八年级下册数学菱形教案

合集下载

人教版数学八年级下册18.2.2菱形菱形的性质优秀教学案例

人教版数学八年级下册18.2.2菱形菱形的性质优秀教学案例
(三)学生小组讨论
1.教师将学生分成小组,让他们合作探究菱形的性质。
2.教师设计具有探究性的任务,如让学生通过实际操作,发现菱形的性质,培养学生的合作意识和沟通能力。
3.教师引导学生进行小组讨论,分享他们的发现和思考,让学生在交流中互相启发,提高他们的解决问题的能力。
(四)总结归纳
1.教师引导学生总结菱形的性质,如对角线互相垂直平分、四条边相等。
3.教师设计具有挑战性的问题,如“如何判定一个四边形是菱形?如何计算菱形的面积?”引导学生进行深入思考,提高他们的解决问题的能力。
(三)小组合作
1.教师将学生分成小组,让他们在小组内进行合作交流,共同探究菱形的性质。
2.教师设计具有探究性的任务,如让学生通过实际操作,发现菱形的性质,培养学生的合作意识和沟通能力。
3.教师引导学生进行小组讨论,分享他们的发现和思考,让学生在交流中互相启发,提高他们的解决问题的能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习菱形的过程中遇到了哪些问题?我是如何解决的?”
2.教师设计评价量表,让学生对自己的学习成果进行评价,如对菱形的性质的理解程度、解决问题的能力等。
教学案例以小组合作探究的形式展开,让学生在动手实践、合作交流的过程中,发现菱形的性质,体会数学的乐趣。同时,结合生活实际,让学生感受菱形在生活中的应用,提高他们的实践能力。在教学过程中,我注重启发诱导,让学生循序渐进地掌握菱形的性质,培养他们的逻辑思维能力。
本节课结束后,学生对菱形的性质有了更加深刻的理解,教学效果显著。在接下来的学习中,他们将更好地应用菱形的性质,解决实际问题,为后续学习打下坚实基础。
3.教师提出问题:“什么是菱形?你们认为菱形有哪些性质?”让学生猜测和思考,激发他们的学习兴趣。

八年级数学下册《菱形的性质定理》教案、教学设计

八年级数学下册《菱形的性质定理》教案、教学设计
4.阅读拓展资料《菱形在建筑和艺术中的应用》,了解菱形在实际生活中的应用案例,并撰写一篇300字左右的心得体会,谈谈你对菱形在现实世界中作用的认识。
5.与家长共同探讨菱形在生活中的应用,请家长协助拍摄一些含有菱形元素的照片或视频,并简要说明菱形在这些实例中的作用。
作业要求:
1.请同学们按时完成作业,保持书写工整、清晰,便于老师批改和同学们互相学习。
1.老师出示一些生活中的实物图片,如菱形形状的瓷砖、首饰、风筝等,让学生观察并思考这些图形的特点。
2.学生分享观察到的特点,如四条边相等、对角线互相垂直等。
3.老师引导学生总结出菱形的基本特征,为新课的学习做好铺垫。
4.提出问题:“我们已经学过平行四边形,那么菱形与平行四边形有什么关系呢?今天我们将进一步学习菱形的性质定理。”
(二)教学设想
1.引入新课:
-通过生活中的实例,如菱形图案的设计,引出菱形的概念,激发学生的学习兴趣。
-利用多媒体展示不同形状的菱形,让学生观察并发现菱形的特征,为新课的学习做好铺垫。
2.探究新知:
-采用小组合作的方式验证菱形的性质定理。
-设计具有启发性的问题,引导学生思考,如“为什么菱形的对角线会互相垂直平分?”、“如何运用菱形的性质解决面积和周长问题?”等,帮助学生深入理解性质定理。
3.知识巩固:
-设计不同难度的例题和练习题,让学生在课堂上即时巩固所学知识,提高应用能力。
-通过变式题目的训练,培养学生的发散思维和创新能力,加深对菱形性质定理的理解。
4.方法指导:
-教会学生运用数形结合、分类讨论等方法,解决与菱形相关的综合问题。
-引导学生总结解题技巧,形成解题策略,提高解决问题的能力。
2.学生分享学习心得,总结自己在学习过程中遇到的困难和解决方法。

