第六章相关与回归分析方法
第六章相关及回归分析方式

第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。
∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。
A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。
A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。
6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。
7.下面的几个式子中,错误的选项是( )。
8.以下关系中,属于正相关关系的有( )。
9.直线相关分析与直线回归分析的联系表现为( )。
10.进行相关分析,要求相关的两个变量( )。
A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。
B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。
13.现象之间彼此依存关系的程度越低,那么相关系数( )。
01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。
A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。
A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。
17.计算估量标准误差的依据是( )。
A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。
数据分析中的相关系数与回归分析

数据分析中的相关系数与回归分析数据分析是一门重要的学科,它通过收集、整理和分析数据来揭示数据背后的信息和规律。
在数据分析的过程中,相关系数和回归分析是两个常用的分析方法。
本文将介绍相关系数和回归分析的概念、计算方法以及应用场景。
一、相关系数相关系数用于衡量两个变量之间的相关性强度。
在数据分析中,我们经常会遇到多个变量之间的相互影响关系。
相关系数可以帮助我们了解这些变量之间的联系程度,从而更好地进行数据分析和决策。
计算相关系数的常用方法是皮尔逊相关系数(Pearson correlation coefficient)。
该系数的取值范围在-1到1之间,取值接近1表示两个变量呈正相关关系,取值接近-1表示两个变量呈负相关关系,取值接近0表示两个变量之间没有线性相关关系。
相关系数的计算可以使用公式:其中,n表示样本容量,X和Y分别表示两个变量的观测值,X的均值为μX,Y的均值为μY。
通过计算协方差和标准差,可以得到两个变量之间的相关系数。
相关系数在许多领域有着广泛的应用。
例如,在金融领域,相关系数可以用于衡量不同投资品之间的相关性,从而帮助投资者构建更加稳健和多样化的投资组合。
在医学研究中,相关系数可以用于分析药物疗效和副作用之间的关系。
在市场调研中,相关系数可以用于评估产品销售和广告投放之间的关联性。
二、回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以帮助我们了解一个或多个自变量对因变量的影响程度,并进行预测和推断。
回归分析的常用方法包括线性回归、多项式回归、逻辑回归等。
在这些方法中,线性回归是最常用的一种。
线性回归通过建立一个线性方程来描述自变量和因变量之间的关系。
例如,当只有一个自变量和一个因变量时,线性回归可以表示为:其中,Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。
回归分析的目标是通过拟合找到最佳的回归系数,使得拟合值尽可能接近实际观测值。
第六章相关与回归分析

• 总体相关系数ρ——根据总体数据计算的,
• 样本相关系数 r ——根据样本数据计算的。
6 - 12
统
计
相关关系的计算பைடு நூலகம்式
学
rSxy
(xx)y (y)
SxSy
(xx)2 (yy)2
或化简为
r
nx yxy
nx2x2 ny2y2
6 - 13
统
计
相关系数取值及其意义
相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图 的散点而形成的图。
编制相关表、图的意义——有助于分析者判断 相关的有无、方向、形态、密切程度。
6 - 10
统
计
相关关系的图示
学
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
2. 一元线性(总体)回归方程的形式如下:
3.
E( y ) = α + b x
▪ 方程的图示是一条直线,因此也称为直线回归方程
▪ α 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期 望值,是回归直线是起始值;
▪ b 是直线的斜率,表示当 x 每变动一个单位时,y
的平均变动值。
6 - 22
统
6 - 11
统
计 学
(二)相关系数和判定系数
1. 都是对变量之间关系密切程度的度量; 2. 判定系数=相关系数的平方; 3. 不同类型的相关,相关系数的计算方法也不同.
对两个变量之间线性相关程度的度量称为简单相 关系数(也称直线相关系数),常简称相关系数.
