机械设计基础课程设计1

合集下载

机械设计基础课程设计

机械设计基础课程设计

四、设计工作量
1.减速器装配草图1张(0号坐标纸、手绘);
2.工作图:装配图1张、零件图2张(计算 机绘图 、M1:1)
3.设计计算说明书1份(6000~8000字)。 4.答辩
五、课程设计计划(2周)
1.传动装置总体设计
2.装配草图设计
3.工作图设计辩
六、成绩评定
综合设计表现、图纸质量、说明书及答 辩情况,按等级平分。祥见考核制度
七、参考书 1.机械设计 2.机械设计课程设计 3.机械零件设计图册
八、课程设计的要求
1.明确学习目的,端正学习态度
2.在教师的指导下,由学生独立完成
3.正确处理理论计算与结构设计的关系
4.正确处理继承与创新的关系
5.正确使用标准和规范
第3章 传动零件设计
一、减速器外传动零件设计
1.普通V带传动 已知:P n T 2.链传动 已知:P n
i i
T
设计步骤:见教科书例题
二、减速器内传动零件设计
1.高速级齿轮传动 已知:P n T i 设计步骤:见教科书例题
2.低速级齿轮传动 已知:P n T i 设计步骤:见教科书例题
三、按转矩初步计算轴的最小直径
dmin
注意:1.键槽
P ≥ C n
单键:加5% 双键:加7%
3
2.圆整为标准直径
3.或按联轴器圆整直径
四、验算工作速度误差
v v理 v实 v理
≤ 5%
五、减速器箱体结构尺寸 注意:
、 1≥8,
d f ≥ 16, d1≥ 12, d 2 8, d3 6

表2 轴的形位公差推荐标注项目 类别标注项目精度等级对加工性能的影响形位公差与滚动轴承相配 合的直径的圆柱度6影响轴承与配合松紧及对中性,也会改变轴承 内圈跑道的几何形状,缩短轴承寿命位置公差与滚动轴承相配合的 轴径表面对中心线的圆跳动6影响传动件及轴承的运转偏心轴承定 位端面对中心线的垂直度或端面圆跳动6影响轴承的定位,造成轴 承套圈歪斜;改变跑道的几何形状,恶化轴承的工作条件与齿轮等 传动零件相配合表面对中心线的圆跳动 6~8影响传动件的运转 (偏心)齿轮等传动零件的定位端面对中心线的垂直度或端面圆跳动 6~8影响齿轮等传动零件的定位及其受载均匀性键槽对轴中心线的 对称度(要求不高时可不注)7~9影响键受载的均匀性及装拆的难易

《机械设计基础课程设计》课程教学大纲

《机械设计基础课程设计》课程教学大纲

平面连杆机构的基本概念和类型
平面连杆机构的运动分析
了解平面连杆机构的基本组成、特点和应用 场景。
掌握平面连杆机构的位置、速度和加速度分 析方法,能够绘制运动曲线图。
平面连杆机构的力分析
平面连杆机构的设计方法
掌握平面连杆机构的受力分析方法,能够计 算各构件的受力情况。
了解平面连杆机构的设计步骤和方法,能够 根据实际需求进行机构设计。
螺纹连接结构设计
了解螺纹连接结构设计的原则和方法,能 够设计出满足使用要求的螺纹连接结构。
键连接设计
键连接类型与特点
了解常见键连接类型(如平键连接、半圆键连接、楔键连接等) 及其特点,掌握各类型键连接的适用场合。
键的选择与强度计算
熟悉常用键的标准和规范,能够根据实际需求选择合适的键,并 掌握键连接的强度计算方法。
《机械设计基础课程设计》 课程教学大纲
目录
• 课程概述与目标 • 机械设计基础知识 • 常用机构设计 • 传动系统设计 • 轴系零部件设计 • 连接与紧固件设计 • 课程设计与实践环节 • 总结与展望
01
课程概述与目标
课程背景与意义
机械设计是制造业的基础,对于 培养高素质工程技术人才具有重
要意义。
了解销孔的加工方法和装配要求,能够正确加工和装配销连接。
07
课程设计与实践环节
课程设计任务书解读与选题指导
解读任务书
详细解读课程设计任务书,明确设计目标、要求 和限制条件。
选题指导
提供选题建议,引导学生选择符合自身兴趣和专 业方向的课题。
课题分析
帮助学生分析课题,制定合理的设计方案和实施 计划。
02
机械设计基础知识
机械设计基本概念