《菱形》数学教案

《菱形》数学教案

《菱形》数学教案
标题:《菱形》数学教案
一、教学目标
(1)知识与技能:理解并掌握菱形的概念,性质以及判定方法。

(2)过程与方法:通过观察、实验、猜想、证明等活动,培养学生的逻辑思维能力和空间想象能力。

(3)情感态度价值观:激发学生对几何学的兴趣,提高他们的学习积极性。

二、教学重点难点
(1)重点:菱形的性质和判定方法。

(2)难点:理解和运用菱形的性质和判定方法。

三、教学过程
1. 导入新课:
教师可以通过展示一些生活中的菱形图案,引导学生思考这些图案有什么共同特点,从而引出菱形的概念。

2. 新课讲解:
(1)定义:四边都相等的平行四边形叫做菱形。

(2)性质:
- 对角线互相平分;
- 对角线互相垂直;
- 对角线平分一组对角。

(3)判定:
- 四边都相等的四边形是菱形;
- 对角线互相垂直的平行四边形是菱形;
- 对角线互相平分的一组对角的四边形是菱形。

在讲解过程中,教师可以通过举例、画图、做实验等方式,帮助学生理解和记忆。

3. 课堂练习:
设计一些相关的习题,让学生自己尝试解答,以此检验他们是否真正掌握了菱形的知识。

4. 小结:
回顾本节课的主要内容,强调菱形的重要性质和判定方法。

5. 布置作业:
设计一些关于菱形的题目,让学生在课后继续巩固和深化所学知识。

四、教学反思:
总结本节课的教学效果,分析存在的问题,提出改进措施。

八年级数学下册 菱形的性质教案

八年级数学下册 菱形的性质教案

18.2.2菱形第1课时菱形的性质1.掌握的定义和性质及菱形面积的求法;(重点)2.灵活运用菱形的性质解决问题.(难点)一、情境导入将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形呢?这就是另一类特殊的平行四边形,即菱形.二、合作探究探究点一:菱形的性质【类型一】利用菱形的性质证明线段相等如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F.求证:CE=CF.解析:连接AC.根据菱形的性质可得AC平分∠DAB,再根据角平分线的性质可得CE=FC.证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAB.∵CE⊥AB,CF⊥AD,∴CE=CF.方法总结:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.【类型二】利用菱形的性质进行有关的计算如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm.过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.解析:(1)在直角三角形OCD中,利用勾股定理即可求解;(2)利用矩形的定义即可证明四边形OBEC为矩形,再利用矩形的面积公式即可直接求解.解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在直角三角形OCD中,OC=CD2-OD2=52-32=4(cm);(2)∵CE∥DB,BE∥AC,∴四边形OBEC为平行四边形.又∵AC⊥BD,即∠COB=90°,∴平行四边形OBEC为矩形.∵OB=OD,∴S矩形OBEC=OB·OC=4×3=12(cm2).方法总结:菱形的对角线互相垂直,则菱形对角线将菱形分成四个直角三角形,所以可以利用勾股定理解决一些计算问题.【类型三】运用菱形的性质证明角相等如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO =∠DCO .解析:根据“菱形的对角线互相平分”可得OD =OB ,再根据“直角三角形斜边上的中线等于斜边的一半”可得OH =OB ,∠OHB =∠OBH ,根据“两直线平行,内错角相等”求出∠OBH =∠ODC ,然后根据“等角的余角相等”证明即可.