实验五、数学形态学

合集下载

数学形态学的基本运算及仿真结果

数学形态学的基本运算及仿真结果

数学形态学的基本运算一. 引言随着计算机技术的发展,图像及信号处理技术越来越为大众所需求。

经典的信号处理方法主要是基于线性系统的理论、传统的信号与系统的概念及Fourier 分析,并广泛地运用于不同的科学与技术领域中。

然而,对于图像的形态特征和几何结构等非线性因素的分析和描述却由于系统的线性特征而受到限制。

近几十年发展起来的数学形态学[1]从理论和方法上弥补了这一缺憾,数学形态学不仅提供了描述和分析图像几何及形状特征的多种技术和方法,同时它对于经典的信号处理技术也产生了极大的影响并扩展了原有的技术。

基于数学形态学的图像处理技术是一种采用集合的概念表示图像、非线性叠加方式描述图像的非线性系统技术,称之为形态系统[2],它广泛地应用于生物医学和电子显微镜图像的分析以及数字图像处理和计算机视觉等领域,并已发展成为一种新型的图像处理方法和理论。

用于图像处理的形态系统,具有完备的结构和理论体系,是进行非线性性态分析和描述的有力工具。

二. 形态学的相关理论1.图像的表示方法如同信号处理中线性时不变系统的建立和描述基于信号的多频表示一样,形态系统的描述和分析方法的建立则是基于图像的集合表示以及相应的集合变换。

用R 和Z 分别表示实数集合和整数集合,E=R d 或Z d (d=1、2、…)分别表示连续的或离散的d 维空间,则一个d 维图像可表示为E 上的一个函数,其取值范围为R 或Z 。

如果函数仅取两个不同的值,则图像可用E 中的集合表示。

如二值图像可表示为取值为1和0的函数)(x f ,图像的前景可表示为}1)(:{==x f x X ,背景可表为余集}0)(:{==x f x X c ,或简单地用X 的特征函数来表示。

对于多值(灰度)图像)(x f 可以通过阀值变换[1,2]获得其二值图像,采用阀值的方法还可以实现对于灰值图像的集合表示。

为此,若引入图像)(x f 的阀集: ,},)(:{)(+∞≤≤-∞≥=a a x f x f T a这里幅值a 取值于R 或Z ,取决于f(x)是模拟还是数字图像。

数学形态学

数学形态学

数学形态学
数学形态学是一种新兴的研究领域,它旨在分析几何图形的结构,形状和功能之间的关系。

它的研究,使用广义的概念,为许多不同的问题提供解决方案,其中包括拓扑、图像处理、科学可视化、结构生物学和信号处理等。

数学形态学是一个综合性的学科,它运用多种数学工具和科学原理来描述和分析图形学中出现的复杂形状,是形状和几何的综合科学。

它的本质是把复杂的形状分解成不同的形状元素,再利用数学中的手段将这些元素组合起来,以描述和揭示形状结构之间的联系。

数学形态学是一门基于计算机的学科,它使用计算机技术,通过对几何图形和形状的像素分析,捕捉形状中各种特征,分析不同形状间的关系,建立并匹配形状,以及重建和综合形状信息。