机械设计基础课程设计教案

机械设计基础课程设计教案

机械设计基础课程设计教案一、教学目标1. 让学生掌握机械设计的基本原理和方法。

2. 培养学生运用机械设计知识解决实际问题的能力。

3. 提高学生创新意识和团队协作能力。

二、教学内容1. 机械设计的基本概念2. 机械设计的方法和步骤3. 机械零件的设计4. 机械系统的总体设计5. 机械设计的优化三、教学方法1. 讲授法:讲解机械设计的基本原理、方法和步骤。

2. 案例分析法:分析实际机械设计案例,让学生了解机械设计的过程。

3. 实践操作法:引导学生参与机械设计实践,提高实际操作能力。

4. 小组讨论法:分组进行设计任务,培养团队协作和沟通能力。

四、教学安排1. 第一课时:机械设计的基本概念2. 第二课时:机械设计的方法和步骤3. 第三课时:机械零件的设计4. 第四课时:机械系统的总体设计5. 第五课时:机械设计的优化五、教学评价1. 课堂问答:检查学生对机械设计基本概念的理解。

2. 案例分析报告:评估学生分析实际问题的能力。

3. 设计任务:评价学生运用机械设计知识解决实际问题的能力。

4. 小组讨论报告:评估学生的团队协作和沟通能力。

六、教学内容6. 机械设计中的材料选择7. 机械设计中的力学分析8. 传动系统设计9. 机械结构的强度计算10. 机械设计的可靠性分析七、教学方法1. 讲授法:讲解材料选择、力学分析、传动系统设计、强度计算和可靠性分析的基本原理和方法。

2. 案例分析法:分析实际案例,让学生了解这些方法在机械设计中的应用。

3. 实践操作法:引导学生参与相关设计实践,提高实际操作能力。

4. 小组讨论法:分组进行设计任务,培养团队协作和沟通能力。

八、教学安排1. 第六课时:机械设计中的材料选择2. 第七课时:机械设计中的力学分析3. 第八课时:传动系统设计4. 第九课时:机械结构的强度计算5. 第十课时:机械设计的可靠性分析九、教学评价1. 课堂问答:检查学生对材料选择、力学分析等基本概念的理解。

