不等式习题1
新七年级数学下册第九章《不等式与不等式组》检测试题及答案(1)

人教版七年级数学下册单元提高训练:第九章不等式与不等式组一、填空题。
1.如图所示,A ,B ,C ,D 四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为 .2.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 . 3.已知关于x ,y 的方程组的解满足不等式x +y >3,则a 的取值范围是 . 4.已知关于x 的不等式组有且只有三个整数解,则a 的取值范围是 . 二、选择题5.下列说法不一定成立的是( )A. 若a>b ,则a +c>b +cB. 若a +c>b +c ,则a>bC. 若a>b ,则ac 2>bc 2D. 若ac 2>bc 2,则a>b6.如图是关于x 的不等式2x -a ≤-1的解集,则a 的取值是( )A. a ≤-1B. a ≤-2C. a =-1D. a =-2 7.下列解不等式2+x 3>2x -15的过程中,出现错误的一步是( ) ①去分母,得5(x +2)>3(2x -1); ②去括号,得5x +10>6x -3; ③移项,得5x -6x >-10-3;④合并同类项、系数化为1,得x >13.A. ①B. ②C. ③D. ④ 8.不等式组的解集表示在数轴上正确的是( )9.在关于x ,y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )10.若不等式组2x -1>3(x -1),x<m 的解集是x <2,则m 的取值范围是( ) A. m =2 B. m >2 C. m <2 D. m ≥2 11.如果关于x 的不等式组无解,那么m 的取值范围为( )A. m ≤-1B. m <-1C. -1<m ≤0D. -1≤m <0 12.若关于x 的不等式组的解集中至少有5个整数解,则正数a 的最小值是( )A. 3B. 2C. 1D. 2313.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为( ) A. 60 B. 70 C. 80 D. 9014.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x 千米,出租车费为21元,那么x 的最大值是( ) A. 11 B. 8 C. 7 D. 5 三、解答题。
人教A版必修一基本不等式同步练习题(含答案及解析)

人教A 版必修一基本不等式同步练习题一 选择题1.已知a >b >0,全集为R ,集合M =,N =,P =,则M ,N ,P 满足( )A .P =M ∩(∁R N )B .P =(∁R M )∩NC .P =M ∪ND .P =M ∩N2.若a >0,b >0,且a ≠b ,则( ) A .<<B .<< C .<<D .<<3.若x >0,y >0,且x+y =S ,xy =P ,则下列说法中正确的是( ) A .当且仅当x =y 时S 有最小值2B .当且仅当x =y 时P 有最大值C .当且仅当P 为定值时S 有最小值2D .若S 为定值,当且仅当x =y 时P 有最大值4.设正实数x ,y ,z 满足x 2﹣3xy+4y 2﹣z =0.则当取得最大值时,的最大值为( )A .0B .1C .D .35.已知m ,n ∈R ,m 2+n 2=100,则mn 的最大值是( )A .100B .50C .20D .10 6.下列推导过程,正确的为( )A .因为a 、b 为正实数,所以22a =•≥+a b b a a b bB .因为x ∈R ,所以1112 +xC .a <0,所以4424=•≥+a aa a D .因为x 、y ∈R ,xy <0,所以2)()(2)()(x -=-•--≤⎥⎦⎤⎢⎣⎡-+--=+x yy x x y yx x x y 7.已知a >0,b >0,若不等式恒成立,则m 的最大值为( ) A .9 B .12 C .16 D .10 8.若实数x ,y 满足2x+y =1,则x •y 的最大值为( ) A .1B .C .D .9.若正实数a ,b 满足a+b =1,则下列选项中正确的是( ) A .ab 有最大值B .+有最小值C .+有最小值4D .a 2+b 2有最小值10已知0<x <4,则的最小值为( )A .2 B .3C .4D .8二 填空题11.函数f (x )=a x ﹣1﹣2(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx ﹣ny ﹣1=0上,其中m >0,n >0,则+的最小值为 .12.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为 千米时,运费与仓储费之和最小,最小值为 万元.13.已知直角三角形ABC的三内角A,B,C的对边分别为a,b,c,,且不等式恒成立,则实数m的最大值是.14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中卷第九勾股中记载:“今有邑,东西七里,南北九里,各中开门.出东门一十五里有木.问出南门几何步而见木?”其算法为:东门南到城角的步数,乘南门东到城角的步数,乘积作被除数,以树距离东门的步数作除数,被除数除以除数得结果,即出南门x里见到树,则.