《数学实验》课程.

合集下载

《数学实验》课程简介

《数学实验》课程简介

《数学实验》课程简介课程名称:数学实验学时:32学分:2内容简介本课程是为经济管理学院各专业二年级学生设置的专业选修课程.数学实验课程内容涵盖了数学建模所涉及的常用方法和内容,主要围绕软件使用、数据的统计描述和分析、数值计算、最优化方法、统计分析、神经网络、灰色系统理论、模糊数学模型,几种现代算法和数学建模论文及数学建模竞赛等内容展开,模型求解利用MATLAB、L1NDO/LINGO、SPSS等软件实现,实用性较强,上述3种软件使用方便,各具特色,L1NDO/LINGO软件在解决规划和优化类问题比较简单,SPSS软件解决统计类问题功能丰富,操作方便;MATLAB软件是一种“全能”型软件,可以解决碰到的几乎所有的数学、工程、经济学等各领域的模型计算求解问题,它具有功能强大的库函数可供调用,这就大大简化了编程的巨大工作了,同时也降低了学生学习该门课程的难度.课程通过“方法—软件使用—软件结果的实际含义—实验案例”这种有效的模式,把各部分内容有机地组织起来,力求有效地引导学生充分感受、领悟和掌握“数学实验”的内涵.本课程教学以实际问题为载体,把数学知识、数学建模、数学软件和计算机应用有机的结合,强调学生的主体地位,在老师的引导下,学习查阅文献资料、分析问题、运用学到的数学知识和计算机技术,借助适当的软件分析、解决一些实际问题,并撰写论文或实验报告.本课程在解决问题的过程中适当引入相关的理论知识,使学生能够将学到的知识直接转化为解决问题的手段,有利于激发学生学习的积极性.本课程在教学中在教学中注重加强学生建模方法的训练、建模思维的培养,使学生在思维能力和创造性方面受到启迪,同时课程强调数学工具软件的应用,培养学生运用数学知识建立实际问题模型,解决实际问题的能力,对于开展创新教育与素质教育起着重要作用.主要参考书目:姜启源:《数学模型》,高等教育出版社,2011年版姜启源:《数学模型习题参考解答》,高等教育出版社,2011年版赵静,但琦:《数学建模及数学实验》,高等教育出版社(第三版),2008年版米尔斯切特:《数学建模方法与分析》刘来福译,机械工业出版社,2009年版杨启帆:《数学建模》,浙江大学出版社,2006年版曹旭东,李有文,张洪斌:《数学建模原理与方法》,高等教育出版社,2014年版余胜威:《MATLAB数学建模经典案例实战》,清华大学出版社,2015年版汪天飞:《数学建模与数学实验》,科学出版社,2013年版韩中庚:《数学建模竞赛--获奖论文精选与点评》,科学出版社,2013年版谢金星,薛毅:《优化建模LINDO/LINGO软件》,清华大学出版社,2005年版卓金武:《MATLAB在数学建模中的应用》,北京航空航天大学出版社,2011年版李尚志:《数学实验(第2版)》,高等教育出版社,2015年版傅鹂:《数学实验(第二版)》,科学出版社,2000年版Course Name:Mathematics Experimen Hours:32Credits:2 Course Description:Mathematical Modeling is designed to serve students majoring in Economic Science.Mathematics experiment is a scientific research approach ranging from the classical deductive method and the classical experiment is neither the mathematical application of the usual experiments nor experimental transplant in mathematics research.It is a unique mathematics learning and mathematics research method forming with the development of human thinking mathematical theory and computer and other modern scientific and technology.Mathematics experiment doesn't take mathematics as a transcendental logical system, but an"experimental science".It starting from issues,with the help of computer software and mathematical models,is the process for the students to solve the problems through their personal design and hands-on experience from the experiment in order to learn explore and discover mathematical laws,which is a basic mathematical idea and method of mathematic experiment.。

数学实验教学大纲

数学实验教学大纲

数学试验教学大纲[课程的定位和目的]数学试验是清华大学在数学教学体系和内容改革中为非数学类专业创立的课,是四门数学主干课程的最终一门,起着承上启下的作用,承上是使微积分、代数与几何、随机数学中的原理得以应用,方法得以实现,启下是为后续课、争论生课程中数学问题的建模和求解供给思路,激发同学进一步学习数学、应用数学的意识和力量。

课程对象主要是本科二年级学生。

数学试验是一门重组课程,它集数值计算、优化方法、数理统计、数学建模以及数学软件于一体,以“应用数学根本原理、了解主要数值算法、借助数学软件实现、培育数学建模力量”为根本要求。

数学试验课的目的是,在教师指导下以学生在计算机上自己动手、动眼、动脑为主,通过用数学软件编程做试验,学习解决实际问题常用的数学方法,并在此根底上分析、解决经过简化的实际问题,提高学数学、用数学的兴趣、意识、方法和力量,促成数学教学的良性循环。

