八年级数学下册9.4矩形菱形正方形第2课时教案新版苏科版
初中数学八年级下册苏科版9.4矩形、菱形、正方形教学课件说课稿

为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.例题讲解:针对矩形、菱形、正方形的性质和判定方法,精选典型例题进行讲解,让学生掌握解题思路。
2.课堂练习:设计具有代表性的练习题,让学生独立完成,及时巩固所学知识。
3.小组竞赛:组织小组间进行几何图形拼图竞赛,激发学生的竞争意识,提高他们的动手操作能力。
3.技术工具:智慧黑板、几何画板等,方便学生实时观察和操作,提高课堂互动性。
这些媒体资源在教学中的作用是:丰富教学形式,提高学生的学习兴趣;增强课堂互动,方便学生实时反馈;直观展示几何图形,降低学习难度。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:提问、引导、讲解,关注学生的反馈,及时调整教学策略。
1.创设情境:通过引入生活中的实际例子,让学生感受到矩形、菱形、正方形在实际中的应用,提高他们的学习兴趣。
2.合作探究:组织学生进行小组讨论,鼓励他们主动发现问题、解决问题,培养合作交流的习惯。
3.竞赛激励:设置几何图形拼图竞赛,激发学生的竞争意识,提高他们对特殊四边形性质的理解和运用能力。
4.赏识教育:对学生的每一次进步给予充分的肯定和鼓励,增强他们的自信心,提高学习积极性。
1.生活实例引入:展示生活中常见的矩形、菱形、正方形物体,如窗户、红绿灯、魔方等,让学生认识到特殊四边形在生活中的广泛应用。
2.问题驱动:提出问题:“你们知道这些图形有什么特殊之处吗?”引发学生思考,激发他们的好奇心。
3.游戏互动:设计一个简单的几何图形拼图游戏,让学生在游戏中体验矩形、菱形、正方形的性质,自然过渡到新课的学习。
(二)教学反思
在教学过程中,我预见到以下问题或挑战:
苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(2)

苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(2)一. 教材分析本节课内容为苏科版数学八年级下册9.4矩形、菱形、正方形(2),是在学生已经掌握了矩形、菱形、正方形的性质和判定方法的基础上进行进一步的学习。
本节课的主要内容有:矩形、菱形、正方形的性质和判定,以及它们之间的关系。
通过本节课的学习,使学生进一步理解矩形、菱形、正方形的性质,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在之前的学习中已经掌握了矩形、菱形、正方形的基本性质和判定方法,但对于一些特殊的性质和判定方法可能还不够熟练。
此外,学生可能对矩形、菱形、正方形之间的关系有一定的了解,但可能还不够深入。
因此,在教学过程中,需要引导学生复习前面的知识,帮助学生进一步理解和掌握矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
三. 教学目标1.理解矩形、菱形、正方形的性质和判定方法。
2.掌握矩形、菱形、正方形之间的关系。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.矩形、菱形、正方形的性质和判定方法。
2.矩形、菱形、正方形之间的关系。
五. 教学方法采用问题驱动法和案例教学法,引导学生通过观察、思考、归纳、总结的方式来学习矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
同时,结合多媒体教学,利用图片、动画等形式,帮助学生直观地理解矩形、菱形、正方形的性质和判定方法。
六. 教学准备1.多媒体教学设备。
2.矩形、菱形、正方形的图片和动画。
3.矩形、菱形、正方形的性质和判定方法的案例。
七. 教学过程1.导入(5分钟)通过展示矩形、菱形、正方形的图片和动画,引导学生回顾矩形、菱形、正方形的性质和判定方法。
2.呈现(10分钟)呈现矩形、菱形、正方形之间的关系,引导学生观察、思考、归纳、总结。
3.操练(10分钟)学生分组讨论,根据矩形、菱形、正方形的性质和判定方法,判断一些给定的图形是矩形、菱形还是正方形。
【最新苏科版精选】苏科初中数学八下《9.4 矩形、菱形、正方形》word教案 (20).doc

B C A D B CE F O 9.4 矩形、菱形、正方形(4)学习目标:1.掌握四边形是菱形的条件2.在探索四边形是菱形的条件的过程中,发展自己的探究意识和有条理的表达能力3.能正确地应用四边形是菱形的条件解决问题重点、难点:能正确地应用四边形是菱形的条件解决问题学习过程 一.【预学指导】初步感知、激发兴趣1、下列命题正确的是 ( )A 、对角线相等且互相平分的四边形是菱形B 、对角线相等且互相垂直的四边形是菱形C 、对角线相等且互相平分的四边形是矩形D 、对角线相等的四边形是等腰梯形2、如果平行四边形满足条件: (填写一个合适的条件), 那么它的四条边都相等。