此外还有复相关系数、非线性相关系数、偏相关系 数
第六章-相关与回归

间相关程度的比较。
(2)1≤r≤1,0≤|r|≤1。 |r|越接近于1,说明两变量的相关程度越强; |r|越接近于0,两变量的相关程度越差。
(3)r=0表示x与y无相关, r<0表示负相关, r>0表示正相关, |r|=1为完全相关。
二、样本相关系数的计算
(x1,y1),(x2,y2),…,(xn,yn)。
前面已经指出,要研究两种变量间的关系,最简单的方 法是把一系列观测数据在坐标中用散点图表示,如果散点 大致分布在一条直线附件,就可以判断两者为直线回归关 系。这种关系可用直线回归方程表示。则总体直线回归方 程为:
yi xi i (i=1,2,…,n) i服 N 0 从 ,2,且相互独
相关变量间的关系一般分为两种: 一种是平行关系,是研究变量间关系的强弱程度,此
时我们不关心在它们之间是谁影响了谁,谁是因,谁是果, 变量间的地位是平等的。如黄牛的体长和胸围之间的关系, 猪的背膘厚度和眼肌面积之间的关系等都属于平行关系。
另一种是因果关系,即一个变量的变化受另一个或几 个变量的影响。如仔猪的生长速度受遗传特性、营养水平、 饲养管理条件等因素的影响,子代的体高受亲本体高的影 响。
N 1N 1 (XX X)Y ( Y Y)
(XX)Y (Y) (XX)2 (YY)2
r SP xy
xy(x)n(y)
SSxSSy
x2(nx)2y2(ny)2
其中:
SPxy— 变量x和变量y的离均差乘积和简称乘积和 SSx — 变量x 的离均差平方和 SSy — 变量y 的离均差平方和
相关系数r 的特点:
变量。
例如,进行药物疗效试验 时,应用不同的剂量 (x),分析疗效(y)如 何受到药物剂量的影响及 其变化规律。这里规定的
相关分析与回归分析的基本原理

相关分析与回归分析的基本原理1. 引言相关分析与回归分析是统计学中常用的两种数据分析方法,它们可以帮助研究者理解变量之间的关系,并根据这些关系进行预测。
本文将介绍相关分析和回归分析的基本原理,包括其定义、应用场景以及计算方法。
2. 相关分析2.1 定义相关分析是一种用来研究两个或多个变量之间关系的统计方法。
它通过计算相关系数来衡量变量之间的相关性。
相关系数的取值范围为-1到1,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关关系。
2.2 应用场景相关分析可应用于许多领域,如市场研究、医学研究、金融分析等。
例如,在市场研究中,我们可以使用相关分析来研究产品销量与广告投入之间的关系,了解其相关性,并根据相关性进行决策。
2.3 计算方法计算两个变量之间的相关系数可以使用皮尔逊相关系数或斯皮尔曼相关系数。
皮尔逊相关系数适用于连续变量,而斯皮尔曼相关系数适用于有序变量或非线性关系。
3. 回归分析3.1 定义回归分析是一种用来研究变量之间关系的统计方法,其基本思想是通过构建适当的数学模型来描述一个或多个自变量对因变量的影响。
回归分析可以帮助预测未来的观察值,并理解变量之间的因果关系。
3.2 应用场景回归分析可以应用于各种预测和建模的场景。
例如,在金融领域,回归分析可以用来预测股票价格的变动,了解影响股价的各种因素,并根据这些因素进行投资决策。
3.3 计算方法回归分析通常使用最小二乘法来拟合变量间的线性关系。
在回归分析中,自变量可以是单个变量或多个变量,而因变量是需要预测或解释的变量。
通过最小化残差平方和,可以得到最佳拟合的回归模型。
4. 相关分析与回归分析的联系与区别4.1 联系相关分析和回归分析都是用来研究变量之间关系的统计方法,它们都可以帮助研究者理解变量之间的相关性和影响程度。
4.2 区别相关分析主要关注变量之间的相关性,通过计算相关系数来衡量相关性的强度和方向;而回归分析则更加关注自变量对因变量的影响程度和预测能力,适用于建立因果关系和预测模型。
生统:第六章一元回归及简单相关分析

S XX
17 . 92
a y b x 108 . 57 11 . 16 2 . 4 81 . 79
2回0归21方/6程/19:
Yˆ 81 . 79 11 . 16 X
20
• 图10-4为该例的散点图和回归线。
2021/6/19
21
• 例:下表为某品系小麦的穗长与穗重的数据,根据 表中数据求回归方程,并预测穗长40厘米的麦穗 重。
2021/6/19
6
2021/6/19
7
2021/6/19
8
图a和b两变量间关系是直线型,图c曲线型。图a的两个变 量关系较图b密切,且正向,图b负向。
散点图表示两个变量间关系的定性研究。
2021/6/19
9
P177-179
表10-1、图10-1单位叶面积干物质和NaCl含量之 间呈直线关系,点不完全在一直线上。 表10-2、图10-2增加每一NaCl含量下的观测次数, 取平均数做散点图基本为一直线。 实际中,不能进行多次的重复,在有限点上,用回 归方法将其理论关系推导出来。
间的关系。
2021/6/19
1
1、按两变量相关的程度分类
(1)完全相关:一变量的值定后,另一变量的值可 通过某公式求出来,即一个变量的值可由另一个变 量所完全决定。
(2)不相关:变量之间完全没有任何关系。一个变 量的值不能提供另一个变量的任何信息。
(3)统计相关(不完全相关) :介于上述两种情况之
12
回归分析需满足以下假定:
(1) X 的任一观测值都对应着 一个 Y的分布,
Y ~ N ( X , 2) (2)随机误差 是给定 X , Y的观测值与直
线 Y .X 的离差 , 是相互独立 , 且作正态分布。
6.2第六章 多元回归和相关、偏相关.