[课程的根本内容和根本要求]依据课程的目的和学时的限制,从必要性和可行性动身,我们设计数学试验课内容的根本原则是:1.介绍一些最常用的解决实际问题的数学方法,包括数值计算、优化方法、数理统计的根本原理和主要算法,一般不讲定理的证明,根本不做笔头练习;2.选择一两个适宜的数学软件平台,如 MATLAB 和LINGO,根本上能够便利地实现上述内容的有效算法;3.用数学建模为线索贯穿整个课程,从建模初步练习开头,以建模综合练习完毕,对上述每一局部内容也尽量从实际问题引入,并落实于这些问题的解决;4.最主要的是细心安排学生的试验,每个试验的内容除了为把握数学方法设计的纯计算题目外,要有足够的、经过简化的实际题目。

这样的内容设计既保证本科生学到比较广泛、有应用意义的数学学问,以及初步的分析、解决实际问题的思路与方法,又为那些要求把握更深入的数学理论和方法的学生,供给了很多实际背景,也刺激了他们再学习的愿望。

这样做还特别有利于争论型大学实行的“本硕贯穿”,数学试验课既为争论生的数学课〔如数值分析、数学规划、高等数值分析、高等统计等〕做了根本学问和实际背景的铺垫,又与这些课程在内容和要求上有较大的区分,形成明显的阶梯。

中学生数学实验课程设计

中学生数学实验课程设计

中学生数学实验课程设计一、课程目标知识目标:1. 学生能理解并掌握数学实验的基本概念和方法,与课本知识有效结合。

2. 学生能够运用数学软件或工具进行数据收集、处理和分析,解决实际问题。

3. 学生能通过数学实验发现数学规律,加深对数学知识的理解和运用。

技能目标:1. 学生掌握运用数学软件或工具进行实验操作的能力,提高解决问题的实践技能。

2. 学生具备独立设计简单数学实验的能力,培养创新思维和动手操作能力。

3. 学生能够运用数学实验方法解决实际生活中的问题,提高应用数学知识的能力。

情感态度价值观目标:1. 培养学生对数学学科的兴趣,激发学习热情,形成积极的学习态度。

2. 学生在合作探究的过程中,培养团队协作精神,增强沟通与交流能力。

3. 学生通过数学实验,认识到数学知识在实际生活中的重要作用,树立正确的价值观。

课程性质:本课程为中学生数学实验课程,结合课本知识,注重实践操作和实际应用。

学生特点:中学生具备一定的数学基础,思维活跃,好奇心强,喜欢动手操作。

教学要求:教师需引导学生结合课本知识,运用数学实验方法,提高解决问题的能力。

在教学过程中,注重培养学生的创新思维和实践技能。

通过课程目标的分解,实现对学生学习成果的评估和反馈。

二、教学内容本课程依据课程目标,结合教材内容,制定以下教学大纲:1. 数学实验基本概念- 引导学生理解数学实验的定义和作用- 介绍数学实验的基本方法和步骤2. 数据收集与处理- 利用教材中相关章节,教授数据收集的方法和技巧- 引导学生运用数学软件或工具进行数据处理和分析3. 数学规律的探索- 结合教材内容,设计数学实验案例,引导学生发现数学规律- 通过实验,加深对数学公式、定理和性质的理解4. 数学实验在实际问题中的应用- 选取与教材相关的实际问题,教授如何运用数学实验方法解决问题- 培养学生的应用意识和实践能力5. 创新思维与实践操作- 鼓励学生独立设计数学实验,培养创新思维- 组织课堂实践活动,提高学生的动手操作能力教学内容安排与进度:1. 第1周:数学实验基本概念及方法2. 第2-3周:数据收集与处理3. 第4-5周:数学规律的探索4. 第6-7周:数学实验在实际问题中的应用5. 第8周:创新思维与实践操作教学内容与教材紧密关联,注重科学性和系统性,旨在帮助学生将课本知识与实践相结合,提高数学素养。