同时,它也旨在将计算机技术与形状分析结合起来,用于解决计算机的实际应用问题,如机器视觉和图像处理。

数学形态学广泛地应用于各种领域,如机器人系统,空间科学,图形学,地理和空间信息,甚至分子生物学等。

它还可以用于将几何图形可视化,以及应用于工程设计,以更直观的方式表示几何形状,并为设计者和设计家提供视觉上的参考。

数学形态学的研究不仅仅局限于几何图形,同时也研究自然现象中出现的结构,并尝试描述和表述自然界中出现的复杂形状。

从自然现象中抽象出来的形状,往往能够帮助科学家们更好地理解现象,并最终基于研究结果,为实际应用研发有效的算法或具备一定属性的形
状。

总的来说,数学形态学是一种立足于数学的研究领域,它涉及到多层次的形状分析,以及形状和空间之间的关系,研究和分析丰富多彩的形状属性。

它旨在更好地理解形状,并为许多实际问题提供解决方案,同时也为计算机视觉和机器人系统提供支撑及应用。

数学形态学及其应用

数学形态学及其应用

数学形态学及其应用数学形态学及其应用数学形态学是一种数学方法和理论,最早由法国数学家乌戈尔·乔尔丹(Ugo Cerletti)在20世纪60年代提出。

它基于拓扑学、代数学和概率论等学科的基本原理,研究对象是图像和信号等离散数据的形状和结构,并利用数学统计的方法对它们进行分析和处理。

随着计算机技术的发展和应用需求的增加,数学形态学已经成为图像处理、模式识别和计算机视觉等领域中的重要工具。

数学形态学的基本概念包括结构元素、腐蚀、膨胀、开运算和闭运算等。

结构元素是一个小的图像或信号,用来描述和刻画对象的特征。

腐蚀和膨胀是两种基本的形态学操作,它们可以对图像或信号进行形状的变化和结构的调整。

开运算和闭运算是由腐蚀和膨胀组合而成的操作,用来改善图像的质量和特征。

在数学形态学的基础上,还发展了很多衍生的操作和算法,如基本重建、灰度形态学和形态学滤波等。

数学形态学在图像处理中的应用非常广泛。

例如,在图像分割中,可以利用数学形态学的方法提取目标的边界和内部结构;在图像增强中,可以利用形态学处理方法去除图像中的噪声和不规则部分;在模式识别中,可以利用形态学算法提取和描述对象的特征;在计算机视觉中,可以利用形态学方法实现图像的匹配和配准等等。

数学形态学的应用不仅仅局限在图像领域,它还可以应用于信号处理、文本分析、医学影像等其他领域。

以图像分割为例,数学形态学可以通过结构元素的逐步腐蚀或膨胀操作来准确地提取目标的轮廓。

首先,选择合适的结构元素,使其大小和形状适应目标的尺寸和形态特征。

然后,通过不断的腐蚀操作,可以逐渐消除目标周围的无关细节,最终得到目标的边界。

类似地,通过不断的膨胀操作,可以填补和连接目标内部的空洞,并得到目标的内部结构。

通过这种方式,数学形态学可以实现对复杂图像的准确分割,为图像识别和分析提供了可靠的基础。

总之,数学形态学是一种重要的数学方法和理论,它在图像处理、模式识别和计算机视觉等领域中具有广泛的应用和深远的意义。

数学形态学及其应用

数学形态学及其应用

摘要论文研究了数学形态学理论,对基本形态学算子的几何意义与性质进行了归纳与总结,阐述了数学形态学用结构元素“探测”信号的本质。

论文对数学形态学的应用进行了研究,主要成果是:(1)将数学形念学应用于纺织工业纱线疵点检测中,提出了数学形态学广义结构元素的概念,并构造了形态学“梯形塔式”广义结构元素,丰富了数学形态学理论。

广义结构元素的概念和构造广义结构元素的方法是本文的创新点;(2)研究了数学形态学在红外序列图象弱小目标自动检测中的应用,提出了基于狄值形态重构丌的红外序列图象弱小目标自动检测算法,并利用形态学运算进行红外图象增强,进~步提高了算法的硷测性能,丰富了数学形态学在红外目标检测中的应用知识;(3)提出了应用数学形态学对闭环控制系统反馈信号进行滤波的方法,并成功地应用于实际系统巾.填补了数学形态学在这一应用领域中的空白。

以上应用算法无论在理论研究还址实际应用方面都具有重要价值。

论文研究了形念金字塔理论,主要成果是:(1)构造出了可以精确重构的多Jt度平形态闭会字塔,并成功地将其应用于图象的多分辨率分割。

该分割算法可以区别暗背景中的亮成分与亮背景中的暗成分,这对遥感等图象领域处理具有重要意义。

(2)构造了多尺度平形态混合金字塔,并成功地应用于扫描图象的滤波I—p。

以上研究对形态金字塔理论和应用研究都具有很高的参考价值。

论文研究了形态小波理论,主要成果是:(1)首次详细论述了非线性形念Haar小波构造方法,并将形态Haar小波成功地应用于图象分解中。

形态Haar小波具有非线性、尺度信号的取值范围同原始信号相同、信号局部最大(小)很好地保留在多个分辨率空怕J和可保证精确重构等优点,更适合应用于压缩编码、模式识别等领域;(2)提出了一种新的基于更新提升构造非冗余的、可完备重构的形态小波的方法,首次提出了广义更新算子的概念,阐述了构造了广义更新算子的方法,进一步发展了数学形态学理论。