证明:∵四边形ABCD是菱形,∴OD =OB ,∠COD =90°.∵DH ⊥AB ,∴OH =12BD =OB ,∴∠OHB =∠OBH .又∵AB ∥CD ,∴∠OBH =∠ODC ,∴∠OHB =∠ODC .在Rt △COD 中,∠ODC +∠DCO =90°.在Rt △DHB 中,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .方法总结:本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.【类型四】 运用菱形的性质解决探究性问题感知:如图①,在菱形ABCD 中,AB =BD ,点E 、F 分别在边AB 、AD 上.若AE =DF ,易知△ADE ≌△DBF .探究:如图②,在菱形ABCD 中,AB =BD ,点E 、F 分别在BA 、AD 的延长线上.若AE =DF ,△ADE 与△DBF 是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在▱ABCD 中,AD =BD ,点O 是AD 边的垂直平分线与BD 的交点,点E 、F 分别在OA 、AD 的延长线上.若AE =DF ,∠ADB =50°,∠AFB =32°,求∠ADE 的度数.解析:探究:△ADE 与△DBF 全等,利用菱形的性质首先证明三角形ABD 为等边三角形,再利用全等三角形的判定方法即可证明△ADE ≌△DBF ;拓展:因为点O 在AD 的垂直平分线上,所以OA =OD ,再通过证明△ADE ≌△DBF ,利用全等三角形的性质即可求出∠ADE 的度数.解:探究:△ADE 与△DBF 全等.∵四边形ABCD 是菱形,∴AB =AD .∵AB =BD ,∴AB =AD =BD ,∴△ABD 为等边三角形,∴∠DAB =∠ADB =60°,∴∠EAD =∠FDB =120°.∵AE =DF ,∴△ADE ≌△DBF ;拓展:∵点O 在AD 的垂直平分线上,∴OA =OD .∴∠DAO =∠ADB =50°,∴∠EAD =∠FDB =130°.∵AE =DF ,AD =DB ,∴△ADE ≌△DBF ,∴∠DEA =∠AFB =32°,∴∠EDA =∠OAD -∠DEA =18°.方法总结:本题考查了菱形的性质、等边三角形的判定和性质以及全等三角形的判定和性质的综合运用,解题时一定要熟悉相关的基础知识并进行联想.探究点二:菱形的面积已知菱形ABCD 中,对角线AC与BD 相交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( )A .163B .83C .43D .8解析:∵四边形ABCD 是菱形,∴AB =BC ,OA =12AC =2,OB =12BD ,AC ⊥BD ,∠BAD +∠ABC =180°.∵∠BAD =120°,∴∠ABC =60°,∴△ABC 是等边三角形,∴AB=AC=4,∴OB=AB2-OA2=42-22=23,∴BD=2OB=43,∴S菱形ABCD=12AC·BD=12×4×43=8 3.故选B.方法总结:菱形的面积有三种计算方法:①将其看成平行四边形,用底与高的积来求;②对角线分得的四个全等三角形面积之和;③两条对角线的乘积的一半.三、板书设计1.菱形的性质菱形的四边条都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.2.菱形的面积S菱形=边长×对应高=12ab(a,b分别是两条对角线的长)通过剪纸活动让学生主动探索菱形的性质,大多数学生能全部得到结论,少数需要教师加以引导.但是学生得到的结论,有一些是他们的猜想,是否正确还需要证明,因此问题就上升到证明这个环节.在整个新知生成过程中,探究活动起了重要的作用.课堂中学生始终处于观察、比较、概括、总结和积极思维状态,切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础,更增强了敢于实践,勇于探索,不断创新和努力学习数学知识的信心和勇气.。