《数学实验》课程简介

《数学实验》课程简介

数学实验》 《数学实验》课程
课程的性质、 课程的性质、目的 数学实验是最近几年出现的新课程, 数学实验是最近几年出现的新课程,其目的是锻 炼动手能力,培养应用数学知识解决实际问题的意识 炼动手能力, 和能力。 和能力。 本课程通过介绍数学软件(MATLAB) (MATLAB), 本课程通过介绍数学软件 (MATLAB) , 运用数学课 程所学习的一些知识与方法, 程所学习的一些知识与方法,对一些简单的实际问题 进行数学建模、解题方法的设计与上机实践。 进行数学建模、解题方法的设计与上机实践。 课程包括讲课、 课程包括讲课 、 讨论和使用计算机进行实验等环 节。
变量及数组输入
1:向量方式输入 : x=[1,2,3,4,5] %以向量(数组)方式给 赋值 以向量( 以向量 数组)方式给x赋值 x(3)=3 x(5)=5 x1=[1 12 –3 4 sqrt(5)]; z=sqrt(x) %每个元素开方 每个元素开方
变量及数组输入
2:矩阵方式输入 : a=[1,2,3;4,5,6;7,8,0] %矩阵输入 (a为3阶方阵) 阶方阵) 矩阵输入 为 阶方阵 b=[366;804;351] %列矩阵输入 列矩阵输入 det(a) %方阵行列式 方阵行列式 inv(a) %方阵的逆 方阵的逆 x=a\b %ax=b方程组的解 方程组的解 y=inv(a)*b %与x相同 与 相同 disp([a,b,x]) %显示矩阵 显示矩阵
数学实验》 《数学实验》课程
教学的要求: 1、理论课认真听讲,在操作讲解过程中注意可能 出项问题的细节及讲解。 2、上机课之前熟悉上机的相关理论知识,在上机 过程中遇到问题应结合理论课的讲解自己主动分 析解决问题。通过思考、提问、同学交流提高自 己的动手能力
数学实验》 《数学实验》课程

数学实验课程设计目的

数学实验课程设计目的

数学实验课程设计目的一、教学目标本课程的教学目标是让学生掌握第三章“几何图形”的核心知识点,包括了解各种几何图形的性质和相互关系,掌握基本的几何证明方法,提高空间想象能力和逻辑思维能力。

知识目标:学生能够准确地描述和识别各种基本几何图形(三角形、矩形、圆形等),理解它们的性质和相互关系,并能够运用这些性质解决实际问题。

技能目标:学生能够熟练地运用几何证明方法,解决简单的几何证明问题,并能够运用所学的几何知识进行创新性的几何设计和创作。

情感态度价值观目标:通过几何图形的探索和证明,培养学生对数学的兴趣和好奇心,提高学生的数学素养,使学生认识到数学在生活中的重要性和应用价值。

二、教学内容本课程的教学内容主要包括第三章“几何图形”的核心知识点,具体包括:1.各种基本几何图形的性质和相互关系:三角形、矩形、圆形等。

2.几何证明方法:公理、定理、证明等。

3.空间想象能力和逻辑思维能力的培养:通过实际问题,引导学生运用所学的几何知识进行分析、推理和解决问题。

三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括:1.讲授法:通过教师的讲解,使学生了解和掌握几何图形的性质和相互关系,以及几何证明的基本方法。

2.讨论法:在教师的引导下,学生之间进行讨论和交流,共同探讨几何问题的解决方法,培养学生的合作能力和批判性思维。

3.实验法:通过实际的图形操作和观察,让学生直观地了解几何图形的性质,提高学生的空间想象能力。

4.案例分析法:通过分析实际问题,引导学生运用所学的几何知识进行推理和解决问题,培养学生的应用能力和创新精神。

四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《数学课本》第三章“几何图形”。

2.参考书:《几何学导论》、《几何证明方法》等。

3.多媒体资料:几何图形的图片、视频、动画等。

4.实验设备:几何模型、尺子、直尺等。

通过以上教学资源的支持,我们将帮助学生更好地理解和掌握几何图形的知识,提高他们的空间想象能力和逻辑思维能力,培养他们的数学素养和创新精神。

《数学实验》课程教学大纲

《数学实验》课程教学大纲
2.矩阵的基本分析:矩阵的行列式、矩阵的迹、矩阵的秩、矩阵的逆、矩阵的特征多项式、矩阵的特征值与特征向量
3.线性方程组 的求解
4.随机数的生产和模拟
5.实验实例:循环比赛的名次和按年龄分组的种最优化问题实验
重点:学会一些常用函数的调用格式并学会自己动手编写函数
3. 《高等应用数学问题的MATLAB求解》.薛定宇,陈阳泉著.清华大学出版社,2004
4. 《MATLAB数学实验》.胡良剑,孙晓君编著.高等教育出版社,2006.6
执笔人:邓化宇
审核人:
院(系)负责人:
《数学实验》课程教学大纲
MathematicalExperiment
适用:本科四年制信息与计算科学专业(40学时左右)
一、课程的目的及任务
开设《数学实验》课的目的是在两周的时间里为学生介绍如何使用计算机的语言和方法去处理一些经典的数学问题,并提供一些实例以启发学生自己动手练习。进一步的提高要靠学生的兴趣和努力。
教学要点:
1.一元非线性方程数值求解
2.非线性方程组数值求解
3.方程符号求解
4.一元函数和多元函数无约束优化求解
5.线性规划
6.实验实例:购房贷款的利率和最短路问题
第五章 微分方程问题的计算机求解
重点:学会一些常用函数的调用格式并学会自己动手编写函数
教学要点:
1.常系数微分方程的计算机求解析解
2.微分方程问题的数值解法
二、课程的特点、要求及本课程与其它课程的联系
数学是科学技术人才科学素质的的重要组成部分,随着高科技与与计算技术的发展和普及,数学的重要性日益突出。“高技术本质上是一种数学技术”这一观点已越来越多地为人们所认同。学习计算机使用和开发是启迪学生创新意识和创新思维、锻炼创新能力、培养高层次人才的一条重要途径;也是激发学习欲望、培养主动探索、努力进取学风和团结协作精神的有力措施。