zdl机械设计基础课程设计

zdl机械设计基础课程设计

zdl机械设计基础课程设计一、课程目标知识目标:1. 让学生掌握zdl机械设计的基本原理和概念,理解机械结构设计的基本流程。

2. 使学生了解并能够运用机械设计中的相关计算方法和公式,如强度计算、刚度计算等。

3. 引导学生掌握机械设计中常用的材料选择、传动方式及零部件设计的基本知识。

技能目标:1. 培养学生运用CAD软件进行机械零件设计与绘制的能力。

2. 提高学生解决实际机械设计问题的能力,包括分析问题、制定方案、动手实践等。

3. 培养学生团队协作和沟通表达能力,能在小组讨论中提出自己的观点和建议。

情感态度价值观目标:1. 培养学生对机械设计学科的兴趣,激发他们的学习热情和探究精神。

2. 引导学生树立正确的工程观念,认识到机械设计在实际工程中的应用价值。

3. 培养学生严谨、负责的工作态度,注重细节,追求卓越。

本课程针对高中年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。

在教学过程中,注重理论与实践相结合,充分调动学生的主观能动性,培养他们的创新能力和实践操作能力。

通过本课程的学习,使学生能够掌握机械设计的基本知识和技能,为未来的学习和职业发展打下坚实基础。

二、教学内容1. zdl机械设计基本原理:包括机械设计的基本概念、设计方法和设计流程,重点讲解机械结构设计的基本原则和设计要求。

2. 机械零件设计:涵盖传动系统、连接件、轴、轴承、联轴器等常见零部件的设计方法,结合教材相关章节进行详细讲解。

3. 强度与刚度计算:介绍强度、刚度计算的基本原理和方法,针对典型机械零件进行实例分析。

4. 材料选择与应用:讲解常用机械设计材料的特点、性能及应用,使学生能够根据实际需求选择合适的材料。

5. 传动方式:分析各类传动方式(如齿轮传动、链传动、带传动等)的优缺点,并进行比较和选用。

6. CAD软件应用:结合教材内容,教授CAD软件的基本操作,培养学生运用CAD软件进行机械零件设计与绘制的技能。

ZDD机械设计基础课程设计

ZDD机械设计基础课程设计

ZDD机械设计基础课程设计一、课程目标知识目标:1. 理解并掌握ZDD机械设计基础理论,包括机械原理、机械零件的选用与设计方法;2. 掌握机械设计的基本流程,能够运用所学知识进行简单的机械系统设计;3. 了解机械设计中的工程标准和规范,能够遵循相关要求进行设计。

技能目标:1. 能够运用CAD软件进行机械零件的绘制,具备基本的计算机辅助设计能力;2. 能够运用力学原理和数学方法进行机械结构的分析与计算,解决实际问题;3. 通过课程项目实践,提高团队合作能力、沟通表达能力和解决问题的能力。

情感态度价值观目标:1. 培养学生对机械设计的兴趣,激发创新意识和探索精神;2. 培养学生严谨、细致、负责的工作态度,注重工程实践与理论相结合;3. 增强学生的环保意识,引导其在机械设计中考虑可持续发展,关注绿色设计。

本课程针对高年级学生,结合学科特点和教学要求,旨在培养学生具备扎实的机械设计基础知识和技能,为未来从事相关工作奠定基础。

通过本课程的学习,学生将能够独立完成简单的机械设计项目,具备一定的工程实践能力,并形成积极向上的情感态度价值观。

二、教学内容1. 机械设计基本概念与原理:包括机械系统的组成、机械设计的基本要求、设计流程等,参考教材第一章内容。

2. 机械零件的选用与设计:讲解常用机械零件的类型、性能、选用原则,以及设计方法,涉及教材第二章至第四章内容。

3. 机械结构分析与计算:包括力学基础、受力分析、材料力学性能等,结合教材第五章内容进行教学。

4. 计算机辅助设计(CAD):介绍CAD软件的基本操作,进行机械零件的绘制与设计,参考教材第六章内容。

5. 机械设计实例分析:分析典型机械设计案例,讲解设计思路、方法和技巧,结合教材第七章内容。

6. 课程项目实践:分组进行机械设计项目实践,涵盖设计、分析、计算、绘图等环节,综合运用所学知识。

教学内容安排与进度:第一周:机械设计基本概念与原理;第二周:机械零件的选用与设计(一);第三周:机械零件的选用与设计(二);第四周:机械结构分析与计算;第五周:计算机辅助设计(CAD);第六周:机械设计实例分析;第七周至第八周:课程项目实践。

机械设计机械设计基础课程设计课程设计

机械设计机械设计基础课程设计课程设计

机械设计基础课程设计1. 课程设计背景机械设计基础课程是机械工程专业学生的必修课之一。

通过课程的学习,可以使学生掌握机械系统的构造及其设计的相关知识。

为了更好地完成机械设计基础课程的教学任务,本课程设计将围绕机械系统的构造和设计方案展开。

2. 课程设计目标本课程设计的主要目标在于通过对机械系统的构造及其设计的案例研究,使学生全面掌握机械系统设计方法的基本原则,在实践中加深对机械系统设计流程的认识,提升机械系统设计能力。