人教版八年级下册数学第2课时 菱形的判定教案

人教版八年级下册数学第2课时 菱形的判定教案

第2课时菱形的判定教学设计课题菱形的判定授课人素养目标 1.理解并掌握菱形的判定方法,体会类比数学思想方法的作用.2.引导学生从边和对角线探究菱形的判定定理,养成主动探索的学习习惯.3.运用菱形的判定方法进行证明或计算,发展学生的推理能力.教学重点菱形的判定方法的理解与应用.教学难点菱形的判定定理与性质定理的区别和联系教学活动教学步骤师生活动活动一:类比推理,导入新课设计意图通过类比学习,激发学生的好奇心和求知欲,引入本节课要研究的内容.【类比导入】前面我们学习平行四边形和矩形时,都可以用性质得出相应的判定,那么我们学习菱形的判定时是否也可以反推菱形的性质来得到它的判定呢?我们大家一起来尝试一下吧!【教学建议】引导学生进行类比、思考、分析,由平行四边形和矩形的判定推断菱形的判定,并回忆上一课时菱形的概念.活动二:动手验证,探究新知设计意图通过图形的变化,让学生感受四边形是菱形时对角线的特征,引导学生得出菱形的判定方法.探究点1对角线互相垂直的平行四边形是菱形如图,用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?它是什么四边形?答:这个四边形的对角线总是互相平分,它是平行四边形.(2)继续转动木条,观察橡皮筋围成的四边形什么时候变成菱形?答:当这个四边形的对角线互相垂直时变成菱形.猜想:对角线互相垂直的平行四边形是菱形.【教学建议】让学生动手实践得到菱形的判定方法,教师注意提醒学生:这里对角线互相垂直的前提条件是在平行四边形内,如果是一般的四边形,则应教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.下面我们来进行验证:已知:如图,在ABCD 中,对角线AC ,BD 相交于点O ,且BD ⊥AC.求证:ABCD 是菱形.证明:∵四边形ABCD 是平行四边形,∴AO =CO.∵BD ⊥AC ,∴AB =BC(线段垂直平分线上的点到这条线段两个端点的距离相等).∴ABCD 是菱形.归纳总结:对角线互相垂直的平行四边形是菱形.几何语言:∵四边形ABCD 是平行四边形,且AC ⊥BD ,∴ABCD 是菱形.例1(教材P 57例4)如图,ABCD 的对角线AC ,BD 交于点O ,且AB =5,AO =4,BO =3.求证:ABCD 是菱形.证明:∵AB =5,AO =4,BO =3,∴AB 2=AO 2+BO 2,∴∠AOB =90°.∴AC ⊥BD ,∴ABCD 是菱形.【对应训练】1.如图,在ABCD 中,对角线AC 与BD 交于点O ,若添加一个条件,可推出ABCD 是菱形,则该条件可以是(C )A.AB =AC B .AC =BD C.AC ⊥BD D .AB ⊥AC2.教材P58练习第2题.探究点2四条边相等的四边形是菱形老师拿四根长度一样的新粉笔,首尾顺次相接拼成一个四边形,在黑板上画出相应的图形并标上字母(如图),得到的四边形ABCD 是菱形吗?是猜想:四条边相等的四边形是菱形.下面我们来进行验证:如图,在四边形ABCD 中,AB =BC =CD =AD.求证:四边形ABCD 是菱形.证明:∵AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形.又AB =BC ,∴四边形ABCD 是菱形.归纳总结:四条边相等的四边形是菱形.几何语言:∵AB =BC =CD =AD ,∴四边形ABCD 是菱形.【对应训练】1.如图,在矩形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,AD =BC ,AB =CD.满足对角线互相垂直且平分.【教学建议】提醒学生:若已知邻边相等,要证明这个四边形是菱形,可用两种方法:(1)先证明这个四边形是平行四边形,再利用邻边相等得到菱形;(2)直接证明四条边都相等.教学步骤师生活动∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴AH =DH =BF =CF ,AE =BE =CG =DG.∴△AHE ≌△BFE ≌△CFG ≌△DHG(SAS),∴HE =FE =FG =HG ,∴四边形EFGH 是菱形.2.教材P58练习第3题.活动三:综合运用,巩固提升设计意图巩固学生对菱形的判定的认识.例2如图,在ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF于点O ,交BC 于点E ,连接EF.(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,CE =3,求ABCD 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AO =EO ,AD ∥BC ,∴∠EBF =∠AFB.∵BF 平分∠ABC ,∴∠ABF =∠EBF ,∴∠ABF =∠AFB ,∴AB =AF.∵BO ⊥AE ,AO =EO ,∴AB =EB ,∴BE =AF.∵BE ∥AF ,∴四边形ABEF 是平行四边形.又AB =AF ,∴ABEF 是菱形.(2)解:如图,过点F 作FG ⊥BC 于点G.∵四边形ABEF 是菱形,AE =6,BF =8,OE =12AE =3,OB =12BF=4.