数学实验教学大纲

数学实验教学大纲

《数学实验》教学大纲课程名称:数学实验课程编号:09030007课程类别:专业基础必修课学时/学分:48/1.5开设学期:第4学期开设单位:数学与统计学院适用专业:数学与应用数学说明一、课程性质1.课程性质专业必修课2.课程说明数学实验是一门“实验科学”, 从理论或实际问题出发, 借助计算机, 通过学生亲自设计和动手, 体验解决问题的过程, 从实验中去学习、探索和发现数学规律. 一般来说, 数学实验课可以作为数学建模课的预备课程, 使学生可以更快地掌握数学建模的基本方法和技巧.学习本课程需要首先选修《数学软件计算机程序设计》选修课并了解简单的计算机应用知识, 还需要了解《数学分析》、《解析几何》、《高等代数》和《常微分方程》等课程的有关知识, 因此, 适宜于为本专业二年级以上学生开设.二、教学目标1. 能够熟练运用数学软件检验已学过的数学知识, 掌握运用数学软件作出图形的方法, 为所学知识提供直观模型, 从而加深对已有知识的理解;2. 能够利用数学软件编制计算机程序, 以解决实际问题, 为《数学建模》课程的学习打下基础;3. 在结合数学基础课的教学内容基础上, 进一步突出培养学生解决实际问题的能力;4. 学生在教师指导下完成一定难度的实际模型.三、学时分配表四、实验方法与要求建议在专业实验室进行实验教学,学生在课前应先预习实验内容.实验先由教师讲1个课时, 教师主要是提出问题, 适当介绍问题的背景, 介绍主要的实验原理和方法. 然后安排2个课时学生上机, 教师辅导, 要让学生自己动手去做, 去观察, 通过观察得出结论. 教师不宜花时间去作理论推导, 最好也不要预先告诉学生实验的结果, 实验结果让学生自己去观察得出.课后应独立完成作业, 以加深对教学内容的理解. 部分学生反应作业任务比较繁重, 主要的困难在于学生的计算机水平不够, 因此完成作业要花很多时间, 而实验所涉及到的数学知识难度并不大. 数学实验课几乎是逼迫学生重新拣起或现学现用计算机知识, 因此可酌情减少学生自主实验个数.成绩由实验报告及考试两部分组成, 考试采用上机实验和闭卷考试相结合的方式进行.五、考核方式及要求1. 考核方式:考试及实验报告.实验报告是实验成绩的重要依据.实验报告的评分的最基本标准是要自己动手, 要写上自己观察到的现象并进行分析. 实话实说, 不能造假, 哪怕观察到的现象与预计不一致, 或者与理论推导的结果不一致, 也不能在实验报告中说假话, 而应当分析其原因, 找出改进的办法, 重做实验, 重新得出结论. 对实验报告的更高的标准是创造性. 对于有创造性的报告, 要给以高分作为鼓励. 教师批改了实验报告之后, 要在下一次实验开始时, 对以前的实验中出现的优点和缺点进行评讲, 包括让学生参加讨论和演示.期末考试是实验成绩的主要依据, 采用全机试或机试加笔试的方式进行.2. 成绩评定:计分制:百分制.成绩构成:总成绩=平时考核(20%)+实验考核(30%)+期末考核(50%)本文实验一Matlab概述一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:12实验分组:3-4人为一组二、实验目的:1.Matlab软件简介;2.学习Matlab软件的基本命令;3.学习Matlab程序设计.三、实验的基本内容和要求:1.Matlab简介;2.Matlab的基本命令与基本函数;3.基本赋值与运算;4.Matlab程序设计.四、实验仪器设备及材料:五、实验操作要点:1.Matlab 的基本命令与基本函数; 2.Matlab 程序设计思想. 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. Matlab 的基本命令是基础, 对基本常用命令必须要了解用法与用途;2. Matlab 程序设计是难点, 要求学生掌握编程的基本思想, 能完成简单程序即可, 要求不可过高, 在以后的教学中让学生逐步体会、加深理解;实验二 函数图形绘图一、实验性质: 实验类别:专业基础必修 实验类型:验证型 计划学时:3实验分组:3-4人为一组 二、实验目的:1.了解曲线的几种表示方法及作图, 空间曲线, 曲面作图; 2.学习、掌握MATLAB 软件有关命令. 三、实验的基本内容和要求:1. 以直角坐标方程sin ,cos y x y x ==表示的正、余弦曲线.2. 以参数方程cos ,sin ,[0,2]x t y t t π==∈表示的平面曲线(单位圆).3. 以参数方程0.20.2cos,sin ,,[0,20]22t t x e t y e t z t t ππ--===表示的空间曲线.4. 以极坐标方程(1cos ),1,[0,2]r a a ϕϕπ=+=∈表示的心脏线.5. 做出双曲抛物面:2244x y z =-的图形. 四、实验仪器设备及材料:五、实验操作要点: 1.一维函数的绘制, 2.各种曲线的实现方法, 3. 空间曲线、曲面作图. 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. Matlab 函数图形绘制是Matlab 的基本功能之一, 要求掌握plot, mesh, surf, plot3等基本绘图命令;2. 教师讲解基本原理后, 安排学生自主上机验证.实验三 数列极限与生长模型一、实验性质: 实验类别:专业基础必修 实验类型:设计型 计划学时:3实验分组:3-4人为一组 二、实验目的:1. 了解函数极限的基本概念;2. 学习、掌握MATLAB 软件有关求函数极限的命令;3. 学会利用极限理论建立数学模型解决实际问题. 三、实验的基本内容和要求:1. 判断极限0011limcos ,limsin x x x x →→的存在性.2. 验证极限0sin lim1x xx→=. 3. 验证极限11lim(1)lim(1) 2.71828n x n x e n x →∞→∞+=+==.4. 求下列各极限.(1)nn n )11(lim -∞→;(2))122(lim n n n n ++-+∞→;(3)xx x 2cot lim 0→;(4)xx x m)(cos lim ∞→; (5)x x x 11lim3-+→.5. 