若一小城,如图所示,出东门1200步有树,出南门750步能见到此树,则该小城的周长的最小值为(注:1里=300步)里.15.已知a,b∈R+,且a+b++=5,则a+b的取值范围是.16.已知x、y都为正数,且x+y=4,若不等式恒成立,则实数m的取值范围是.17.如果一个直角三角形的斜边长等于5,那么这个直角三角形的面积的最大值等于.18.一批物资随51辆汽车从某市以vkm/h的速度匀速直达灾区,已知两地公路线长400km,为了安全起见,两辆汽车的间距不得小于km,那么这批物资全部到达灾区,最少需要h.19.若正实数x,y满足2x+y+6=xy,则xy的最小值是.20.若实数x,y满足x2+y2+xy=1,则x+y的最大值是.三解答题21.已知a,b,c均为正实数,求证:若a+b+c=3,则.22.已知a,b,c∈R,满足a>b>c.(1)求证:;(2)现推广:把的分子改为另一个大于1的正整数p,使对任意a>b>c恒成立,试写出一个p,并证明之.23.已知0<x<1,则x(4﹣3x)取得最大值时x的值为多少?24.已知,求函数的最大值.25.函数的最小值为多少?26.求下列函数的最值.(1)求函数的最小值;(2)若正数x,y满足x+3y=5xy,求3x+4y的最小值.27.若x,y为正实数,且2x+8y﹣xy=0,求x+y的最小值.28.若﹣4<x<1,求的最大值.29.若x>0,求函数y=x+的最小值,并求此时x的值.30.设0<x<,求函数y=4x(3﹣2x)的最大值.31.已知x>2,求x+的最小值.32.x>0,y>0且=1,求x+y的最小值.33.已知x∈(0,+∞),求的最大值.34.某厂家拟在2013年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足(k为常数),如果不搞促销活动,则该产品的年销售量是1万件.已知2013年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2013年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大?35.如图,徐州某居民小区要建一座八边形的展馆区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的面积为200m2的十字形地域,计划在正方形MNPQ上建一座花坛,造价为4200元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为210元/m2;再在四个空角(图中四个三角形)铺草坪,造价为80元/m2.(1)设总造价为S(单位:元),AD长为x(单位:m),求出S关于x的函数关系式;(2)当AD长取何值时,总造价S最小,并求这个最小值.36.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2021年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且R(x)=,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2021年的利润W(x)(万元)关于年产量x(千部)的函数关系式,(利润=销售额﹣成本);(2)2021年产量为多少(千部)时,企业所获利润最大?最大利润是多少?37.已知p:1<2x<8;q:不等式x2﹣mx+4≥0恒成立,若¬p是¬q的必要条件,求实数m的取值范围.38.已知实数a>0,b>0,且a2+b2=8,若a+b≤m恒成立.(1)求实数m的最小值;(2)若2|x﹣1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.39.已知正实数x,y满足等式2x+5y=20.(1)求u=xy的最大值;(2)若不等式恒成立,求实数m的取值范围.40.已知a,b∈R,求证:ab≤()2.41.(1)已知x>1,求x+的最小值;(2)求的最大值.42.某公司建造一间背面靠墙的房屋,地面面积为48m2,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元,如果墙高为3m,且不计房屋背面和地面的费用,那么怎样设计房屋能使总造价最低?最低总造价是多少?43.如图,将宽和长都分别为x,y(x<y)的两个矩形部分重叠放在一起后形成的正十字形面积为.(注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形),(1)求y关于x的函数解析式;(2)当x,y取何值时,该正十字形的外接圆面积最小,并求出其最小值.人教A版必修一基本不等式同步练习题参考答案与解析1.分析:利用不等式的性质,判断得到,集合集合的交集、并集、补集的定义依次判断四个选项即可.解:因为a>b>0,所以,对于A,因为N=,则,因为集合M=,所以M∩(∁RN)==P,故选项A正确;对于B,因为∁R M={x|x≤b或},则(∁RM)∩N=≠P,故选项B错误;对于C,因为M∪N={x|b<x<a}≠P,故选项C错误;对于D,M∩N=≠P,故选项D错误.故选A.2.分析:根据基本不等式的性质,进行判断即可.解:∵a,b∈R+,且a≠b,∴a+b>2,∴<,而=>0,∴<,故选B.3.