数学实验1

合集下载

【精选】数学实验一矩阵运算与Matlab命令24

【精选】数学实验一矩阵运算与Matlab命令24
B1=[b11 b12 b13 b14 ;b21 b22 b23 b24; b31 b32 b33 b34]
运行
17
矩阵的运算(矩阵的加减、数乘、乘积)
C=A1+B1 D=A1-B1 syms c, cA=c*A1 A2=A1(:,1:3), B1 G=A2*B1
18
矩阵的运算(矩阵的加减、数乘、乘积)
求解方程组Ax=b x=A\b 若A为可逆方阵, 输出原方程的解x; 若A为nxm(n>m)阵, 且A’A可逆,输出
原方程的最小二乘解x.
21
矩阵的运算(求解线性方程组)
求矩阵方程:
设A、B满足关系式:AB=2B+A,求B。 其中A=[3 0 1; 1 1 0; 0 1 4]。
取出A的1、3行和1、3列的交叉处元素 构成新矩阵A1
程序
A=[1 0 1 1 2;0 1 -1 2 3;

3 0 5 1 0;2 3 1 2 1],
vr=[1, 3];vc=[1, 3];
A1=A(vr, vc)
观察结果
26
分块矩阵(矩阵的标识)
将A分为四块,并把它们赋值到矩阵B 中,观察运行后的结果。
3
2
2

35 20 60 45
, B 10
15
50
40

20 12 45 20
将 表 格 写 成 矩 阵 形 式
6
计算
输入下面Matlab指令 A=[4 2 3;1 3 2;1 3 3;3 2 2], B=[35 20 60 45;10 15 50 40;20

3 0 5 1 0;2 3 1 2 1]

MATLAB数学实验报告1

MATLAB数学实验报告1

MATLAB数学实验报告1Matlab数学实验报告⼀、实验⽬的通过以下四组实验,熟悉MATLAB的编程技巧,学会运⽤MATLAB的⼀些主要功能、命令,通过建⽴数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建⽴Malthu模型和Logistic 模型、懂得最⼩⼆乘法、线性规划等基本思想。

⼆、实验内容2.1实验题⽬⼀2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为⾮负实数)进⾏了分岔与混沌的研究,试进⾏迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运⾏后得到Feigenbaum图2.2实验题⽬⼆2.2.1实验问题某农夫有⼀个半径10⽶的圆形⽜栏,长满了草。

他要将⼀头⽜拴在⽜栏边界的桩栏上,但只让⽜吃到⼀半草,问拴⽜⿐⼦的绳⼦应为多长?2.2.2问题分析如图所⽰,E为圆ABD的圆⼼,AB为拴⽜的绳⼦,圆ABD为草场,区域ABCD为⽜能到达的区域。

问题要求区域ABCD等于圆ABC的⼀半,可以设BC等于x,只要求出∠a和∠b就能求出所求⾯积。

数学实验报告 (1)

数学实验报告 (1)

(1)参数方程:z=2^2^/2^2^sin y x y x ++(-8<=x<=8,-8<=y<=8) (2)程序:[X,Y]=meshgrid(-8::8);r=sqrt(x.^2+y.^2)+eps;Z=sin(r)./r;Mesh(x,y,z)Axis square(3)程序的输出结果:3:球面,椭球面,双叶双曲面,单叶双曲面1球面: (4):参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *R z R y R x 0π<=θ<2* 0<=ϕ<π (5)程序:u=[0:pi/60:2*pi];v=[0:pi/60:pi];[U,V]=meshgrid(u,v);R=3;X=R*sin(v).*cos(u);Y=R*sin(v).*sin(u);Z=R*cos(v);Surf(x,y,z);axis equal;(3)程序输出结果:2椭球面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *c z b y a x 0<=θ<2*π 0<=ϕ<=π (2)程序:ezsurf(‘3*sin(u)*cos(v) ,’3*sin(u)*sin(v)’,’1*cos(u)’,[0,pi,0,2*pi]);(3)程序的输出结果:3单叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕtan sin *sec *cos *sec *z a y a x 0<=θ<2*π -π/2<ϕ<π/2 (2)程序:ezsurf(‘3*sec(u)*cos(v),’3*sec(u)*sin(v)’,’5*tan(u)’,[-pi/2,pi/2,0,2*pi]);axis auto(3)输出程序结果:4双叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕsec *sin *tan *cos *tan *c z b y a x 0<=θ<2*π -π<ϕ<3*π/2,ϕ≠π/2(2)程序:ezsurf(‘3*tan(u)*cos(v)’,’3*tan(u)*sin(v)’,’5*sec(u)’,[-pi/2,3*pi/2,0,2*pi]);axis auto(4) (3)输出程序结果:抛物螺线: (1)参数方程:⎪⎩⎪⎨⎧===2^*sin **cos **t c z t t b y t t a x 0<T<+∞ (2)程序:ezplot3(‘2*t*cos(t)’,’2*t*sin(t)’,’t.^2/3’,[0,50]);(3)输出程序结果:(5)马鞍面: (1)参数方程:z=x^2/9-y^2/4 (-25<=x<=25,-25<=y<=25)(2)程序:[X,Y]=meshgrid(-25:1:25);Z=X.^2/9-Y.^2/4;Surf(X,Y,Z)Title(‘马鞍面’)grid off(3)输出程序结果:(6)黎曼函数:(1)程序:n=100;x=[];y=[];k=1;for q=2:nfor p=1:q-1if gcd(q,p)==1 %利用函数gcd(m,n)可求m和n的最大公约数x(k)=p/q;y(k)=1/q;k=k+1;endendendplot(x,y,’.b’); axis([0,1,0,1])(2)程序输出结果:。