生物种群的数量增长模型. 四、实验仪器设备及材料: 计算机及Matlab 软件 五、实验操作要点: 利用Matlab 计算极限 六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握limit 求极限命令;2. 教师讲解基本原理后, 安排学生上机绘图验证.3. 初步接触数学模型, 了解数学建模.实验四 导数与飞机安全降落问题一、实验性质: 实验类别:专业基础必修 实验类型:设计型 计划学时:3实验分组:3-4人为一组 二、实验目的:1. 了解函数导数的基本概念;2. 学习、掌握MATLAB 软件有关求函数导数的命令;3. 学会利用导数理论建立数学模型解决实际问题. 三、实验的基本内容和要求:1. 导数是函数的变化率, 几何意义是曲线在一点处的切线斜率.2. 导数的几何意义是曲线的切线斜率.3. 求一元函数的导数.(1) 的一阶导数.(2) 参数方程所确定的函数的导数.设参数方程()()x x ty y t=⎧⎨=⎩确定函数, 则的导数()()dy y tdx x t'='4. 求多元函数的偏导数.5. 求高阶导数或高阶偏导数.6. 求隐函数所确定函数的导数或偏导数7. 飞机安全降落问题四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:利用Matlab求函数的导数.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握diff求导数命令;2. 进一步接触数学模型, 了解数学建模. 课教师讲解原理后学生验证, 也可安排学生自己建立模型求解. 对于后者, 要求不必过高, 主要是让学生了解建模过程, 体会建模困难.实验五方程近似解的求法一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1. 掌握求方程近似解的二分法、牛顿迭代法以及弦截法的算法原理, 会用MATLAB语言编程实现二分法.2. 学会使用Matlab中内部函数fzero()、fsolve()、roots()求解方程或方程组.三、实验的基本内容和要求:1. 二分法的原理及算法.2. 牛顿迭代法的原理及算法.3. 弦截法的原理及算法.4. 方程求解的Matlab命令四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:1.编出用二分法求方程近似解的程序并验证.2.编出用牛顿迭代法求方程近似解的程序并验证.3.编出用弦截法求方程近似解的程序并验证.4.用Matlab函数fzero()、fsolve()、roots()求解方程或方程组.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握fzero()、fsolve()、roots()等命令;2. 教师讲解基本原理后, 安排学生上机验证.3. 由于没有学习数值分析课程, 要求不能过高, 主要是体会迭代法的基本思想, 要求学生能理解基本思想, 简单编程即可.实验六定积分的近似计算一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.了解定积分计算的梯形法与抛物线法;2.会用Matlab语言编写求定积分近似值的程序;3.学会使用Matlab中的命令求定积分.三、实验的基本内容和要求:1. 梯形法的原理及算法.2. 抛物线法的原理及算法.3. 计算数值积分的Matlab命令.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:1. 编出用梯形法计算定积分的程序并验证.2. 编出用抛物线法法计算定积分的程序并验证.3. 用Matlab函数quad()、int(f) 计算数值积分.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握quad()、int()等命令;2. 教师讲解基本原理后, 安排学生上机验证. 主要是体会定积分基本思想:分割、近似、求和、取极限.实验七多元函数的极值问题一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.多元函数极值的求法;2.多元函数条件极值的求法;3.MATLAB软件有关的命令.三、实验的基本内容和要求:1. 多元函数极值的计算.2. 二元函数在区域D内的最大值和最小值的计算.3. 函数条件极值的求解.4. 用Matlab命令计算函数极值.MATLAB中主要用diff求函数的偏导数, 用jacobian求Jacobian矩阵. diff(f, x, n)求函数f关于自变量x的n阶导数. jacobian(f, x)求向量函数f关于自变量x(x 也为向量)的jacobian矩阵.使用Matlab命令fmin()、fmins()以及lp()来解决一些约束优化问题(线性规划问题).四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:多元函数极值的计算六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握jacobian(f, x)、fmin()、fmins()和lp()等命令;2. 教师讲解基本原理后, 安排学生上机验证.实验八重积分计算及照明问题一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.掌握用Matlab的有关函数计算重积分的方法;2.学会利用Matlab画图分析三重积分区域及投影区域;3.掌握用Matlab的有关函数计算曲线曲面积分的方法.三、实验的基本内容和要求:1. 二重积分的计算.2. 三重积分的计算.3. 重积分的实际应用举例---照明问题.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:二重积分、三重积分的计算六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 掌握有关计算二重、三重积分的命令;2. 