3. 课程设计内容3.1 机械系统概述1.机械系统概念和构造2.机械设计的基本流程3.2 机械系统分析与设计案例1.常见零件的设计案例2.传动系统设计案例3.结构设计案例3.3 机械系统实验1.基本机械零件的制作和测量2.传动系统的组装和调试3.结构设计的实验4.1 前期准备在进行课程设计前,需要进行准备工作。

具体包括:1.确定设计主题和任务;2.制定设计方案;3.建立设计提纲;4.确定设计周期和完成时间。

4.2 设计方案的制定根据前期准备工作,制定具体的设计方案。

包括:1.设计思路的确定;2.设计的参考文件和材料的确定;3.设计方法的确定。

4.3 设计方案的实施和测试在制定好设计方案后,进行实施和测试工作。

具体包括:1.对设计方案进行实施;2.对设计结果进行测试;3.对测试结果进行分析,确定是否满足要求。

4.4 设计结果的评估和报告撰写根据测试结果分析,评估设计结果,撰写设计报告。

报告应包括设计过程、测试结果和分析,对设计方案进行总结,并提出改进意见。

在完成课程设计后,进行评估工作。

具体包括:1.对设计过程进行自我评估;2.邀请相关人员对设计结果进行评估;3.汇总评估结果,制定改进措施。

6. 课程设计总结通过本次课程设计,学生可以加深对机械系统的认识,全面了解机械系统设计的基本流程及方法。

同时,通过实际操作和测试,提升了机械系统设计能力。

希望此次课程设计能够为学生未来的工作和学习提供实际帮助。

机械设计基础课程设计(带-齿轮)

机械设计基础课程设计(带-齿轮)

五. 轴承的选择与校核
(一)高速轴滚动轴承的选择与校核
1. 初选轴承的类型和型号
(在轴的结构设计时进行)
类型选择:
载荷条件;转速条件;装调性能;调心性能;经济性
型号选择:
轴颈尺寸:(推荐初选轻系列轴承)
2. 计算轴承径向载荷
Fr RV2 RH2
说明
五. 轴承的选择与校核
3. 计算轴向载荷Fa1,Fa2
一般可取:
nd (6∼ 12)nw
一. 传动装置的总体设计 列出符合转速、功率要求的多种电机(多方案)
电机转速
方 电动机 额定
电机 参考 总传
案 型号 功率 同步 满载 重量 价格 动比
转速 转速
1
2
3
一. 传动装置的总体设计
对满足要求的电机 的重量、价格、外形尺 寸、传动比进行比较, 选择一种电机。
1. 选择轴的材料,确定许用应力 2. .初步计算最小轴径
d C3 P n
注意:轴径的圆整(键槽、联轴器、标准直径)
四. 轴的结构设计与强度校核
(一)高速轴的设计
3. 轴的结构设计
(1). 轴上零件装配、定位和固定 画轴系结构图(教材P214:图9.15)
(2). 确定各段直径和长度 综合箱体、轴承盖的设计统一考虑
二. V带传动的设计计算
带轮结构设计
带轮轮缘宽度: 带轮轮毂宽度:
B=(Z-1)e+2f L=(1.5~2)d 当B<1.5d时,L=B
注意: 带轮直径确定后,应验算带传动实际传动比 和大带轮转速,并以此修正减速器传动比和输 入转矩。
i2 i / i1实
三. 齿轮传动的设计计算与校核
三. 齿轮传动的设计计算与校核

《机械设计基础》整体教学设计

《机械设计基础》整体教学设计

《机械设计基础》整体教学设计一、课程定位与目标《机械设计基础》是机械类及近机类专业的一门重要技术基础课,它是将机械原理和机械零件的知识有机融合而成的一门课程。

通过本课程的学习,使学生掌握机械设计的基本理论、方法和技能,培养学生的工程实践能力和创新思维,为后续专业课程的学习和今后从事机械设计、制造及相关工作打下坚实的基础。