广义更新算子的概念和广义更新算予的孛f=J造办法是本文的创新点;(3)提出了一种更新提升小波闽值去噪算法,对比实验表明该,J法比传统小波闽值去噪算法具有明显的优势,峰值信噪比提高2~5dB,信噪比约提高4~7dB,尤其在低信噪比情况下性能更加优越。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。

数字图像处实验指导书_openCV版

数字图像处实验指导书_openCV版
图 1 示例图
4
实验二 点处理
一、实验目的 掌握灰度直方图分析图像的灰度分布。 掌握常用的点处理方法和原理,调解灰度变换参数
二、实验内容 1.直方图均衡化
#include "stdafx.h" #include "cv.h" #include "cxcore.h" #include "highgui.h" int main( int argc, char** argv ) {
return 0;
}
return -1;
}
4.一个简单的图像处理例子,求图像的边界。
#include "stdafx.h"
#include "cv.h"
#include "cxcore.h"
#include "highgui.h"
int main( int argc, char** argv )
{ //声明 IplImage 指针
IplImage* pImg = NULL;
IplImage* pCannray
if((pImg = cvLoadImage("c:\\lena.jpg", 0)) != 0 )
{ //为 canny 边缘图像申请空间
pCannyImg = cvCreateImage(cvGetSize(pImg),
5%E4%B8%8E%E9%85%8D%E7%BD%AEOpenCV1.0 2. 利用 OpenCV 读入一个图像文件,并将其显示到屏幕上
#include "stdafx.h"
#include "cv.h"

数学形态学原理

数学形态学原理
大为S+x,这就是膨胀运算,记为X S。若用集合语言,
它的定义为
X S = {x| S+x∪x≠ }
图中X是被处理的对象,B是结构元素,对于任意一个在 阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴 影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的, 这就是为什么叫膨胀的原因。
6.2.6 由于开、闭运算是在腐蚀和膨胀运算的基础上定义的, 根据 腐蚀和膨胀运算的代数性质,我们不难得到下面的性质。
1) 对偶性 (XC○S)C = X●S , (XC●S)C = X○S
2)扩展性(收缩性) X○S X X●S
即开运算恒使原图像缩小,而闭运算恒使原图像扩大
3) 单调性 如果X Y,
数学形态学的数学基础和所用语言是集合论,因此它 具有完备的数学基础,这为形态学用于图像分析和处理、形 态滤波器的特性分析和系统设计奠定了坚实的基础。
数学形态学的应用可以简化图像数据,保持它们基本 的形状特性,并除去不相干的结构。
数学形态学方法利用一个称作结构元素的“探针”收集 图像的信息,当探针在图像中不断移动时, 便可考察图像各 个部分之间的相互关系,从而了解图像的结构特征。
X S {x|Sx X }
X用S腐蚀的结果是所有使S平移x后仍在X中的x的集合。
换句话说,用S来腐蚀X得到的集合是S完全包括在X中时S的
原点位置的集合。
对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B 腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且 比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因
二值 图像
腐蚀
膨胀
图 腐蚀与膨胀示意图
6.2.4 1.开运算
先腐蚀后膨胀称为开 对图像X及结构元素S,用符号X○S表示S对图像X作开运算

数学形态学

数学形态学

三:基本概念
集合关系:设 A 和 B 为R2的子集,A 为物体区域, B为某种结构元素,则 B 结构单元对 A 的关系有三类:
a) B 包含于A,
B⊂ A b) B 击中(hit)A, B I A! = Φ c) B 击不中(miss)A, BI A=Φ
A B A B A B
图2 包含、击中和击不中示意图
板,则 A B 由在平移模板的过程 中,所有可以添入 A 内部的模板 的原点组成.
A
A B B
腐蚀类似于收缩
一般,如果坐标 原点在结构元素内部, 则腐蚀后的图像为输 入图像的子集;如果 坐标原点不在结构元 素的内部,则腐蚀后 的图像可能不在输入 图像的内部,但输出 形状不变.
A
A B
B
腐蚀不是输入图像的子图像
THE END
谢谢大家
( f Θg )( x) = max{ y : g x + y << f }
其中 g x 表示在点x处的结构元素,y 表示腐蚀值
g
f
fΘg
t
0.5
t
利用半圆形结构元素的腐蚀
从几何学角度看,求图像被结构元素在点x腐蚀的 结果,就是在空间滑动结构元素,是结构元素的原点与 点x重合,然后从负无穷大向上推结构元素,对结构元 素仍处于图像下方所能达到的最大值是结构元素的原点 做标记,该标记点为该点腐蚀结果。其效果相当于半圆 形结构元素在被腐蚀函数的下面“滑动”时,其圆心画 出的轨迹。但是,这里存在一个限制条件,即结构元素 必须在函数曲线的下面平移。从图中不难看出,半圆形 结构元素从函数的下面对函数产生滤波作用,这与圆盘 从内部对二值图像滤波的情况是相似的。
平移:将一个集合A平移距离x可以表示为A+x,其定义 为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六、形态学图像处理
一.实验目的及要求
1.利用MATLAB研究二值形态学图像处理常用算法;
2.掌握MATLAB形态学图像处理基本操作函数的使用方法;
3.了解形态学的基本应用。