若依变数Y 同时受到m 个自变数X1、X2、…、Xm 的 影响,且这m 个自变数皆与Y 成线性关系,则这m+1 个变数的关系就形成m 元线性回归。
一个m元线性回归总体的线性模型为:
Y j 0 X 0 1 X 1 j 2 X 2 j m X mj j
Ry·12…m的存在区间为[0,1]。
(二) 多元相关系数的假设测验
令总体的多元相关系数为 ,则对多元相关系数的
假设测验为H0: 0 对HA: 0 ,
F 测验 :
F
2R2 1(1 R 2 )
(10·16)
其中的
1 =m, 2
=n-(m+1),R2为
t bi i
sbi
(10·11)
服从 n (m 1) 的 t 分布,可测验 bi 的显著性。
2. F 测验
U Pi
bi2 c(i 1)(i 1)
U Pi 就是y对xi的偏回归平方和, 1 。
F
U Pi Q y/12m /[n (m
1)]
c11 c12 c1M
R 1
(cij ) M M
c 2 1 cM 1
c 2 2 cM 2
c2M
c MM
令xi 和xj 的偏相关系数为rij·,解得 cij 后即有
rij·cij cii cjj
③评定各个自变数对依变数的相对重要性,以便研 究者抓住关键,能动地调控依变数的响应量。
第一节 多元回归
一、多元回归方程 二、多元回归的假设测验 三、最优多元线性回归方程的统计选择 四、自变数的相对重要性
回归分析和相关分析的基本概念和方法

回归分析和相关分析的基本概念和方法回归分析和相关分析是统计学中常用的分析方法,用于研究变量之间的关系、预测变量的值以及对未来情况进行估计。
本文将介绍回归分析和相关分析的基本概念和方法。
回归分析是一种通过建立数学模型来描述变量之间关系的方法。
它基于一个或多个自变量(也称为预测变量)与一个因变量(也称为响应变量)之间的关系。
回归分析的目的是通过自变量的值来预测和解释因变量的值。
常见的回归分析方法有线性回归、多元回归和逻辑回归等。
线性回归是最常用的回归分析方法之一,它假设自变量和因变量之间存在线性关系,并通过拟合一条直线或平面来描述这种关系。
多元回归则可以处理多个自变量的情况,逻辑回归则适用于因变量为二元变量的情况。
回归分析的方法可以帮助我们理解变量之间的关系,并进行预测和解释。
它可以用于各个领域的研究,如经济学、社会学、医学等。
通过观察变量之间的相关性,我们可以了解它们之间的内在关系,并根据这些关系做出相应的决策。
与回归分析类似,相关分析也是研究变量之间关系的一种方法。
相关分析衡量了两个变量之间的线性关系强度和方向,它可以告诉我们变量之间的相关性程度。
相关系数的取值范围在-1到1之间,其中负值表示负相关,正值表示正相关,0表示无相关性。
相关分析可以帮助我们了解变量之间的关系,并可以预测一个变量的值,当我们知道其他相关变量的值时。
相关分析还可以用于探索性数据分析,帮助我们发现变量之间的新关系,并进行深入研究。
在进行回归分析和相关分析之前,我们需要先收集数据,并进行数据预处理。
这包括数据清洗、缺失值处理和异常值检测等步骤。
然后,我们可以根据研究的目的选择合适的回归模型或相关系数,并进行参数估计和假设检验。
为了确保结果的可靠性,我们还需要进行模型诊断和效果评估。
模型诊断可以检查模型是否满足回归或相关分析的假设,并纠正违反假设的情况。
效果评估可以通过计算预测误差、确定系数和显著性检验等指标来评估模型的拟合效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 相关与回归分析方法第一部分 习题一、单项选择题1.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关 ( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关 C.两者都是正相关 D.两者都是负相关2.样本相关系数r 的取值范围( )。
A.-∞<r <+∞B.-1≤r ≤1C. -l <r <1D. 0≤r ≤13.当所有观测值都落在回归直线01y xββ=+上,则x 与y 之间的相关系数( )。
A.r =0 B.r =1 C.r =-1 D.|r|=1 4.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( )。
A.前者无需确定,后者需要确定 B.前者需要确定,后者无需确定 C.两者均需确定 D.两者都无需确定5.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( )。
A.完全相关 B.微弱相关 C.无线性相关 D.高度相关6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。
A.增加70元B.减少70元C.增加80元D.减少80元 7.下面的几个式子中,错误的是( )。
A. y= -40-1.6x r=0.89B. y= -5-3.8x r =-0.94C. y=36-2.4x r =-0.96D. y= -36+3.8x r =0.98 8.下列关系中,属于正相关关系的有( )。