本课程的目标主要包括以下几个方面:1、知识目标掌握常用机构的工作原理、运动特性和设计方法,如平面连杆机构、凸轮机构、齿轮机构等。

熟悉通用机械零件的工作原理、结构特点、材料选择和设计计算方法,如轴、轴承、联轴器、离合器等。

了解机械系统的设计过程和方法,能够进行简单机械传动系统的方案设计。

2、能力目标具备正确分析和设计常用机构的能力,能够绘制机构运动简图和进行机构运动分析。

能够根据工作要求合理选择和设计通用机械零件,具备查阅相关标准和手册的能力。

能够运用所学知识进行简单机械传动系统的方案设计和结构设计,具备一定的工程实践能力。

3、素质目标培养学生的工程意识、创新意识和团队合作精神,提高学生的综合素质。

培养学生严谨的科学态度和认真负责的工作作风,树立质量意识和安全意识。

二、课程内容本课程的内容主要包括机械原理和机械零件两大部分。

1、机械原理部分机构的结构分析:介绍机构的组成、运动副的类型和机构的自由度计算。

平面连杆机构:包括平面连杆机构的类型、特点、运动分析和设计。

凸轮机构:讲解凸轮机构的类型、工作原理、从动件运动规律和设计方法。

齿轮机构:阐述齿轮机构的类型、特点、渐开线齿廓的形成和啮合特性,以及齿轮的参数计算和设计。

轮系:介绍轮系的类型、传动比计算和应用。

2、机械零件部分连接:包括螺纹连接、键连接、销连接等的类型、特点和设计计算。

传动:涵盖带传动、链传动、齿轮传动、蜗杆传动等的工作原理、特点和设计。

轴:讲解轴的类型、结构设计和强度计算。

轴承:介绍滚动轴承和滑动轴承的类型、特点、选择和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京工业大学机械设计基础课程设计计算说明书设计题目系(院)班级设计者指导教师年月日目录1:课程设计任务书。

1 2:课程设计方案选择。

2 3:电动机的选择。

3 4:计算总传动比和分配各级传动比。

4 5:计算传动装置的运动和动力参数。

5 6:减速器传动零件的设计与计算(1)V带的设计与计算。

8 (2)齿轮的设计与计算。

13 (3)轴的设计与计算。

17 7:键的选择与校核。

26 8:联轴器的设计。

28 9:润滑和密封。

29 10:铸铁减速器箱体主要结构设计。

30 11:感想与参考文献。

32一、设计任务书①设计条件设计带式输送机的传动系统,采用带传动和一级圆柱出论减速器②原始数据输送带有效拉力F=5000N输送带工作速度V=1.7m/s输送带滚筒直径d=450mm③工作条件两班制工作,空载起动载荷平稳,常温下连续(单向)运转,工作环境多尘;三相交流电源,电压为380/220V。

④使用期限及检修间隔工作期限:8年,大修期限:4年。

二.传功方案的选择带式输送机传动系统方案如图所示:(画方案图)带式输送机由电动机驱动。

电动机1将动力传到带传动2,再由带传动传入一级减速器3,再经联轴器4将动力传至输送机滚筒5,带动输送带6工作。

传动系统中采用带传动及一级圆柱齿轮减速器,采用直齿圆柱齿轮传动。

三.计算及说明计算及说明 计算结果⑴电动机的选择①电动机类型与结构形式的选择对一般的机械运输,选用Y 系列三相异步电动机, 安装形式为卧式,机座带底脚,电压380V 。