3、在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件中,不能判定平行四边形ABCD 是菱形的是 ( )A 、AB=BCB 、AC ⊥BDC 、∠A=∠D D 、CA 平分∠BCD 二.【问题探究】问题1:如何确定一个四边形为菱形呢?可以根据什么去判断?菱形的判定:的平行四边形是菱形 的平行四边形是菱形。
的四边形是菱形。
几何语言:(如图)从“平行四边形”的角度考虑 ①∵□ABCD 中, = ∴四边形ABCD 为菱形 ( )②∵□ABCD 中, ⊥∴四边形ABCD 为菱形 ( )从“四边形”的角度考虑③∵在四边形ABCD 中, = = =∴四边形ABCD 为菱形 ( )问题2:已知:如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的垂直平分线 与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形.个人复备AD BCEFG问题3:已知:如图,△ABC 中,∠ACB =90°,CD 是高,AE 是角平 分线,交CD 于F ,EG ⊥AB ,G 是垂足,四边形CEGF 是菱形吗?为什么?三.【拓展提升】 如图,取矩形纸片ABCD ,将矩形纸片折叠,使C 点与A 重合,折痕为EF 。
(1) 你能否说明四边形AECF 是菱形? (2) 若AB=6cm ,BC=8cm ,则折痕EF 的长是多少?将两张等宽的矩形纸片叠合在一起得到的四边形ABCD 是菱形。
苏科版八年级初二下册数学9.4矩形、菱形、正方形导学案教案教学设计

A D BC F E 9.4 矩形、菱形、正方形(2)一、学习目标:1、理解矩形的概念,掌握矩形的性质;2、经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法;并在探索过程中理解特殊与一般的关系。
二、预习反馈:1、预习课本p110-112,掌握矩形的相关性质。
2、一个活动的平行四边形木框,用两根橡皮筋分别套在相对的两个顶点上。
拉动一对不相邻的顶点A 、C ,即可改变平行四边形的形状,如图所示。
(1)无论∠α如何变化,四边形ABCD 还是平行四边形吗?(2)随着∠α的变化,两条对角线长度有没有变化?(3)当∠α为直角时,平行四边形就变成 。
3、(1)________的平行四边形叫做矩形,每一个矩形最少有______条对称轴。
(2)在对称性方面,矩形与一般平行四边形相比较,相同之处是:•二者都是_____对称图形。
不同之处是:它还是____________对称图形。
4、如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,CE∥DB,交AB•的延长线于点E .AC 和CE 相等吗?为什么?三、例题精讲:例 1:已知:如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,DE 、DF 分别是△BDC 、△ADC 的角平分线.求证:四边形DECF 是矩形.例2:如图,在矩形ABCD 中,AB =3, BC = 4, BE⊥AC 于E .试求出AC 、BE 的长。
例3:如图,矩形ABCD 中,对角线AC 、BD 交于O 点,CE⊥BD 于E ,OF⊥AB 于F ,BE :DE=1:3,OF=2cm ,求AC 的长。
四、巩固训练:1、矩形的定义中有两个条件:一是 ____________,二是 _________________。
2、判断:(1)有一个角是直角的四边形是矩形。
( )(2)矩形的对角线互相平分。
八年级数学下册9.4矩形、菱形、正方形教案4(新版)苏科版

9.4矩形、菱形、正方形(4)【教学目标】1.掌握菱形的判定方法;2. 初步掌握说理的基本方法,发展有条理的表达能力.【重点难点】重点:菱形的判定方法.难点:学生有条理地表达.【预习导航】例1.如图,△ABC中,AD是∠BAC的平分线,DEAC,DFAB,试说明四边形AEDF是菱形例2.已知,如图,在四边形ABCD中,ADBC,对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形。
【课堂导学】1.如图,等边△ABC中,D、E、F分别是AB、BC、CA边上的中点,那么图中有_________个等边三角形,有_________个菱形.2.如图,在□ABCD中,对角线AC、BD相交于O,AO=3,BO=4,AB=5.(1) AC、BD互相垂直吗?为什么?(2)□ABCD是菱形吗?为什么?3.如图,已知点E,F,G,H分别是矩形ABCD四边的中点,判断四边形EFGH的形状,并证明你的结论。
【课堂检测】1.判断题:(1)对角线互相垂直平分的四边形是菱形。
()(2)对角线互相垂直且相等的四边形是菱形。
()(3)一个等腰三角形绕一边的中点旋转180°后与原三角形组成的四边形是菱形。
()(4)一组邻边相等且对角线互相平分的四边形是菱形。
()(5)两条对角线都分别平分一组对角的四边形是菱形。