教师讲解基本原理后, 安排学生上机验证.3. 进一步了解用数学解决实际问题的过程——数学建模, 要求较前面要有一定的提高, 可考虑安排学生完成.实验九无穷级数与函数逼近一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.学会使用Matlab关于级数求和以及函数展开成幂级数的命令和方法;2.研究幂级数的部分和对函数的逼近以及进行函数值的近似计算;3.展示傅里叶级数对周期函数的逼近情况.三、实验的基本内容和要求:1.级数部分和与级数的和的计算.2.函数的幂级数展开.3.幂级数求和.4.傅里叶级数对周期函数的逼近四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:级数部分和的计算, 无穷级数和的计算, 展开成级数.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 学会使用Matlab关于级数求和以及函数展开成幂级数的命令和方法;2. 教师讲解基本原理后, 学生上机验证幂级数的部分和对函数的逼近程度.实验十人造卫星的运行轨道一、实验性质:实验类别:专业基础必修实验类型:设计型计划学时:3实验分组:3-4人为一组二、实验目的:1.会使用Matlab求一阶常微分方程的解析解和数值解;2.会使用Matlab求简单的常微分方程和高阶常微分方程的解析解和数值解;3.会用常微分方程(组)解决实际问题.三、实验的基本内容和要求:1. 常微分方程的解析解;2. 微分方程的数值解法;3. 解微分方程的MATLAB命令;MATLAB中主要用dsolve求符号解析解, ode45, ode23, ode15s求数值解.Matlab求解微分方程命令dsolve, 调用格式为:dsolve(‘微分方程’)给出微分方程的解析解, 表示为t的函数.dsolve(‘微分方程’, ‘初始条件’)给出微分方程初值问题的解, 表示为t的函数.dsolve(‘微分方程’, ‘变量x’)给出微分方程的解析解, 表示为x的函数.dsolve(‘微分方程’, ‘初始条件’, ‘变量x’)给出微分方程初值问题的解, 表示为x的函数.4.数学模型---人造卫星的轨道方程.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:求解常微分方程(组)的解析解和数值解.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 了解微分方程的数值解法的基本思想, 掌握求解微分方程解析解和数值解的基本命令;2. 这是一个综合性的实验, 旨在综合运用所学知识, 可安排给学生独立完成, 初步检测一学期的学习效果.实验十一线性代数的基本运算一、实验性质:实验类别:专业基础必修实验类型:验证型计划学时:3实验分组:3-4人为一组二、实验目的:1.用MATLAB求矩阵的转置、加、减、乘、逆等基本运算.2.用MATLAB求行列式.3.用MATLAB求线性方程组的解, 矩阵的特征值及特征向量.三、实验的基本内容和要求:1. 矩阵的转置、加、减、乘、逆等基本运算及MATLAB软件的有关命令;2. 学习行列式的基本概念, 克莱姆法则及MATLAB软件的有关命令;3. 用MATLAB求线性方程组的解, 矩阵的特征值及特征向量;4. 会解决一些简单的实际问题.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:矩阵的基本运算, 行列式, 求线性方程组的解, 矩阵的特征值及特征向量.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 了解线性方程组的解, 掌握求解线性方程的解得Matlab 基本命令;2. 结合前面的迭代法, 系统验证求解线性方程组的解法, 以及特征值与特征向量在其中的作用.实验十二综合实验一、实验性质:实验类别:专业基础必修实验类型:综合型计划学时:6实验分组:3-4人为一组二、实验目的:1.加深对极限、微分、积分等基本概念的理解;2.讨论微分学中的实际应用问题;3.掌握MATLAB软件中有关极限、级数、导数等命令;4.特殊矩阵的输入、矩阵基本分析、矩阵的基本变换;5.了解线性规划问题, 掌握MATLAB求解线性规划的命令.三、实验的基本内容和要求:1. MATLAB综合应用一:微积分问题的计算机求解---连续计息问题.2. MATLAB综合应用二:线性代数问题的计算机求解.3. MATLAB综合应用三:代数方程与最优化问题的计算机求解---最佳广告编排方案.四、实验仪器设备及材料:计算机及Matlab软件五、实验操作要点:微积分问题的计算机求解, 线性代数问题的计算机求解, 代数方程与最优化问题的计算机求解.六、实验教学建议:学生在课前应先预习, 实验时经老师讲解后在老师的指导下完成实验, 课后应独立完成作业. 建议:1. 复习总结学过的Matlab 命令, 加深对软件的认识与学习;2. 这是一个综合性的实验, 旨在综合运用所学知识, 可提前安排学生考虑三题中的一题(可酌情增加题目), 在数学实验室独立完成实验, 也可作为机试成绩.指导书与参考资料[1] 王向东, 戎海武, 文翰, 等. 数学实验[M]. 北京:高等教育出版社, 2004.[2] 冯有前, 袁修久, 李炳杰, 等. 数学实验[M]. 北京:国防工业出版社, 2008.[3]李尚志, , 陈发来, 吴耀华, 等. 数学实验[M]. 北京:高等教育出版社, 1999.[4]萧树铁, 姜启源, 何青, 等. 数学实验[M]. 北京:高等教育出版社, 2001.[5]李卫国. 高等数学实验. [M]. 北京:高等教育出版社;海德堡:斯普林格出版社, 2000.[6]张志涌, 杨祖樱, 等. Matlab教程R2010a[M]. 北京:北京航空航天大学出版社, 2010.执笔:李永武审核:朱睦正制(修)订时间:2011-10-10。