北京工业大学工程数学-实验1-数学建模入门

北京工业大学工程数学-实验1-数学建模入门
(4)评判结束后,求出各选手的平均分,按平均分从低到高排序,依次确定本次评比的名次,即平均分最低者获得资助最高,依次类推。
d1100101010011000过河的方式有两种过河次数为奇数时船从此岸划向彼岸过河次数为偶数时船从彼岸划向此岸所以则状态ks随决策kd变化的规律为??kdkksks11????因此设计安全过河方案归结为求决策序列21ddddn??使状态ssk?按状态转移律由初始状态??11111?s经n步达到??00001??ns
我们将人,猫,鸡,米在岸上的情况,依次用四维向量S表示,即S(人,猫,鸡,米),并将这些向量称为状态,则第k次渡河前的状态记为 。
当一物在此岸时,相应分量记为1,在彼岸时记为0。例如(1,1,1,1)表示它们都在此岸,(0,1,1,0)表示猫和鸡在此岸,人和米在彼岸。由于问题中的限制条件,有些状态是允许的,有些状态是不允许的。安全渡河条件下的状态称为允许状态。对本问题而言,允许状态集合为:
(1,0,0,0)
(1,0,0,1)
(1,0,1,0)
(1,1,0,0)
(1,0,0,0)
(1,0,1,0)
1
2
3
4
5
6
7
8
(1,1,1,1)
(0,1,0,1)
(1,1,0,1)
(0,0,0,1)
(1,1,0,1)
(0,0,1,0)
(1,0,1,0)
(0,0,0,0)
(1,0,1,0)
(1,0,0,0)
(2)甲乙两站之间有汽车想通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。甲乙两站之间有一中间站丙,某人每天在随机时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,大约10天到达乙站。问开往甲乙两站的汽车经过两站的时刻表是如何安排的?

数学实验1-3章习题答案

数学实验1-3章习题答案
>> x=1.5951;eval(yxx)
ans =
18.3287
函数的单调区间为:
(1)单调递增区间:-2<x<-1.5326 -0.7315<x<0以及1.5951<x<2;
(2)单调递减区间:-1.5326<x<-0.7315以及0<x<1.5951.
(2)
函数的图形为:
clear
>> fplot('3*x^5-20*x^3+10',[-3,3])
ans =
-3
最值2:
x=1:0.1:3;
>> y=3.*x.^5-20.*x.^3+10;
>> [m k]=max(y)
m =
199
k =
21
>> x(k)
ans =
3
驻点1及相应的二阶导数值:
clear
>> syms x y
>> y=3*x^5-20*x^3+10;
>> yxx=diff(y,x,2);
>> grid on
f=inline('100*acos(1-1/200*(r^2))+r^2*acos(1/20*r)-10*sqrt(r^2-1/400*r^4)-50*pi','r');
>> y=fzero(f,12)
y =
11.5873
3.求解下列非线性方程组在远点附近的根:
clear
>> syms x y z
>> [x y z]=solve('9*x^2+36*y^2+4*z^2-36','x^2-2*y^2-20*z','16*x-x^3-2*y^2-16*z^2',x,y,z)

数学建模 -实验报告1

数学建模 -实验报告1
推导出了动力学方程
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)

数学实验1 MATLAB操作基础

数学实验1  MATLAB操作基础

1.1.2 MATLAB命令形式 命令形式
在工作空间或MATLAB命令窗口中输入 命令窗口中输入MATLAB 在工作空间或 命令窗口中输入 认可的任何命令,按回车键都可执行其操作. 认可的任何命令,按回车键都可执行其操作 如“4+7”、“4-7”、“4*7”、“4/7”、 “4^5”, 、 、 、 、 , 等按回车键后可显示其结果. “sqrt(5)”等按回车键后可显示其结果 等按回车键后可显示其结果
随机抽取10 名学生的高等数学课程成绩, 例1.2.2 随机抽取 名学生的高等数学课程成绩, 并统计他们中的最高分、 并统计他们中的最高分、最低分以及他们的平均 成绩。 成绩。
math=[88,90,77,69,92,80,74,66,95,85]; %产生 维向量 产生10维向量 产生 mathaver=sum(math)/10 %计算平均成绩 计算平均成绩 h=max(math) l=min(math) %求出最高分 求出最高分 %求出最低分 求出最低分
第一章 MATLAB使用说明 1.1 MATLAB窗口环境与命令形式
1.1.1 Matlab 的窗口环境
当前工 作目录 当前工 作空间 命令 提示符 命令窗口 输入命令的 历史记录
运行MATLAB创建一个或多个窗口
a) 命令区 命令区(Command Window)是用户使用的主 是用户使用的主 要场所,此时,可以输入变量、 要场所,此时,可以输入变量、数组及运算命 进行一些简单的运算; 键搜索、 令,进行一些简单的运算;用↑↓←→键搜索、 键搜索 修改以前使用过的命令操作, 清除窗口; 修改以前使用过的命令操作 用 clc清除窗口 清除窗口 寻求有关帮助; 用help sqrt ( help input …)寻求有关帮助 寻求有关帮助 b) 编辑区 编辑区(Editor\Debugger Window)编制各种 编制各种 M-文件,存盘 文件, 文件 存盘(Save)、运行(Run)等. 、运行( )