()2.如图,矩形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.四边形OBEC是菱形吗?为什么?3.如图,△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CFBE交AD于F,连接BF、CE,求证:四边形BECF是菱形.4.如图,将矩形ABCD沿EF折叠,使点A与C重合,(1)判断四边形AECF的形状,并说明你的理由。
(2)若AB=4, BC=8 求: EF的长。
【课后巩固】5.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.。
苏科初中数学八年级下《94矩形菱形正方形》教案

教学目标:1.了解矩形、菱形和正方形的特点和性质;2.能够根据所学知识解决与矩形、菱形和正方形相关的实际问题;3.能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学重点:1.熟练掌握矩形、菱形和正方形的特点和性质;2.能够运用相关知识解决实际问题。
教学难点:能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学准备:教学PPT、教材、黑板、彩色粉笔、实物矩形、菱形和正方形模型等。
教学过程:一、导入(5分钟)1.师生问候;2.通过图片展示,复习矩形、菱形和正方形的特点和性质。
二、新课展示(10分钟)1.导入:让学生回顾矩形、菱形和正方形的特点和性质;2.激发学生思考:给学生出示一些图形,让他们判断属于矩形、菱形还是正方形,并解释自己的判断依据;3.板书:矩形、菱形和正方形的定义和特点;4.讲解各个图形的特点和性质,包括对角线、周长、面积等的计算公式;5.教师示范使用公式计算示例题;三、让学生动手操作(30分钟)1.教师出示一些实物矩形、菱形和正方形模型,让学生根据其特点和性质进行分类;2.学生自主完成教材课后练习,让学生独立思考并解答相应问题;3.教师巡回指导,发现问题并给予指正;四、合作探究(15分钟)1.教师组织学生分组合作完成一些矩形、菱形和正方形相关的课堂任务;2.学生分享自己的解题思路和方法,加深对知识的理解;五、拓展应用(15分钟)1.教师出示一些综合应用题,让学生运用所学知识解决;2.学生独立思考并解答问题,教师做出及时评价和反馈。
六、总结归纳(5分钟)1.引导学生总结矩形、菱形和正方形的特点和性质;2.学生进行知识点小结,教师进行梳理和补充;七、作业布置(2分钟)1.要求学生预习下一课内容;2.布置课后作业,巩固所学知识和方法。
教学反思通过本节课的教学设计,学生能够从实物体验入手,通过观察、分类等操作,加深对矩形、菱形和正方形的认识和理解。
通过合作探究和拓展应用,使学生能够灵活运用所学知识解决不同类型的问题,培养学生的问题解决能力和创新思维。
新苏科版八年级下册初中数学 9.4 矩形、菱形、正方形 教案
9.4 矩形、菱形、正方形(1)一、教学目标知识目标:理解矩形的概念,掌握矩形的性质.能力目标:1.经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化思想.情意目标:1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神.2.通过对矩形的探索学习,体会它的内在美和应用美.二、教学重点和难点重点:矩形的性质的理解和掌握.难点:矩形的性质的综合应用.三、教学方法:引导与自主探索相结合四、教学过程:教师活动学生活动个人修改意见一.课前预习与导学:(1)________的平行四边形叫做矩形,每一个矩形最少有______条对称轴.(2)在对称性方面,矩形与一般平行四边形相比较,相同之处是:二者都是_____对称图形.不同之处是:只有_______是_______对称图形.(3)如图3,四边形ABCD是矩形,对角线AC、BD相交于点O,CE∥DB,交A的延长线于点E,AC和CE相等吗?为什么?二.课堂学习与研讨(一)情境创设:情境1:组织学生观察教材P74节首的两幅图片.情境2:通过多媒体课件展示一些含有矩形让学生感受到特殊的平行四边形就在自己的身边,有利于激发学生的学习察:改变平行四边形活动框架形状它的边、角、对角线有怎样的变化?当∠为直角时,平行四边形变为矩形,它的2条对角线有怎样的数量关系?四个角之间有怎样的数量关系?5.给出矩形的特殊性质:矩形对角线相等,四个角都是直角。
(三)例题讲解:1.教材P75例1讲解例1要注意①引导学生探索解题途径,培养学生有条理地思考能力.②规范解答过程,培养学生有条理地表达能力.③引导学生归纳:矩形的一条对角线将矩形分成2个全等的直角三角形;矩形的2条对角线将矩形分成4个全等的等腰三角形;有关矩形的问题往往可以化为直角三角形或等腰三角形的问题来解决.2、已知,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求OF的长.(四)课堂小结:这节课你有哪些收获?还有哪些问题?(五)课堂检测:1、下面性质中,矩形不一定具有的是().引导学生思考学生归纳总结通过练习及时发现学生掌握本节知识的情况。
最新苏教版八年级数学下册9.4矩形、菱形、正方形公开课优质教案(12)
分别垂直平分 BC、AC,探索 EF 与
AB 之间地数量关系。
三、展示交流:
