高中数学概率与统计知识点
高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
(最全)高中数学概率统计知识点总结

高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。
2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。
4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。
3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。
分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。
(最全)高中数学概率统计知识点总结

概率与统计一、普通的众数、平均数、中位数及方差1、众数:一组数据中,出现次数最多的数。
2、平均数:①、常规平均数:x x x x1 2 nn②、加权平均数:xx x x1 12 2 n n1 2 n3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。
4、方差: 2 2 2 21s [(x x) ( x x)(x x) ]1 2 nn二、频率直方分布图下的频率1、频率=小长方形面积: f S y距 d ;频率=频数/ 总数2、频率之和:f1 f2 f 1;同时n S1 S2 S 1;n三、频率直方分布图下的众数、平均数、中位数及方差1、众数:最高小矩形底边的中点。
2、平均数:x x f x f x f x f1 12 23 3 n n x x S x S x S x S1 12 23 3 n n3、中位数:从左到右或者从右到左累加,面积等于0.5 时x 的值。
4、方差: 2 2 2 2s ( x x) f ( x x) f ( x x) f1 12 2 n n四、线性回归直线方程:y?b?x a?其中:?bn n(x x)( y y)x y nxyi i i ii 1 i 1n n2 2 2(x x)x nxi ii 1 i 1, a?y b?x1、线性回归直线方程必过样本中心( x,y);2、b?0:正相关;b?0:负相关。
3、线性回归直线方程:y?b?x a?的斜率b?中,两个公式中分子、分母对应也相等;中间可以推导得到。
五、回归分析1、残差:? ?e y y (残差=真实值—预报值)。
分析:e?越小越好;i i i i2、残差平方和:i n12 ( ?)y y ,i i分析:①意义:越小越好;②计算:i n12 2 2 2 (y y?) (y y?) ( y y?) (y y?)i i 1 1 2 2 n n3、拟合度(相关指数):n( y y )?2i i2 i 1R 1n2( y y)ii 1,分析:①. 2 0,1R 的常数;②. 越大拟合度越高;4、相关系数:rn n(x x)( y y) x y nx yi i i ii 1 i 1n n n n2 2 2 2 (x x) ( y y) (x x) ( y y)i i i ii 1 i 1 i 1 i 1分析:①. r [ 1,1]的常数;②. r 0: 正相关;r 0: 负相关③. r [0,0.25] ;相关性很弱;r (0.25,0.75) ;相关性一般;r [0.75,1] ;相关性很强;六、独立性检验1、2× 2 列联表:x1 x 合计22 、独立性检验公式n ( a d b c )①.k y a b a b 1ycd c d 2合计a cb dn②.犯错误上界 P 对照表3、独立性检验步骤2n( a d bc)①.计算观察值k : k;(a b )(c d )(a c)( b d)②.查找临界值k:由犯错误概率P,根据上表查找临界值0 k ;③.下结论:k k :即犯错误概率不超过P 的前提下认为:, 有1-P 以上的把握认为:;k k :即犯错误概率超过P的前提认为:, 没有1-P 以上的把握认为:;【经典例题】题型1 与茎叶图的应用例1(2014 全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50 位市民。
高中数学-选修2-3-第八章统计和概率

概率与统计学问点:1、随机变量:假如随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而改变,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按肯定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1.5、二项分布:假如随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 听从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从全部物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为,其中,且 7、条件概率:对随意事务A 和事务B ,在已知事务A 发生的条件下事务B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式:9、相互独立事务:事务A(或B)是否发生对事务B(或A)发生的概率没有影响,这样的两个事务叫做相互独立事务。
10、n 次独立重复事务:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事务A 发生的次数,A 发生次数ξ是一个随机变量.假如在一次试验中某事务发生的概率是p ,事务A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 (其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ听从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 E ξ=x1p1+x2p2+…+xnpn +…为ξ的数学期望或平均数、均值,数学期望又简称为期()(0,1,2,,)k n k M N M n N C C P X k k m C --==={}min ,m M n =*,,,,n N M N n M N N ∈≤≤.0)(,)()()|(>=A P A P AB P A B P )()()(B P A P B A P ⋅=⋅)(k P =ξkn k k n q p C -=望.是离散型随机变量。