数学实验讲义1

数学实验讲义1
1.9.1 求极限
表 1.9.1 limit 函数的用法
表达式
函数格式
备注
lim x→a f (x) lim x→a− f (x) lim x→a+ f (x) lim x→a f (x)
limit(f, x, a) limit(f, x, a, ’left’) limit(f, x, a, ’right’) limit(f, a)
format long
15 位数字表示
3.14159265358979
format short e 5 位科学记数表示
3.1416e+00
format long e 15 位科学记数表示
3.14159265358979e+00
format short g 从 format short 和 format short e 中自动选最佳记述方式 3.1416
ans =
-1/12
(2) lim x→2
x−2 x2x-2)/(x^2-4),x,2)
ans =
1/4
(3) lim x→+∞
(1 +
t )4x 2x
>> syms x t
>> limit((1+t/(2*x))^(4*x),x,inf)
-1-
《数学实验》
第一讲 MATLAB 软件基本操作
1.1 MATLAB 软件简介
MATLAB 的名称源自 Matrix Laboratory,是一门计算语言,它专门以矩阵的 形式处理数据。MATLAB 将计算与可视化集成到一个灵活的计算机环境中,并提供 了大量的内置函数。可以在广泛的工程问题中直接利用这些函数获得数值解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模》实验报告
实验序号:实验3实验项目名称:Lingo编程
实验地点指导教师实验时间
一、实验目的及要求
通过对具体实例的分析,学会运用规划知识建立数学模型的方法,掌握Lingo的基本操作。

二、实验设备(环境)及要求
多媒体机房,单人单机,独立完成
三、实验内容与步骤
1. 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。

按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。

此外还有以下限制:
(1)政府及代办机构的证券总共至少要购进400万元;
(2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);
(3)所购证券的平均到期年限不超过5年。

(1)若该经理有1000万元资金,应如何投资?
(2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?
(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否该改变?若证券C的税前收益减少为4.8%,投资应否改变?
2. 课本例2
四、实验结果与数据处理
1.
(1)设投资证劵A,B,,C,D,E的金额分别为x1,x2,x3,x4,x5(百万元)。

列出模型:
Max=0.043x1+0.027x2+0.025x3+0.022x4+0.045x5 st. x2+x3+x4≥4
x1+x2+x3+x4+x5≤10
2x1+2x2+x3+x4+5x5
≤1.4即6x1+6x2−4x3−4x4−36x5≤0 x1+x2+x3+x4+x5
9x1+15x2+14x3+3x4+2x5
≤5即4x1+10x2−x3−2x4−3x5≤10 x1+x2+x3+x4+x5
x1,x2,x3,x4,x5≥0
Model:
max=0.043*x1+0.027*x2+0.025*x3+0.022*x4+0.045*x5;
x2+x3+x4>4;
x1+x2+x3+x4+x5<10;
6*x1+6*x2-4*x3-4*x4+36*x5<0;
4*x1+10*x2-1*x3-2*x4-3*x5<0;
end
故证券A,C,E分别投资2.182百万元,7.364百万元,0.455百万元.最大收益为0.298百万元。

(2)由(1)中的影子价格可得,若资金增加100万元,收益可增加0.0298百万元. 以2.75%的利率借到100万元资金的利息为0.0275百万元,故应该借贷.此时证券A,C,E分别投资2.40百万元,8.10百万元,0.50百万元.
(3)由(1)得,在目标函数最优解不变的情况下,证券A的税前收益可增加0.35%,故若证券A的税前收益增加为4.5%,投资不应改变. 证券C的税前收益可减少,证券C的税前收益可减0.112%,故若证券C的税前收益减少为4.8%,投资应该改变.
2、
Model:
max=24*x1+16*x2+44*x3+32*x4-3*x5-3*x6;
4*x1+3*x2+4*x5+3*x6<600;
4*x1+2*x2+6*x5+4*x6<480;
x1+x5<100;
x3=0.8*x5;
x4=0.75*x6;
end
由此可知:最优解为x1=0,x2=168,x3=19.2,x4=0,x5=24,x6=0.最优值为3460.8,即每天生产销售168kg A2和19.2kg B1(不出售A1和B2),可以获得最大净利润3460.8元。

为此,需用8桶牛奶加工成A1,42桶加工成A2,并将得到的24kg A1全部加工成B1.
五、分析与讨论。

相关文档
最新文档