A.合理限度内,施肥量和平均单产量之间的关系B.产品产量与单位产品成本之间的关系C.商品的流通费用与销售利润之间的关系D.流通费用率与商品销售量之间的关系 9.直线相关分析与直线回归分析的联系表现为( )。
A.相关分析是回归分析的基础B.回归分析是相关分析的基础C.相关分析是回归分析的深入D.相关分析与回归分析互为条件 10.进行相关分析,要求相关的两个变量( )。
A.都是随机的B.都不是随机的C.一个是随机的,一个不是随机的D.随机或不随机都可以 11.相关关系的主要特征是( )。
A.某一现象的标志与另外的标志之间存在着确定的依存关系B.某一现象的标志与另外的标志之间存在着一定的关系,但它们不是确定的关系C.某一现象的标志与另外的标志之间存在着严重的依存关系D.某一现象的标志与另外的标志之间存在着函数关系 12.相关分析是研究( )。
A.变量之间的数量关系B.变量之间的变动关系C.变量之间相互关系的密切程度D.变量之间的因果关系 13.现象之间相互依存关系的程度越低,则相关系数( )。
A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.514.在回归直线01y x ββ=+中,若10β<,则x 与y 之间的相关系数( )。
A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,表明( )。
A.现象之间完全无关B.相关程度较小C.现象之间完全相关D.无直线相关关系16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,则x 与y 之间存在着( )。
A.较密切的正相关B.较低度的正相关C.较密切的负相关D.低度负相关 17.计算估计标准误差的依据是( )。
A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差 18.两个变量间的相关关系称为( )。
A.单相关B.复相关C.无相关D.负相关 19.从变量之间相关的方向看,可分为( )。
A.正相关与负相关 B.直线相关和曲线相关 C.单相关与复相关 D.完全相关和无相关20.从变量之间相关的表现形式看,可分为( )。
A.正相关与负相关 B.直线相关和曲线相关 C.单相关与复相关 D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属( )。
A.无相关 B.负相关 C.正相关 D.无法判断 22.估计标准误差是反映( )。
A.平均数代表性的指标B.相关关系的指标C.回归直线的代表性指标D.序时平均数代表性指标23.回归直线和相关系数的符号是一致的,其符号均可用来判断现象是( )。
A.正相关还是负相关 B.线性相关还是非线性相关 D.单相关还是复相关 C.完全相关还是不完全相关24.某校经济管理类的学生学习《统计学》的时间x 与考试成绩y 之间建立线性回归方程01y x ββ=+。
经计算,方程为y =20-0.8x ,该方程参数的计算( )。
A.0β值是明显不对的 B. 1β值是明显不对的 C.0β值和1β值都是不对的 D.0β值和1β值都是正确的25.在回归分析中,自变量同因变量地位不同,在变量x 与y 中,y 依x 回归同x 依y 回归是( )。
A.同一个问题B.有联系但意义不同的问题C.一般情况下是相同的问题D.是否相同,视两相关变量的具体内容而定二、多项选择题1.下列现象中属于相关关系的有( )。
A.压力与压强B.现代化水平与劳动生产率C.圆的半径与圆的面积D.身高与体重E.机械化程度与农业人口 2.相关关系与函数关系各有不同特点,主要体现在( )。
A .相关关系是一种不严格的互相依存关系 B.函数关系可以用一个数学表达式精确表达 C.函数关系中各现象均为确定性现象D.相关关系是现象之间具有随机因素影响的依存关系E.相关关系中现象之间仍可以通过大量观察法来寻求其变化规律3.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( )。
A.正相关 B.单相关 C.负相关 D.复相关 E.完全相关4.在直线相关和回归分析中( )。
A .据同一资料,相关系数只能计算一个 B.据同一资料,相关系数可以计算两个 C.据同一资料,回归方程只能配合一个D.据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个E.回归方程和相关系数均与自变量和因变量的确定无关 5.相关系数r 的数值( )。
A.可为正值B.可为负值C.可大于1D.可等于-1E.可等于16.相关系数r =0.9,这表明现象之间存在着( )。
A.高度相关关系B.低度相关关系C.低度负相关关系D.高度正相关关系E.低度正相关关系 7.拟合直线回归方程是为了( )。
A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量间的相关程度8.在直线回归分析中,确定直线回归方程的两个变量必须是( )。