②电动机型号的选择 ⒈电动机的功率根据已知条件由计算得知工作机所需有效功率44610610 1.772.19450w w V n D ππ===⨯⨯⨯⨯⨯ r/min 72.19w n =因: 0.94w η=,则5000 1.79.0410*******.94w w w w F V p η⨯===⨯kw r/min 设:η1-联轴器效率=0.98(由表1-7); 9.04w p = η2-闭式圆柱齿轮传动效率=0.97 kwη3-V 带传动效率=0.96 η4-一对轴承效率=0.99 η-传动装置的总效率 P w -工作机所需输入功率 由电动机至运输带的传动总效率为221234ηηηηη⨯⨯⨯==0.960.970.980.99=0.894 η=0.894 则工作机实际需要的电动机输出功率为 010.11P =09.0410.110.894wP P KW η=== kw.计算及说明计算结果根据P 0选取电动机的额定功率P m ,使()01~1.310.11~13.14m P P ==kw⒉电动机的转速44610610 1.772.19450w w V n D ππ===⨯⨯⨯⨯⨯ r/min 72.19w n =因为V 带传动比b i 2~4=,齿轮传动比i 3~5g =,则 r/min(6~20)(433.14~1443.8)m w b g w w in i i n n n ==== kw由上述 P m ,n m 查表12-1得:选用P m =11kw ,n m =970 r/min Y160L-6 电动机的型号为:Y160L-6 型电动机 ⑵计算总传动比和分配各级传动比① 传动装置的总传动比 97013.4472.19m w n n i ===n m :电动机的满载转速 n w :工作机的转速 ② 分配各级传动比 根据设计要求:i b <i g 故取 i b = 3.5 ,则 i b = 3.513.44 3.843.5g b i i i === 3.84g i =.⑶传动系统的运动和动力参数计算传动装置从电动机到工作机有三轴,分别为Ⅰ、 Ⅱ、Ⅲ、Ⅳ轴,传动系统各轴的转速、功率和转矩计 计算及说明 计算结果算如下:① Ⅰ轴(电动机轴)11111970/min 111195509550108.30970m m n n r P P kWP T N mn ======⨯=⋅② Ⅱ轴 (减速器高速轴)12213222970277.14/min3.5110.9610.5695509550363.89277.14b n n r i P P kWP T N mn ====⨯=⨯==⨯=⋅η=10.56③ Ⅲ 轴 (减速器低速轴)23232333277.1472.17/min3.8410.560.970.9910.14955095501341.7972.17g n n r i P P kW P T N mn η====⨯=⨯⨯==⨯=⋅4η=10.14④ Ⅳ 轴 (输送机滚筒轴)43434144472.17/min10.140.990.989.849.84955095501302.0972.17n n r P P kW P T N mn η===⨯=⨯⨯==⨯=⋅η=将计算结果和传动比及传动效率汇总如表1-1表1-1 传动系统的运动和动力参数计算及说明 计算结果⑷ 减速器传动零件的设计与计算 ① V 带的设计与计算 ⒈ 计算功率 P C1.21113.2c A k p p ==⨯= kw K A :工况系数,查表的K A =1.2 P :电动机额定功率⒉选取V 带型号根据 13.2c p =kw 和小带轮转速1970/min n r =,由 图8-10可知,工作点处于B,C 型相邻区域,取 C 型带。