在Rt △BOE 中,BE =OB 2+OE 2=42+32=5.∵S 菱形ABEF =12AE·BF =BE·FG ,∴12×6×8=5FG ,∴FG =245.∵BC =BE +CE =5+3=8,∴SABCD =BC·FG =8×245=1925.【教学建议】学生独立思考并完成例题,教师点评.提醒学生注意:(1)已知角方面的条件可考虑利用其得到边的相等关系,为证明菱形创造条件;(2)进行第(2)问计算时,求ABCD 的面积,可利用第(1)问的结论,先由菱形的两种面积计算方法求得关键的线段长.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:菱形的判定方法有哪几种?矩形和菱形小结:【知识结构】【作业布置】1.教材P 60习题18.2第6,10题.2.相应课时训练.教学步骤师生活动板书设计18.2.2菱形第2课时菱形的判定解题方法:根据题设条件灵活选择菱形的判定方法.(1)用边来判定:①先说明四边形是平行四边形,再说明有一组邻边相等;②说明四边形的四条边都相等.(2)用对角线进行判定:①先说明四边形是平行四边形,再说明四边形的对角线互相垂直;②说明四边形的对角线互相垂直平分.注意:对角线垂直的四边形不一定是菱形,必须是对角线互相垂直的平行四边形才是菱形.例1如图,四边形ABCD 是平行四边形,DE ∥BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF.(1)求证:AE =CF ;(2)若BE =DE ,求证:四边形EBFD 为菱形.证明:(1)∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF.∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB.在△ADE 和△CBF中,∠DAE =∠BCF ,∠AED =∠CFB ,AD =CB ,∴△ADE ≌△CBF(AAS ),∴AE =CF.(2)由(1)知△ADE ≌△CBF ,∴DE =BF.∵DE ∥BF ,∴四边形EBFD 是平行四边形.又BE =DE ,∴四边形EBFD 为菱形.例2如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB ,DC 于点E ,F ,连接AF ,CE.(1)若OE =32,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AO =CO ,∴∠FCO =∠EAO.在△AOE 和△COF 中,∠FCO =∠EAO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ).∴OE =OF =32,∴EF =2OE =3.(2)四边形AECF 是菱形.理由:∵△AOE ≌△COF ,∴AE =CF.∵AE ∥CF ,∴四边形AECF 是平行四边形.1.菱形的概念.2.菱形的判定定理1.3.菱形的判定定理2.教学反思新课导入时让学生动手制作菱形,感知菱形判定的条件,让学生在轻松愉快的氛围中自然、水到渠成地得到菱形的判定定理.在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.又EF ⊥AC ,∴四边形AECF 是菱形.例1如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,AB =3,AC =2,则四边形ABCD 的面积为(A )A .42B .62C .82D .5解析:如图,过点A 分别作AE ⊥CD 于点E ,AF ⊥BC 于点F ,连接BD 交AC 于点O.∵两条纸条宽度相同,∴AE =AF.∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ABCD =BC·AF =CD·AE ,AE =AF ,∴BC =CD ,∴四边形ABCD 是菱形.∴AO =CO =12AC =12×2=1,BO =DO ,AC ⊥BD.∴BO =AB 2-AO 2=32-12=22,∴BD =4 2.∴四边形ABCD 的面积=12BD·AC =12×42×2=42.故选A .例2如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB的延长线上,且DE =BF ,连接AE ,CF.(1)求证:△ADE ≌△CBF ;(2)连接AF ,CE.当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD =CB.∴∠ADB =∠CBD ,∴∠ADE =∠CBF.在△ADE 和△CBF =CB ,ADE =∠CBF ,=BF ,∴△ADE ≌△CBF(SAS ).(2)解:当BD 平分∠ABC 时,四边形AFCE 是菱形.理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD.∴∠ABD =∠ADB ,∴AB =AD ,∴ABCD 是菱形.∴AC ⊥BD ,∴AC ⊥EF.∵DE =BF ,∴OE =OF.又OA =OC ,∴四边形AFCE 是平行四边形.∵AC ⊥EF ,∴四边形AFCE 是菱形.。

