZC6=670uF时,f=1/T=1000000/30.4744=32814.4HZ(3)、C4=0.01时:当C6=270uF时,f=1/T=1000000/2.0561=486357.7HZ当C6=470uF时,f=1/T=1000000/2.3760=420875.4HZ当C6=670uF时,f=1/T=1000000/2.6784=373357.2HZ2、将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)50 40 30 20 10 0F(HZ)403746.8 416666.7 420875.4 425170.1 422582.8 529553.3 (1)、当Rp=50k时,f=1/T=1000000/2.4768=403746.8HZ(2)、当Rp=40k时,f=1/T=1000000/2.4000=416666.7HZ(3)、当Rp=30k时,f=1/T=1000000/2.3760=420875.4HZ(4)、当Rp=20k时,f=1/T=1000000/2.3520=425170.1HZ(5)、当Rp=10k时,f=1/T=1000000/2.3664=422582.8HZ(6)、当Rp=0k时,f=1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当C4较大(既为0.33PF)时,不管C6如何变化,电路所输出的波形的频率比较稳定,而且没有失真。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。

实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。

关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。

二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。

其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。

同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。

其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。

三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。

4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。

图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。

4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。

二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。

正弦波振荡器在电子技术领域中有着广泛的应用。

在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。

在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。

振荡器的种类很多。

从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。

此实验只讨论反馈式振荡器。

根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。

此实验只介绍正弦波振荡器。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。

(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。

b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。

当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、 熟悉振荡器模块各元件及其作用。

2、 进行LC 振荡器波段工作研究。

3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、 测试LC 振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。

5.3 LC正弦波振荡器

5.3  LC正弦波振荡器

5.3 LC正弦波振荡器定义:采用LC谐振回路作为选频网络的反馈型振荡电路称为LC振荡器,按其反馈方式,LC振荡器可分为互感耦合式振荡器、电感反馈式振荡器和电容反馈式振荡器三种类型,其中后两种通常称为三点式振荡器。

5.3.1 互感耦合振荡器互感耦合振荡器利用互感耦合实现反馈振荡。

根据LC谐振回路与三极管不同电极的连接方式分为集电极调谐型、发射极调谐型和基极调谐型。

图5 —17 三种互感耦合振荡电路集电极调谐型电路的高频输出方面比其它两种电路稳定,而且输出幅度大,谐波成分小。

基极调谐型电路的振荡频率可以在较宽的范围内变化,且能保持输出信号振荡幅度平稳。

我们只讨论集电极调谐型电路(用得最多)。

而集电极调谐型又分为共射和共基两种类型,均得到广泛应用。

两者相比,共基调集电路的功率增益较小,输入阻抗较低,所以难于起振,但电路的振荡频率比较高,并且共基电路内部反馈较小,工作比较稳定。

互感耦合电路,变压器同名端的位置必须满足振荡的相位条件,在此基础上适当调节反馈量M总是可以满足振荡的振幅条件。

振荡起振和平衡的相位条件?判断互感耦合振荡器是否可能振荡,通常是以能否满足相位平衡条件,即是否构成正反馈为判断准则。

判断方法采用“瞬时极性法”。

瞬时极性法:首先识别放大器的组态,即共射、共基、共集。

然后根据同名端的设置判断放大器是否满足正反馈。

放大器组态的判别方法:观察放大器中晶体管与输入端和输出回路相连的电极,余下的电极便是参考端。

(后面以实例说明)①输入端接基极端,输出端接集电极,发射极为参考点(接地点),是共射组态。

共射组态为反相放大器,输入、输出信号的瞬时极性相反,如图5 —18(a)所示。

②输入端接发射极,输出端接集电极,基极为参考点(接地点),是共基组态。

共基组态为同相放大器,输入、输出信号的瞬时极性相同,如图5 —18(b)所示。

③共集:输入端接基极端,输出端接发射极,集电极为参考点(接地点),是共集组态。

lc电容反馈式三点式振荡器 实验报告

lc电容反馈式三点式振荡器 实验报告

lc电容反馈式三点式振荡器实验报告一、实验目的本实验旨在掌握LC电容反馈式三点式振荡器的基本原理和电路结构,学习其工作特性和参数影响规律,培养学生对于实际电路的调试能力和实验操作技能。

二、实验原理LC电容反馈式三点式振荡器是一种常用的振荡器电路,它由一个LC谐振回路和一个三极管组成。

当谐振回路中的电容和电感相互作用时,会形成一个正弦波信号,而三极管则起到放大信号的作用。

在LC谐振回路中,当电容C和电感L组合成一个谐振回路时,在一定条件下会产生自激振荡。

此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。

同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。

三、实验器材1. 万用表2. 示波器3. 信号发生器4. 三极管5. 电阻、电容、电感等元件四、实验步骤及数据记录1. 按照电路图连接电路,调整电阻和电容的值,使得输出波形为正弦波。