⒊小轮基准直径d d1和大轮基准直径d d2希望结构紧凑,由表8-4并参考表8-2a ,取 d d1=224mm ,选取ε=0.01,则大轮的基准直径:()()121297022411776.17277.14d d n d n d εε⨯-=-==mm n 1: Ⅰ轴转速,n 2 Ⅱ轴转速 由表8-4取 d d2=800 mm ,此时218003.57224d b d d d i === 13.443.763.57gb i i i===则从动轮的实际转速为:()112219702240.99268.884800d d n d d n ε-⨯⨯=== r/min转速误差:277.14268.8842.985277.14-︒︒=〈︒︒,合适计算及说明计算结果⒋验算带速 1197022411.37601000601000d n d V ππ⨯⨯==⨯⨯=m/s<25 m/s ,合适⒌初定中心距因 ()()max 12222248002048d d d d a =+=⨯+= mm()()min 12113224800313.5552.522d d d d h a =++=⨯++⨯= mm取 021.2960d d a == mm ⒍初算带的基准长度L 0()()22100120224d d d d d d a d d a L π-=+++()()212800224249602960d d d d π-++⨯=⨯+3614.08=mm由表8-1得,取 L d =3550 mm ⒎实际中心距中心距a 可调整,则0035503614.08960927.9622d L L a a --+=+=≈ mm ⒏小带轮包角22118057.3d d d d a α︒︒-=-⨯ 80022418057.3927.96︒︒-=-⨯ 144.4︒= > 120︒ 合适 ⒐单根V 带所能传递的功率根据1970/min n r =和d d1=224mm ,查表8-2a ,用插值法.计算及说明计算结果求得:0 5.70p = kw⒑单根V 带传递功率的增量0p ∆传动比 3.57b i =,1970/min n r =,查表8-2b 得: 00.81p =∆ kw ⒒计算V 带的根数 ()00cLp p p K K Z α+∆≥由表8-5可查得K α=0.90, 由表8-6可查得L K =0.99, 则()13.22.285.700.810.90.99Z =+⨯⨯=取Z=3根,所用的V 带为C-3550×3 ⒓作用在带轮轴上的力单根V 带的张紧力 20500 2.51c p qV ZV K F α⎛⎫=-+⎪⎝⎭查表8-8得q=0.30 ㎏/m,故 2050013.2 2.510.311.37382.77311.370.90F ⨯⎛⎫=-+⨯= ⎪⨯⎝⎭N 所以作用在轴上的力为:10144.42sin23382.77sin2186.722ZF F α∑==⨯⨯⨯= N ⒔带轮结构设计 ⅰ 小带轮的结构设计 由表12-3得,d 0=42 mm210.819.7a mm a ==1 1.538.25S mm S ≥= ,20.512.75S mm S ≥= 110.212.3h mm f == , 210.29.84h mm f ==② 齿轮的设计与计算 ⒈齿面接触强度计算:ⅰ确定作用在小齿轮上的转矩T 1 13110.9610.56m p p η==⨯= kw 1970271.73.57m b n i n === r /min 44511110.569551095510 3.710271.7p n T =⨯=⨯=⨯ N ·mm计算及说明计算结果查表得9-1,取标准模数 4m mm = ⅶ齿轮几何尺寸计算小齿轮分度圆直径及齿顶圆直径: 11428112d mZ mm ==⨯= 11211224120d d d m mm =+=+⨯= 大齿轮分度圆直径及齿顶圆直径: 224106424d mZ mm ==⨯= 22242424432d d d m mm =+=+⨯= 中心距:1211242426822d d a mm ++=== 大齿轮宽度 :20.4268107.2a b a mm ψ=⨯=⨯=小齿轮宽度:因小齿轮齿面硬度高,为补偿装配误差,避免工作时在大齿轮齿面上造成压痕,一 般1b 应比2b 宽些,取:125107.25112.2b b mm =+=+=ⅷ确定齿轮的精度等级,齿轮圆周速度 111129705.696000060000d n V ππ⨯⨯=== m/s根据工作要求和圆周速度,由表9-3选用7级 精度。