人教版八年级数学下册18.2.2《菱形的性质》优秀教学案例

人教版八年级数学下册18.2.2《菱形的性质》优秀教学案例
在教学过程中,我以教材为依据,结合学生实际情况,设计了丰富的教学活动。首先,我通过展示实物模型,让学生直观地感受菱形的特征,激发学生的学习兴趣。接着,我引导学生运用已有知识,发现并证明菱形的性质。在探究过程中,我鼓励学生分组讨论,培养学生的团队协作精神。最后,我通过拓展练习,让学生将所学知识应用于实际问题,提高学生的解决问题的能力。
3.组织学生进行小组讨论,培养学生的团队合作精神,提高学生的沟通表达能力。
4.通过解决实际问题,培养学生将所学知识应用于实际的能力,提高学生的解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生对菱形性质探究的热情,增强学生学习数学的积极性。
2.培养学生勇于探究、勇于实践的精神,鼓励学生在面对问题时,积极寻找解决办法。
(二)讲授新知
在学生掌握了菱形的定义和平行四边形的性质后,我开始讲授菱形的性质。我通过多媒体展示不同形状的菱形,引导学生观察和发现菱形的性质。在讲授过程中,我注重引导学生参与其中,让学生自己发现并证明菱形的性质。例如,我让学生观察菱形的对角线,引导学生发现对角线互相垂直平分的性质。在讲授过程中,我注意用生动的语言和形象的手势,使学生更好地理解和记忆菱形的性质。
人教版八年级数学下册18.2.2《菱形的性质》优秀教学案例
一、案例背景
本节教学案例围绕人教版八年级数学下册18.2.2《菱形的性质》展开。在学习了平行四边形的性质之后,学生已经掌握了菱形的概念,但对于菱形的性质及其在实际问题中的应用尚不清晰。因此,本节课旨在通过引导学生探究菱形的性质,提高学生的动手操作能力、观察能力及推理能力,培养学生的逻辑思维和空间想象能力。
(四)反思与评价
在课程结束后,我组织学生进行反思和评价。首先,让学生总结自己在课堂上所学到的知识,反思自己在学习过程中的优点和不足。然后,让学生互相评价,分享彼此的收获和感悟。最后,我对学生的表现进行点评,给予肯定和鼓励,同时提出改进意见。

八年级数学下册《菱形的性质》教案、教学设计

八年级数学下册《菱形的性质》教案、教学设计
4.介绍菱形面积的计算方法,并解释如何利用对角线长度求解。
5.结合实际例子,讲解菱形性质在解决几何问题中的应用。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行以下活动:
1.将学生分成小组,每个小组讨论一个特定的问题或性质,如菱形对角线的性质、面积计算方法等。
2.小组内部分工合作,共同完成性质探究和问题解答。
(二)讲授新知
在讲授新知环节,我将系统地介绍菱形的性质,并采取以下步骤:
1.明确菱形的定义,即四边相等的四边形,并强调这个特点。
2.通过动态几何软件或实物演示,展示菱形的对角线如何垂直平分,让学生直观理解这一性质。
3.引导学生通过观察和推理,发现菱形的其他性质,如对角线互相平分、对角线交点为菱形对角线的中点等。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,使他们积极主动地参与课堂活动,形成良好的学习习惯。
2.培养学生勇于探究、善于合作的精神,使他们学会在团队中发挥自己的作用。
3.引导学生体会数学的简洁美、逻辑美,培养他们的审美情趣。
4.通过菱形的学习,使学生认识到数学知识在现实生活中的广泛应用,增强他们的社会责任感和创新意识。
八年级数学下册《菱形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解菱形的定义,掌握菱形的性质,能够准确识别并绘制菱形。
2.使学生掌握菱形的对角线特点,如对角线互相垂直平分,以及四边形对角线长度关系。
3.培养学生运用菱形性质解决实际问题的能力,如计算菱形的面积、周长等。
4.引导学生运用数学符号和术语,准确表达菱形的相关性质和计算过程。
6.适时进行课堂小结,巩固学生对菱形性质的理解。通过师生共同总结,帮助学生梳理所学知识,形成完整的知识结构。