高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结在高中数学学习过程中,概率与统计是重要的一部分内容。
本文将对概率与统计的相关知识点进行总结,以帮助同学们更好地掌握这一部分内容。
一、概率基础知识1. 随机事件与样本空间:随机事件是指在相同条件下,可能发生也可能不发生的事件;样本空间是指随机试验的所有可能结果的集合。
2. 事件的概率:事件A发生的概率是指在相同条件下,事件A发生的可能性大小。
概率的取值范围在0和1之间,其中0表示不可能事件,1表示必然事件。
3. 事件的互斥与独立:如果两个事件A和B不能同时发生,称它们互斥;如果事件A发生与否不影响事件B发生的概率,称它们独立。
二、概率计算方法1. 相对频率法:通过大量重复实验,计算事件A发生的频率来估计概率。
2. 等可能概型法:当样本空间中各个基本事件发生的机会相等时,可以通过事件A包含的基本事件数除以总的基本事件数来计算概率。
3. 排列与组合:排列是指从n个不同元素中取出m个元素按一定顺序排列的可能性数量;组合是指从n个不同元素中取出m个元素的可能性数量,不考虑元素的顺序。
三、离散和连续型随机变量1. 随机变量:随机变量是定义在样本空间上的实值函数,用来描述随机试验的结果。
2. 离散随机变量:在有限次试验中只取有限个或可列个值的随机变量,称为离散随机变量。
离散随机变量的概率分布可以通过概率质量函数来表示。
3. 连续型随机变量:在某一区间内可以取到任意值的随机变量,称为连续型随机变量。
连续型随机变量的概率分布可以通过概率密度函数来表示。
四、概率分布1. 二项分布:是n个独立重复的伯努利试验中成功次数的离散概率分布。
2. 泊松分布:是描述单位时间或单位面积内随机事件发生次数的离散概率分布。
3. 正态分布:又称为高斯分布,是实数上最常见的连续概率分布之一,具有钟形曲线的特点。
五、统计分析方法1. 参数估计:通过样本数据来估计总体的某些未知参数,如均值、方差等。
2. 假设检验:根据采集的样本数据,对总体的某个特征或假设进行判断和推断。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。
四、 中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。
五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。
(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。
化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)==;等可能事件概率的计算步骤:计算一次试验的基本事件总数; 设所求事件A,并计算事件A包含的基本事件的个数;依公式求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A + B) = P(A) + P(B); 特例:对立事件的概率:P(A) + P() =P(A +) = 1.(3)相互独立事件同时发生的概率:P(A • B) = P(A) • P(B);特例:独立重复试验的概率:Pn(k)=.其中P为事件A在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1 项.(4)解决概率问题要注意“四个步骤,一个结合” :求概率的步骤是:第一步,确定事件性质即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示) .[ 解答过程] 提示:例2.一个总体含有100 个个体,以简单随机抽样方式从该总体中抽取一个容量为 5 的样本,则指定的某个个体被抽到的概率为.[ 解答过程] 提示:例 3.接种某疫苗后,出现发热反应的概率为. 现有5人接种该疫苗,至少有3人出现发热反应的概率为________________ . (精确到)[ 考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[ 解答提示] 至少有3 人出现发热反应的概率为故填.离散型随机变量的分布列1. 随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母E、n等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量•③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量2. 离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量可能取的值为,,……,,……,取每一个值(1, 2,……)的概率P ()=则称下表•为随机变量的概率分布,简称的分布列由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质:(1 ),1, 2,...;(2) (1)②常见的离散型随机变量的分布列:(1 )二项分布次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能的取值为0, 1 , 2,n并且,其中,,随机变量的分布列如下:称这样随机变量服从二项分布,记作,其中、为参数,并记:(2)几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数是一个取值为正整数的离散型随机变量,"”表示在第k次独立重复试验时事件第一次发生随机变量的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品•(I)若厂家库房中的每件产品合格的概率为,从中任意取出4件进行检验,求至少有1件是合格的概率;(□)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数的分布列及期望,并求出该商家拒收这批产品的概率•[解答过程](I)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件 A 用对立事件A来算,有(n)可能的取值为.记“商家任取2件产品检验,都合格”为事件B,则商家拒收这批产品的概率所以商家拒收这批产品的概率为. 