小学数学实验课程概述 小学数学实验课程介绍

小学数学实验课程概述 小学数学实验课程介绍

未来课堂, 未来之路。 路向尝试, 路向探索, 路向儿童, 路向远方。 这是一条无限延伸的 曲折而又春意盎然的 路……
二 为什么要开发小学数学实验课程?
1.课程转型升级的需要
1.0 侧重知识教育
2.0 转向能力教育
3.0 关注核心素养
课程转型升级的路径
学生学习应当是一个生动 活泼的、主动的和富有个 性的过程。除接受学习外, 动手实践、自主探索与合 作交流同样是学习数学的 重要方式。学生应当有足 够的时间和空间经历观察、 实验、猜ห้องสมุดไป่ตู้、计算、推理、 验证等活动过程。
小学数学实验课程介绍
三 我们期待的小学数学实验课程
在这里,数学可触摸,可视; 在这里,数学需要不断尝试; 在这里,数学是猜测、操作、观察、记录、归
纳、类比、推理等活动,是想象力、创造力迸 发的活动。
在这里,儿童将探索无限的可能性!
小学数学实验课程介绍
世上原本没有路, 走的人多了, 也就变成了路。 世上原有许多路, 通向不同的远方, 你有你的方向, 我有我的梦想。
以实验的方式学习数学,体现数学尝试性、实验性
✓ 回溯数学知识体系的创生,从结绳记事开始,数学正是在不断的假设、猜想、操作、 验证中得以发展。
✓ 数学有系统性、演绎性的一面,也有尝试性、实验性的一面。
数学不仅能做实验,而且以实验的方式学习数学,让 数学学习有了探究性、操作性和趣味性,学生在实验中,深 刻体验、乐此不疲。
我们追求“认知性”的核心素养
✓ 问题解决、勇于探究、批判性思维等。 ✓ 数学实验课程特别强调猜想验证,动手实验,尝试创造。
二 为什么要开发小学数学实验课程?
2.改变小学数学学习方式的需要
小学数学教师们的疑惑:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量及数组输入
1:向量方式输入 x=[1,2,3,4,5] %以向量(数组)方式给x赋值 x(3)=3 x(5)=5
fprintf('k=%.0f A(%.2f,%.2f) B(%.2f,100) d=%.2f\n',k ,A(1),A(2),B(1), d);
end
《数学实验》课程

学习课程的要求 1.熟悉计算机操作与有关数学软件的使用; 2. 掌握好高等数学的知识体系和数学方法; 3.具有刻苦钻研、积极探究的学习精神; 4.培养勤于思考、乐于动手的实践能力; 5. 具有不怕困难,善于总结,相互协作, 开拓创新的意志。
《数学实验》课程