⒉齿轮弯曲强度验算 ⅰ确定许用弯曲应力 根据表9-7可查得.计算及说明 计算结果[]11400.21400.2260192F HBS σ=+=+⨯= MPa []21400.21400.2220184F HBS σ=+=+⨯= MPaⅱ查齿形系数F Y ,比较 []/F F Y σ小齿轮128Z =,由表9-6查得:1 2.56F Y = 大齿轮2106Z =,由表9-6查得:2 2.20F Y =[]112.560.013192F F Y σ==,[]222.200.012184F F Y σ== 因[]11F F Y σ>[]22F F Y σ,则需要验算小齿轮ⅲ 验算弯曲压力计算时应以齿宽2b 代入,则511122122 1.35 3.710 2.5653.25107.2284F F KTY bZ m σ⨯⨯⨯⨯===⨯⨯MPa>[]1F σ 安全 ⒊结构设计因为1120200a d mm mm =<,故选做为实心结构齿轮11 2.5112 2.54102f d d m mm =-=-⨯= 1112d mm =,055d mm = 1120a d mm =,1112.2b mm =因为2432500a d mm mm =<,故选腹板结构的齿轮 80d mm =,1 1.6 1.680128d d mm ==⨯=,107.2B mm = 1.296l d mm ==,21 2.5128 2.54118f d d m mm =-=-⨯= 0416m mm δ==,0.332.16C B mm ==,0.52n m mm ==()0110.5260D D d mm =+=,5r mm =e :轴环直径 460d mm = ⅳ选择轴承类型由上述一系列直径,查表6-1得轴承代号为 6310ⅴ轴承盖的设计带有密封件的轴承盖,因为轴承外径110D mm = 故 310d mm =,011d mm = 032.5110 2.510135D D d mm =+=+⨯= 2032.5130 2.510160D D d mm =+=+⨯= 31.212e d mm ==,1e e ≥ m 由结构确定 ()410~1598D D mm =-= 5033105D D d mm =-= ()62~4107D D mm =-=密封件的选择:轴径:45d mm = 2570D d mm =+=11661D d mm =+=1144d d mm =-=12H mm =ⅵ轴各段的长度设计箱盖壁厚:10.0210.022681 6.368a δ=+=⨯+=≤ 取18mm δ=箱体内壁与齿轮端面应留有空隙 21δ∆≥ 故取212mm ∆=小齿轮宽度1112.2b mm =,故取 3110l mm = 轴环宽度 410l mm =,539l mm = 轴承宽度 27b mm =,251l mm = V 带轮宽度 85b mm =,取82l mm = ⅶ 挡油环:50277.1413857/min d n mm r ⨯=⨯=∙ 选用脂润滑:310mm ∆= ⅷ 螺栓选用10M 的螺栓,故180l mm =计算及说明计算结果ⅳ 选择轴承类型由上述一系列直径,查表6-1得轴承代号为 6315基本尺寸:75,160,37d mm D mm B mm === 安装尺寸:87,148, 2.1a a as d mm D mm r mm ===基本额定动载荷 112r C =kN ,基本额定静载荷 076.8r C =kN ⅴ 轴承盖的设计带有密封件的轴承盖160D mm =,故313d mm = 则014d mm =,032.5160 2.513192.5D D d mm =+=+⨯= 2032.5192.5 2.513225D D d mm =+=+⨯=31.215.6e d mm == 1e e ≥m 由结构确定()410~15145D D mm =-=5033192.5313153.5D D d mm =-=-⨯=()62~4156D D mm =-= 密封件的选择:轴径 70d mm =2595D d mm =+=11686D d mm =+=1169d d mm =-=12H mm =ⅵ 挡油环的设计计算及说明 计算结果⒉高速轴与小齿轮连接键 ⅰ:键的尺寸确定:因为55d mm =,选择1610b h ⨯=⨯,轴 6.0t mm = 1 4.3t mm =, 1.582.5L d mm ==,取80L mm = 82b R mm == ,264s L l R mm =-= ⅱ:键的强度校核:2222363.8920.7551064t p s s F T hL dhL σ⨯====⨯⨯ MPa2363.8910 6.46551664s T dbL τ⨯===⨯⨯ MPap p σσ⎡⎤<⎣⎦ ,[]ττ< ⒊低速轴与大齿轮处连接键 ⅰ:键的基本尺寸3221341.791055.9801250P s T dhL σ⨯⨯==⨯⨯ MPa31341.791016.77802050s T dbL τ⨯===⨯⨯ MPap p σσ⎡⎤<⎣⎦ ,[]ττ< 故符合要求 ⒋低速轴与联轴器的连接键因为 65d mm =,故选择:1811b h ⨯=⨯,轴7.0t mm = 1 4.4t mm =,取键长: 1.590L d mm ==,取80L mm = 92b R mm ==,262s L L R mm =-=计算及说明 计算结果④ 联轴器的设计 ⒈选择联轴器的类型由于电动机和减速器两端安装时不易对中,以应用广泛的弹性套注销联轴器。

相关文档
最新文档