2. 测量并记录输出波形的频率、幅度和相位。

3. 调整电阻和电容的值,观察输出波形的变化,并记录数据。

4. 将三极管更换为其他型号,观察输出波形的变化,并记录数据。

五、实验结果分析通过实验可以看出,在LC谐振回路中,当电容和电感组成一个谐振回路时,在一定条件下会产生自激振荡。

此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。

同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。

在实验过程中,我们调整了电阻和电容的值,使得输出波形为正弦波,并测量了其频率、幅度和相位。

随着参数的变化,我们也观察到了输出波形的变化,并记录了相关数据。

此外,我们还更换了三极管型号,发现不同型号的三极管对于输出信号也有影响。

六、实验结论通过本次实验,我们深入了解了LC电容反馈式三点式振荡器的基本原理和电路结构,学习了其工作特性和参数影响规律。

同时,我们也培养了对于实际电路的调试能力和实验操作技能。

电容三点式振荡电路

电容三点式振荡电路

南昌大学实验报告学生姓名:田启泽学号:6100212164 专业班级:电子121班实验类型:□验证□综合□设计□创新实验日期:实验成绩:电容三点式振荡电路一,实验目的1,掌握电路振荡原理,工作条件。

2,熟悉设计振荡电路的设计方法。

二,实验内容。

设计一个振荡电路产生振荡信号。

三,实验原理。

三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。

三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。

三点式振荡电路与发射极相连的两个电抗元件为容性时,称为电容三点式振荡电路反馈振荡的原理及分析反馈型振荡器的振荡条件一个反馈振荡器要产生稳定的振荡必须满足三个条件:起振条件, 保证接通电源后能逐步建立起振荡;平衡条件,保证起振之后能够进入维持等幅持续振荡的平衡状态;稳定条件,保证平衡状态不因外界不稳定因素影响而受到破坏。

反馈型振荡器的基本工作原理:一个简单的反馈型振荡器包括一个以并联LC谐振回路作为负载调谐放大器,同时配置合适的直流偏置电路,以使晶体管处于正确的工作状态,反馈网络将输出的一部分反馈回输入端。

要求必须满足正反馈。

LC振荡器可用来产生几十千赫到几百兆赫的正弦波信号。

根据晶体管接地电极的不同,可分为共射(共源)组态、共基(共栅)组态和共集(共漏)组态。

共集(共漏)组态的电压放大倍数小于1,而电压反馈系数大于1,这对分析和理解都增加了一些难度,这里不予讨论。

主要讨论共射和共基两种组态。

(?共集(共漏)组态最重要的应用)在设计振荡电路时必须注意两个问题:i) 反馈电压的提取振荡电路中的放大器有三种组态:共基、共集、共射。

共基、共集放大器为同相放大器,共射为反相放大器。

反馈提取时,必须满足正反馈,才可能产生振荡。

ii) 对并联LC 回路Q 值的要求并联LC 谐振回路的Q 值反映了回路选频特性的好坏, Q 值越高,振荡器的频率稳定度就越高;Q 值过低,造成两个不良后果1调谐放大器的谐振电阻R ∑=就很小,放大器的增益m A g R ∑=也就很小,起振条件1AF >就不容易得到满足, 2 Q 值过低不利于提高振荡器的频率稳定度。

振荡电路的设计实验报告plc

振荡电路的设计实验报告plc

振荡电路的设计实验报告一、实验目的本实验旨在通过设计并实现一个振荡电路,掌握振荡电路的基本原理、设计方法和测试技术。

通过实验,希望加深对振荡电路在电子工程领域中的应用理解,提升实验技能和理论知识。

二、实验原理振荡电路是一种能够产生自激振荡的电路,其基本原理是通过正反馈和能量损耗之间的平衡,使得电路中的信号能够持续地产生振荡。

振荡电路广泛应用于通信、测量、控制等领域。

三、实验步骤1.确定振荡电路类型:根据实验需求,选择合适的振荡电路类型,如LC振荡电路、RC振荡电路等。

2.设计电路:根据选择的振荡电路类型,使用电路设计软件绘制电路图,并确定相关元件参数。

3.搭建电路:根据电路图,使用电子元器件搭建实际的振荡电路。

4.测试与调整:通过示波器等测试设备,观察振荡电路的输出波形,调整相关元件参数,使得振荡频率符合设计要求。

5.记录数据:记录实验过程中的数据,包括振荡频率、波形等。

6.分析结果:根据实验数据,分析振荡电路的性能,总结实验经验。

四、实验结果通过实验,我们成功设计并实现了一个基于RC的振荡电路。

在测试过程中,我们观察到电路产生了稳定的正弦波输出,振荡频率约为10kHz。

通过调整电阻和电容的参数,我们可以实现对振荡频率的微调。

五、实验总结通过本次实验,我们深入了解了振荡电路的基本原理和设计方法。

在实验过程中,我们不仅学会了如何设计和搭建振荡电路,还掌握了使用示波器等测试设备进行电路性能测试的方法。

此外,我们还学会了如何根据实验数据对电路性能进行分析和优化。

本次实验的成功不仅让我们对振荡电路有了更深入的理解,还提高了我们的实验技能和理论知识水平。

在未来的学习和工作中,我们将继续努力,探索更多的电子工程领域知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三点式正弦波振荡器
一、实验目的
1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容
1、熟悉振荡器模块各元件及其作用。

2、进行LC振荡器波段工作研究。

3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、测试LC振荡器的频率稳定度。

三、实验仪器
1、模块3 1块
2、频率计模块1块
3、双踪示波器1台
4、万用表1块
四、基本原理
将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围)
振荡电路反馈系数
振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

五、实验步骤
1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。

2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。

表5-1
分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。

在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。

3、测量振荡器输出频率范围
将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频
六、实验报告。

相关文档
最新文档