什么是数学实验? 简单讲就是利用计算机和数学软件平台, 一方面,对学习知识过程中的某些问题进行 实验探究、发现规律; 另一方面,结合已掌握的数学(微积分、代 数与几何等)知识,去探究、解决一些简单实 际问题,从而熟悉从数学建模、解法研究到实 验分析的科学研究的方法。
《数学实验》课程
MATLAB程序: hold on % 图形迭加 axis([0,100,0,120]); % 设置坐标轴 k=0; B A=[0,0]; %导弹初始位置 B=[0,100]; %飞机初始位置 v=1; dt=1; %离散时间改变量 d=100; %相距距离 while d>0.5 A plot(A(1),A(2),‘r.’); %画导弹位置 plot(B(1),B(2),‘b*’); %画飞机位置 pause(0.2); k=k+1; B=B+[v*dt,0]; %飞机移动位置 e=B-A; %导弹指向飞机向量 d=norm(e); e0=e/d; %取向量方向(单位化) A=A+2.0*v*dt*e0; %导弹追击位置

运行MATLAB创建一个或多个窗口
a) 命令区 (Command Window) 是用户使用的主要 场所,此时,可以输入变量、数组及运算命令, 进行一些简单的运算;用↑↓←→键搜索、修 改以前使用过的命令操作 , 用 clc 清除窗口 ; 用help sqrt ( help input …)寻求有关帮助 ; b) 编辑区 (Editor\Debugger Window) 编制各种 M-文件,存盘(Save)、运行(Run)等.
《数学实验》课程
课程的教学: 1)通过介绍数学软件-MATLAB,学会数学软件 的基本操作与使用; 2)利用数学软件对数学课程中的一些数值计 算数值方法进行上机实验; 3)通过简单的应用问题,运用有关的数学知识 建立数学模型、分析求解方法并上机实现。

《数学实验》课程

教学的要求:
每次实验按2人为一实验小组,实验完成后共 同填写一份实验报告上交,教师批改后给出成 绩,最后综合评定出最终成绩(10分制)。 实验成绩将纳入到所学的高等数学课程的期 末成绩之中,占一定的比例(一般10%)。
fprintf('n=%d an=%.4f\n',n,an); % 显示坐标位置
end
例2 导弹打击过程仿真(第24页例12-2)
设 A(0,0) 为一导弹发射点,发现位于 B(0,100) 处一架敌 机沿水平方向逃离,随即发射一枚导弹予以打击,现 已知导弹时刻对准敌机,且速率为飞机速率的两倍 (设飞机速度为1)。 B 试编程模拟导弹打击敌机 的动态过程,并实时给出 飞机和导弹的位置坐标。 若要在敌机飞行距离不超 过60时(我方空域)将其 A 击落,导弹的速率应提高 到多少?

课程的性质、目的 数学实验是最近几年出现的新课程,其目的是锻 炼动手能力,培养应用数学知识解决实际问题的意识 和能力。 本课程通过介绍数学软件 (MATLAB) ,运用数学课 程所学习的一些知识与方法,对一些简单的实际问题 进行数学建模、解题方法的设计与上机实践。 课程包括讲课、讨论和使用计算机进行实验等环 节。
键入 help elfun help abs help linspace
help sqrt
MATLAB中基本代数运算符加 Nhomakorabea: 减法: 乘法: 除法: 乘幂:
运算 a+b a-b a×b a÷b
a
b
符号 + * / ^
举例 5+3 5-3 5*3 48/4 5^2=25
MATLAB中数组、矩阵基本运算符
MATLAB中帮助功能
在命令区(Command Window)键入help命令查 看工具箱 elmat - Elementary matrices and matrix manipulation. elfun - Elementary math functions. specfun - Specialized math functions.
先看两个例子
例1 数列极限(第23页例11-2):动态显示数列极限 MATLAB程序: hold on % 图形迭加 axis([0,100,2,3]); % 设置坐标轴 grid % 加坐标网格 for n=1:90 % 循环操作 an=(1+1/n)^n; % 计算数列值 plot(n,an,'r*'); % 画出坐标点 pause(0.05); % 暂停0.05秒
MATLAB软件简单介绍
MATLAB是建立在向量、数组和矩阵基础上的 一种分析和仿真工具软件包,包含各种能够 进行常规运算的“工具箱” ; 同时还提供了编程计算的功能,通过编程可 以解决一些复杂的工程问题; 也可绘制二维、三维图形,输出结果可视化。 目前,已成为工程领域中较常用的软件之一。
运算 加法: a+b 减法: a-b 乘法: a*b a.*b 除法:a./b 逆乘: 左乘 右乘 乘幂: 方阵的幂 元素的幂 符号 举例 + [1 2]+[3 4] [1,2]+3 [1 2]-[3 4] [1,2]-3 * [1,2]*3 [1,2]' *[3,4] .* [1,2].*[3,4]=[3,8] ./ [1,2]./[3,4]=[0.3,0.5] \ ax=b x=a\b=inv(a)*b / xa=q x=q /a=q *inv(p) ^ a^2=a*a .^ a.^2 x.^3
相关文档
最新文档