1.有一个角是
地平行
四边形是矩形;有___个角是直
角地四边形是矩形;对角线
地平行四边形是矩形;对角线__
______地四边形是矩形.
2.用刻度尺检查一个四边形零件
是矩形,你地方法是______
______________
_____
∠C=90°,四边形 ABCD 是矩形 预吗?为什么? 习 2.对角线相等地平行四边形是 导矩形吗?为什么? 航
如图,平行四边形 ABCD 地对角
线 AC 与 BD 相等,平
行四边形 ABCD 是矩
形吗?为什么?
_
_D
_C _B
一、概念探究
1.观察桌面、黑板面:它们是什
么四边形?如何检验 它们是矩
1.如图 1,O 为矩形 ABCD 地对角
线交点,DF 平分∠ADC 交 AC 于点
E,交 BC 于点 F,∠BDF=15°,
则∠COF=
°
2.矩形具有而一般平行四边形
不具有地特征是( )
A.对角相等; B.对边相等;
C.对角线相等; D.对角线互相
平分;
3.已 知矩形一条对角线与一边
地夹角是 40 度,则两条对角线所
课
自主
9.4 矩形、菱形、正方形(2)
题
空间
学 理解矩形地判定条件并且能应用 习 相关定理来证明矩形,知道解决矩 目 形问题地基本思想是化为三角形 标 问题来解决,掌握数学转化思想 学 矩形地判定方法地理解及综合应 习用 重 难 点
教学流程
问题:
1.有 3 个角是直角地四边形是
苏科版八年级下数学9.4矩形、菱形、正方形(2)参考教案
9.4矩形、菱形、正方形(2)【教学目标】1.理解矩形的判定定理并会用矩形的判定定理证明一个四边形(平行四边形)是矩形.2.了解两条平行线之间的距离的意义,并会求两条平行线之间的距离.3.会有条理的思考与表达,并逐步学会分析与综合的思考方法.【重、难点】重点:会用矩形的判定定理证明一个四边形(平行四边形)是矩形.难点:综合运用矩形的性质定理与判定定理进行计算与证明.【教学过程】活动1(1)矩形的四个角都是直角,反过来,四个角(或三个角)都是直角的四边形是矩形吗?如果是,请给出证明.已知:在四边形ABCD中,∠A=∠B=∠C=90°求证:四边形ABCD是矩形。
证明:∵∠A=∠B=90°∴ ∠A+∠B=180°∴AD∥BC同理可证:AB∥CD∴四边形ABCD是平行四边形又∵∠A=90°∴四边形ABCD是矩形(2)当一个平行四边形框架扭动成矩形时,它的两条对角线相等,反过来,对角线相等的平行四边形是矩形吗?如果是,请给出证明.B已知:平行四边形ABCD ,AC=BD 。
求证:四边形ABCD 是矩形。
证明: ∵ AB=CD, BC=BC, AC=BD ∴ △ABC≌ △DCB(SSS ) ∴∠ABC=∠DCB ∵ AB//CD∴ ∠ABC+∠DCB=180° ∴ ∠ABC=∠DCB=90°又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是矩形归纳矩形的判定定理:有三个角是直角的四边形是矩形 对角线相等的平行四边形是矩形 。
例题讲解:例 1.已知:如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,DE 、DF 分别是△BDC 、△ADC 的角平分线.求证:四边形DECF 证明:∵∠ACB=90°,D 是AB 的中点,∴DC= AB=DA=DB∵ DC=DA,DF 平分∠ADC, ∴DF⊥AC 即∠DFC=90° 同理∠DEC=90 °∴四边形DECF 是矩形(三个角是直角的四边形是矩形)例2.如图,直线1l ∥2l ,A 、C 是直线1l 上任意两点,AB ⊥2l ,CD ⊥2l ,垂足分21A DB Cl 2l 1 别为B 、D .线段AB 、CD 相等吗?为什么? 解:由AB ⊥l 2 ,CD ⊥ l 2 , 可知AB ∥ CD. 又因为l 1∥l 2 , 所以四边形ABCD 是矩形, AB=CD .两条平行线之间的距离处处相等.【反馈练习】1. 下面说法正确的是 ( ) A .有一个角是直角的四边形是矩形; B .有两条对角线相等四边形是矩形;C .有一组对边平行,有一个内角是直角的四边形是矩形;D .有两组对角分别相等,且有一个角是直角的四边形是矩形.2.矩形的两条对角线的夹角为120°,矩形的宽为3,则矩形的面积为__________.3.