二、实验原理
1.编程实现二值图像的基本形态学处理(腐蚀、膨胀、开运算和闭运算);选择不同结构元素筛选图像目标。

2.用形态学运算实现灰度图像的噪声平滑和图像边缘提取。

三、实验原理
数学形态学图像处理的基本思想是利用一个称作结构元素的“探针”收集图像的信息。

当探针在图像中不断移动时,便可考察图像各个部分间的相互关系,从而了解图像各个部分的结构特征。

作为探针的结构元素,可直接携带知识(形态、大小、以及灰度和色度信息)来探测所研究图像的结构特点。

二值形态学中的运算对象是集合,通常给出一个图像集合和一个结构元素集合,利用结构元素对图像进行操作。

其基本运算有四种:腐蚀、膨胀、开运算和闭运算。

基于这些基本运算和组合来进行图像形状和结构的分析及处理。

如果 A是图像集合,B是结构元素( B本身也是一个图像集合),形态学运算将使用B 对A进行操作。

结构元素往往比图像小得多。

基本运算将遵循这个原则。

●膨胀和腐蚀
膨胀是在二值图像中“加长”或“变粗”的操作。

这种特殊的方式和变粗的程度由一个称为结构元素的集合控制。

腐蚀“收缩”或“细化”二值图像中的对象。

像在膨胀中一样,收缩的方式和程度由一个结构元素控制。

●开运算和闭运算
在图像处理的实际应用中,更多地以各种组合的形式来使用膨胀和腐蚀,它们可以级连结合使用。

膨胀后再腐蚀,或者腐蚀后再膨胀,通常不能恢复成原来图像(目标),而是产生一种新的形态变换,这就是开运算和闭运算。

当处理二值图像时,采用上述的形态学变换组合,主要应用于提取某一区域的边界线、图像边缘轮廓、物体骨架特征和目标识别等众多的实际应用。

更多内容青参考教材p402有关内容。

三、实验内容
1、二值图像的形态学变换
需要编写的二值图像形态学变换函数:
function newbuf=BwFilter(oldbuf,select)
该函数调用MATLAB关于膨胀、腐蚀和图像筛选算法的相关函数,对二值图像进
行相应的处理,最后结果存放在newbuf数组中。

用于二值图像形态学变换的MATLAB函数有:
Strel 构造结构元素函数
Imdilate 膨胀函数
Imerode 腐蚀函数
Imcrop 裁剪函数
Imopen 开运算函数
用help查看相关函数的使用方法,编程实现BwFilter()函数的功能。

结构元素也
可以用ones函数和zeros函数创建。

2、对输入图像进行形态学操作,即腐蚀、膨胀、开运算和闭运算,改变结构元素形状、大小,重做上述实验,比较实验结果,分析结构元素对运算的影响;
3、以下图为例:(1)提取与图像边界融合的颗粒
(2)提取彼此交叠的颗粒
(3)提取不交叠的颗粒
提示:(1)可利用区域填充算法。

如图所示为源图像,可将图像先转换为二值图像,然后对其进行取反,这样进行区域填充的结果将为与边界相连的颗粒,再与源图像进行比较,即可得出在源图像中与边界相连的颗粒图像。

(2)可利用图像的腐蚀与膨胀操作。

先用模板对图像进行腐蚀操作,由于相交叠的颗粒面积必然比独立的颗粒大,因此腐蚀操作之后剩下的部分为交叠颗粒的部分,再对其进行膨胀,将其与源图像进行比较操作,则可得出交叠的颗粒图像。

(3)得出交叠的颗粒之后,用源图像对其相减,则得出的为独立分布的颗粒图像。

原图。

相关文档
最新文档