菱形的判定-人教版八年级数学下册教案

菱形的判定-人教版八年级数学下册教案

菱形的判定-人教版八年级数学下册教案
一、教学目标
1.了解菱形的定义和性质;
2.学会根据菱形的性质判定一个图形是否为菱形;
3.能够利用菱形的性质解决一些实际问题。

二、教学重点和难点
1.教学重点:菱形的定义和性质;
2.教学难点:根据菱形的性质判定一个图形是否为菱形。

三、教学内容及安排
第一课时
1. 教学内容
1.通过探究发现菱形的定义和性质;
2.初步学会利用菱形的性质判定一个图形是否为菱形。

2. 教学安排
1.通过引导学生观察和实践,让他们自己发现什么是菱形;
2.学生们通过讨论归纳出菱形的定义和性质;
3.老师讲解菱形的定义,让学生进一步理解和巩固;
4.根据已经掌握的知识,通过判定图形是否对称来让学生初步学会利用菱形的性质判定一个图形是否为菱形。

第二课时
1. 教学内容
1.完善菱形的定义和性质;
2.学会更加准确地判定一个图形是否为菱形。

2. 教学安排
1.老师讲解完善菱形的定义和性质;
2.通过实例让学生更加准确地判定一个图形是否为菱形;
3.让学生自己找一些实际问题并利用菱形的性质解决。

四、教学方法
1.探究式学习;
2.合作学习;
3.讲解与演示。

五、教学评价
1.学生能够准确地定义和描述什么是菱形;
2.学生能够根据菱形的性质准确地判定一个图形是否为菱形;
3.学生能够利用菱形的性质解决一些实际问题;
4.学生能够在小组中合作学习,提高团队协作能力。

六、拓展学习
1.制作一个关于菱形的知识卡片;
2.在日常观察中寻找菱形;
3.使用菱形布置一些数学题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学菱形教案
菱形
教学目标:
1、理解并掌握菱形的定义,知道菱形与平行四边形的关系.
3、经历探索菱形的性质和基本概念的过程,在操作、观察、分
析过程中发展学生的思维意识,体会几何证明的基本方法.教学重点:菱形的定义及性质.
教学难点:
菱形的性质及其应用.
教学过程:
一、由平行四边形引入菱形1(1)(2)∠BAD=∠BCD,∠ABC=∠ADC;
B(3)OA=OC,OB=OD.
2、菱形的引入
3、生活中的菱形举例:
门窗的窗格,美丽的中国结,伸缩的衣帽架等.
二、菱形的性质
1、问题引入:
从菱形的定义我们知道,菱形是平行四边形,所以它具有平行四边形的所有性质.由于它的一组邻边相等,它是否具有平行四边形不
具有的特殊性质呢?
归纳:
菱形的性质1:菱形的四条边都相等.
(1)量一量:验证菱形的性质1
(2)小组合作,教师引导,学生自主合作发现菱形的对角线的特殊性质.
(3)全班归纳:
①菱形是轴对称图形,它的对称轴是它的对角线所在的直线;②菱形的两条对角线互相垂直.
数学语言:∵ABCD是菱形
∴AC⊥BD.
③菱形的每一条对角线平分一组对角.数学语言:(例)∵ABCD是菱形
∴∠BAC=∠DAC.(4)证明菱形的性质
总结归纳:菱形的对角线把菱形分成了四个全等的直角三角形,而平行四边形通常只能被分成两对全等的三角形.三、菱形性质的应用举例
例:如图,菱形花坛ABCD边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC、BD.求两条小路的长(结果保留小数点
课堂练习
1A.对角线互相平分B.对边平行C.对角相等D.对角线互相垂直
2、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别是.
3、已知菱形的两条对角线长分别是6、8,则其周长是,面积是.
4、菱形ABCD中,E、F分别是CB、CD上的点,CE=CF.求证:
∠AEF=∠AFE.
课堂小结
1、菱形:有一组邻边相等的平行四边形是菱形.
2、菱形的性质:。

相关文档
最新文档