A.一个自变量,一个因变量 B.均为随机变量 C.对等关系 D.一个是随机变量,一个是可控制变量 E.不对等关系 9.直线相关分析的特点有( )。
A.两个变量是对等关系B.只能算出一个相关系数C.相关系数有正负号,表示正相关或负相关D.相关的两个变量必须都是随机的E.回归方程有两个10.从变量之间相互关系的表现形式看,相关关系可分为( )。
A.正相关B.负相关C.直线相关D.曲线相关E.不相关和完全相关 11.直线相关分析与直线回归分析的区别在于( )。
A.相关的两个变量都是随机的,而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中的两个变量都是随机的,而相关中的自变量是给定的数值,因变量是随机的C.相关系数有正负号,而回归系数只能取正值D.相关的两个变量是对等关系,而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数,而回归分析中根据两个变量只能配合一个回归方程12.确定直线回归方程必须满足的条件是( )。
A.现象之间存在着直接因果关系B.现象之间存在着较密切的直线相关关系C.相关系数必须等于1D.两变量必须均属于随机变量E.相关数列的项数必须有相应的数量 13.下列哪些关系是相关关系( )。
A.圆的半径长度和周长的关系 B.农作物收获和施肥量的关系 C.商品销售额和利润率的关系 D.产品产量与单位成品成本的关系 E.家庭收入多少与消费支出增长的关系14.直线回归方程01y x ββ=+中的1β称为回归系数,回归系数的作用是( )。
A.可确定两变量之间因果的数量关系 B.可确定两变量的相关方向 C.可确定两变量相关的密切程度D.可确定因变量的实际值与估计值的变异程度E.可确定当自变量增加一个单位时,因变量的平均增加量 15.相关系数与回归系数( )。
A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数大于零则相关系数小于零D.回归系数小于零则相关系数大于零E.回归系数等于零相关系数等于零三、填空题1、按变量的多少可将相关关系分为( )和( )两种;按变量之间的相关的表现形态可分为( )和( )两种;按相关关系的程度不同可分为( )、( )和( )三种;而简单相关按相关的方向不同分为( )和( )两种。
2、一般地,当相关系数的绝对值为1时,相关关系就转化为( )。
3、相关系数r 的符号反映相关关系的( ),其绝对值的大小反映两变量线性相关的( )。
4、相关系数r=0表明两个变量( )。
5、样本容量较大时,样本相关系数r 越大,表示总体的相关程度( )。
6、相关系数的取植范围是( );判定系数的取植范围是( )。
7、估计回归方程的参数时,常用的方法是( ),其基本要求是( )。
8、当回归系数大于零时,相关系数( )零。
9、在线性总体回归模型中,变量i Y的取值可以分割为两部分:一部分是( ),另一部分是( )。
10、回归分析和相关分析的联系表现在:相关分析是回归分析的( ),回归分析是相关分析的( )。
11、总离差可分解为两部分,一部分是可以被解释的( ),另一部分则是不能被解释的( )。
12、反映样本回归线对总体回归线拟合好坏的指标是( )。
四、简答题1.什么是相关关系?相关关系有什么特点,如何度量?2.简述相关关系的种类。
3.相关分析的主要内容包括哪些?4.试给出测定变量相关关系的常用方法。
5.简述积矩相关系数检验的步骤。
6.简述相关分析与回归分析的区别与联系。
7.什么是估计标准误差? 有什么作用?8.以一元线性回归方程为例,简述回归系数显著性检验的主要步骤。
9.简述非线性线性化的常用方法。
10.一元线性回归中两变量的样本相关系数、回归系数斜率项的估计值和回归模型的判定系数的关系如何?五、计算题(1)根据以上简单相关表的资料,绘制相关散点图,并判别相关关系的表现形式和方向。
(2)试以耐用消费品销售额为因变量、人均收入为自变量做回归分析(包括相关的检验)。
2.某地区31年中的个人储蓄及个人收入资料如下表所示:储蓄收入储蓄收入储蓄收入264 8777 898 16730 2017 27430105 9210 950 17663 2105 2956090 9954 779 18575 1600 28150131 10508 819 19535 2250 32100122 10979 1222 21163 2420 32500107 11912 1702 22880 2570 35250406 12747 1578 24127 1720 33500503 13499 1654 25604 1900 36000431 14269 1400 26500 2100 36200588 15522 1829 27670 2300 38200898 16730 2200 28300 4333 46733 利用给定的资料,建立一元线性回归模型,进行回归分析。