例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰•已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响•(I)求该选手被淘汰的概率;(n)该选手在选拔中回答问题的个数记为,求随机变量的分布列与数学期望(注:本小题结果可用分数表示)[解答过程]解法一:(I)记“该选手能正确回答第轮的问题”的事件为,则,,该选手被淘汰的概率(n)的可能值为,,的分布列为解法二:(I)记“该选手能正确回答第轮的问题”的事件为,则,,该选手被淘汰的概率.(n)同解法一.离散型随机变量的期望与方差随机变量的数学期望和方差(1)离散型随机变量的数学期望:…;期望反映随机变量取值的平均水平⑵离散型随机变量的方差:……;方差反映随机变量取值的稳定与波动,集中与离散的程度⑶基本性质:;•⑷若〜B(n , p),贝U ; D =npq (这里q=1-p );如果随机变量服从几何分布,,则,D =其中q=1-p.例1 •甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为£、n,£和n的分布列如下:则比较两名工人的技术水平的高低为思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小•解答过程:工人甲生产出次品数&的期望和方差分别为:;工人乙生产出次品数n的期望和方差分别为:由E s =E n知,两人出次品的平均数相同,技术水平相当,但D& >Dm,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度•例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为1 2 3 4 5商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元•表示经销一件该商品的利润.(I)求事件:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;(H)求的分布列及期望.[解答过程](I)由表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”(n)的可能取值为元,元,元.的分布列为(元).抽样方法与总体分布的估计抽样方法1. 简单随机抽样:设一个总体的个数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2•系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)•3•分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确•总体分布:总体取值的概率分布规律通常称为总体分布当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图•当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线•典型例题例1.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2: 3: 5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=. 解答过程:A 种型号的总体是,则样本容量n=.例2.一个总体中有100个个体,随机编号0, 1, 2,…,99,依编号顺序平均分成10个小组,组号依次为1, 2, 3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第 1 组随机抽取的号码为,那么在第组中抽取的号码个位数字与的个位数字相同,若,则在第7 组中抽取的号码是.解答过程:第K组的号码为,…,,当m=6时,第k组抽取的号的个位数字为m+k的个位数字,所以第7 组中抽取的号码的个位数字为 3 ,所以抽取号码为63.正态分布与线性回归1. 正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量的概率密度函数为,x其中、为常数,并且〉0,则称服从正态分布,记为(, ) .(2)期望E =卩,方差.(3)正态分布的性质正态曲线具有下列性质:①曲线在x轴上方,并且关于直线x=y对称.②曲线在x= 时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低③曲线的对称轴位置由卩确定;曲线的形状由确定,越大,曲线越"矮胖”;反之越"高瘦”.三(T原则即为数值分布在(卩一b ,卩+ 6)中的概率为数值分布在(卩一2「卩+26)中的概率为数值分布在(卩一36,卩+36 )中的概率为( 4)标准正态分布当=0,=1时服从标准的正态分布,记作( 0,1)(5)两个重要的公式①, ② .( 6)与二者联系.若,则;②若,则.2. 线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系. 不确定性的两个变量之间往往仍有规律可循. 回归分析就是处理变量之间的相关关系的一种数量统计方法. 它可以提供变量之间相关关系的经验公式.具体说来,对n个样本数据(),(),…,(),其回归直线方程,或经验公式为:.其中,其中分别为|| 、|| 的平均数.例1.如果随机变量E〜N (卩,6 2),且E E =3 , D E =1,则P (- 1<^< 1=等于()0( 1)- 1 B. 0( 4)—①(2)C. 0( 2)—0( 4)D.①(一4)—0(—2)解答过程:对正态分布,卩=E E =3 , 6 2=DE =1,故P (—1<EW 1) =0( 1 —3)—0(—1 —3) =0(—2)—0(—4) =0( 4)—0( 2) .答案:B例2.将温度调节器放置在贮存着某种液体的容器内,调节器设定在d C,液体的温度E (单位:C)是一个随机变量,且E〜N(d,).(1 )若d=90°,则E <89的概率为;(2)若要保持液体的温度至少为80 C的概率不低于,则d至少是?(其中若n〜(0 ,1),则0( 2) =P (n <2) =, 0( — ) =P (n <—)=).解答过程:(1) P (E <89) =F (89) =0()二①(—2) =1 —①(2) =1 —=. (2)由已知d满足w P (E> 80),即 1 —P (E <80)> 1 —,••• P (E <80)w ..•.①()w =o( — ).•w—.• d w .故 d 至少为.(x)是小结:(1)若E〜N(0,1),则n =〜N (0,1). (2)标准正态分布的密度函数f偶函数,x<0时,f (x)为增函数,x>0时,f (x)为减函数.。