如图所示,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下面的结论:①△ODC 是等边三角形;②BC =2AB ;③∠AOE =135°;④S △AOE =S △COE 其中正确的结论有 ( )A .1个B .2个C .3个D .4个4.已知:四边形ABCD 中,AB =CD ,∠A+∠D=180°,AC 、BD 相交于点O ,△AOB 是等边三角形.求证:四边形ABCD 是矩形.5. 如图,在△AB C 中,点O 是AC 边上的一动点, 过点O作直线MN//BC, 设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【教学反思】AEB CFO N MD。
苏科版数学八年级下册9.4《矩形、菱形、正方形》说课稿2
苏科版数学八年级下册9.4《矩形、菱形、正方形》说课稿2一. 教材分析苏科版数学八年级下册9.4《矩形、菱形、正方形》是学生在学习了平面几何基本概念和性质之后的内容。
这部分内容主要介绍了矩形、菱形、正方形的性质和判定。
通过这部分的学习,学生可以进一步理解和掌握平面几何中的基本形状和性质,为后续的学习打下坚实的基础。
二. 学情分析学生在学习这部分内容时,已经具备了一定的几何基础,对平面几何的基本概念和性质有一定的了解。
但同时,学生对这部分内容的掌握程度参差不齐,部分学生可能对矩形、菱形、正方形的性质和判定不够清晰。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行讲解和辅导。
三. 说教学目标1.知识与技能:学生能够理解和掌握矩形、菱形、正方形的性质和判定方法。
2.过程与方法:学生能够通过观察、分析和推理,探索矩形、菱形、正方形的性质。
3.情感态度与价值观:学生能够培养对数学的兴趣,提高独立思考和解决问题的能力。
四. 说教学重难点1.教学重点:矩形、菱形、正方形的性质和判定方法。
2.教学难点:矩形、菱形、正方形性质的推理和证明。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法和小组合作法进行教学。
2.教学手段:利用多媒体课件、几何模型和黑板进行教学。
六. 说教学过程1.导入:通过复习平面几何的基本概念和性质,引出矩形、菱形、正方形的学习。
2.新课讲解:讲解矩形、菱形、正方形的性质和判定方法,结合实例进行分析。
3.课堂练习:学生进行练习,巩固所学知识。
4.小组讨论:学生分组讨论,探索矩形、菱形、正方形的性质。
5.总结讲解:对学生的讨论进行总结,讲解矩形、菱形、正方形性质的推理和证明。
6.课堂小结:对本节课的内容进行总结,强调重点和难点。
七. 说板书设计板书设计如下:1.矩形、菱形、正方形的性质–矩形:对边平行且相等,对角相等–菱形:四边相等,对角相等–正方形:四边相等,对角相等,对边平行且相等2.矩形、菱形、正方形的判定方法–矩形:对边平行且相等,对角相等–菱形:四边相等,对角相等–正方形:四边相等,对角相等,对边平行且相等八. 说教学评价教学评价主要通过课堂练习、小组讨论和课后作业进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.4 矩形、菱形、正方形第2课时
一、教学目标:
知识目标:1.理解掌握矩形的判定条件.
2.提高矩形的判定在实际生活中的应用能力..
能力目标:1.经历探索矩形的判定条件的过程,通过实际生活的例证和简单的说理过程发学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法.
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化思想.
情意目标:1.通过实际生活的例证,加深对矩形的的认识,并以此激发学生的探索精神.
2.通过对矩形判定条件的探索学习,体会它的内在美和应用美.
二、教学重点难点:.重点:矩形的判定方法的理解和掌握.
难点:矩形的判定方法的综合应用.
三、教学方法:引导与自主探索相结合
四、教学过程:
四、板书设计:
9.4矩形、菱形、正方形(2)
矩形的判定:例题学生板演区
例1、例2
五、教后感:。