分析:利用均值不等式及其变形进行解答.解:∵x,y∈R+,x+y=S,xy=P,∴S=x+y≥2=2①,当且仅当x=y时取等号;∴如果P 是定值,那么当且仅当x=y时S的值最小,故A、C错误;由①得,P≤=,当且仅当x=y时取等号;∴如果S是定值,那么当且仅当x=y时P的值最大,故D正确,B错误.故选D.4.分析:依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.5.分析:利用重要不等式的性质即可得出.解:由m2+n2=100,可得:100≥2mn,解得mn≤50,当且仅当m=n=±5时取等号.则mn的最大值是50.故选B.6.分析:利用基本不等式求解最值的三个条件:一正、二定、三相等,对四个选项逐一分析判断即可.解:对于A,因为a、b为正实数,所以,故,当且仅当,即a=b时取等号,故选项A正确;对于B,因为x2≥0,所以x2+1≥1,则,故选项B错误;对于C,当a<0时,,故选项C错误;对于D,因为xy<0,则,所以,当且仅当,即x=﹣y时取等号,故选项D正确.故选AD.7.分析:由已知a>0,b>0,不等式恒成立,转化成新函数的最小值问题.解:由已知a>0,b>0,不等式恒成立,所以m≤(+)(a+4b)恒成立,转化成求y=(+)(a+4b)的最小值,y=(+)(a+4b)=8++≥16,所以m≤16.故选C.8.分析:根据xy=x(1﹣2x)=﹣2(x﹣)2+≤,即可求出最大值.解:∵实数x,y满足2x+y=1,∴y=1﹣2x,∴xy=x(1﹣2x)=﹣2x2+x=﹣2(x﹣)2+≤,当x=,y=时取等号,故选C.9.分析:由a+b=1,根据逐一判断即可.解:∵a>0,b>0,且a+b=1;∴;∴;∴ab有最大值,∴选项A正确;+,,∴的最小值不是,∴B错误;,∴有最小值4,∴C正确;a2+b2≥2ab,,∴a2+b2的最小值不是,∴D错误.故选AC.10.分析:可利用“1”的代换,根据x+(4﹣x)=4配凑应用基本不等式.解:∵0<x<4,则=[x+(4﹣x)]()=(10++)≥(10+2)=4,当且仅当,即x=1时取等号.故选C.11.分析:利用题意首先确定m,n的关系式,然后结合均值不等式的结论整理计算即可求得最终结果.解:由指数函数的性质可得 A(1,﹣1),点在直线上,则:m+n﹣1=0,m+n=1.则:,当且仅当时等号成立.综上可得:的最小值为.故答案为:.12.分析:先求出比例系数,再得出运费与仓储费之和,利用基本不等式可求最值.解:设工厂和仓库之间的距离为x千米,运费为y1万元,仓储费为y2万元,则y1=k1x,y2=.∵工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,∴k1=5,k2=20,∴运费与仓储费之和为5x+,∵5x+≥=20,当且仅当5x=,即x=2时,运费与仓储费之和最小为20万元,故答案为:2,2013.分析:由题意可得m≤[(a+b+c)(++)]min,由柯西不等式可得其最小值,注意检验等号成立的条件,即可得到所求最大值.解:不等式恒成立,即为m≤[(a+b+c)(++)]min,由柯西不等式可得(a+b+c)(++)=[()2+()2+()2][()2+()2+()2]≥(•+•+ )2=(1+1+)2=6+4,当且仅当a=b=c,即a2+b2=c2时,上式取得等号.则[(a+b+c)(++)]min=6+4,所以m≤6+4,即m的最大值为6+4,故答案为:6+4.14.分析:由题意知,BE=4里,AG=2.5里,由△BEF∽△FGA,可知EF•FG=10里,再利用均值不等式求出EF+FG的最小值,进而得解.解:由题意知,BE=1200步=4里,AG=750步=2.5里,因为△BEF∽△FGA,所以=,所以EF•FG=BE•AG=4×2.5=10里,所以EF+FG≥2=2,当且仅当EF=FG=时,等号成立,而该小城的周长为4(EF+FG)≥8,所以该小城的周长的最小值为8里.故答案为:8.15.分析:a,b∈R+,且a+b++=5,利用基本不等式的性质可得:5=(a+b)≥(a+b),当且仅当a=b=2或时取等号.令a+b=t,化为:(t﹣1)(t﹣4)≤0,解出即可得出.解:∵a,b∈R+,且a+b++=5,则5=(a+b)≥(a+b),当且仅当a=b=2或时取等号.令a+b=t,化为:(t﹣1)(t﹣4)≤0,解得1≤t≤4.∴a+b的取值范围是[1,4].故答案为:[1,4].16.分析:利用基本不等式的结论求出,然后将不等式恒成立转化为,即可得到答案.解:因为x、y都为正数,且x+y=4,所以,当且仅当时取等号,故,因为不等式恒成立,则,所以实数m的取值范围是.故答案为:.17.分析:根据题意,设直角三角形的直角边分别为a,b,由勾股定理可得a2+b2=25,利用基本不等式的性质可得S=ab≤(a2+b2)=,即可得答案.解:根据题意,设直角三角形的直角边分别为a,b,由题意知斜边长等于5,则a2+b2=25,则有S =ab≤(a2+b2)=,当且仅当a=b时等号成立,故这个直角三角形的面积的最大值等于;故答案为:.18.分析:由题意可知,t相当于最后一辆车行驶了50个km+400km所用的时间,利用基本不等式,即可得出结论.解:设全部物资到达灾区所需时间为t小时,由题意可知,t相当于最后一辆车行驶了50个km+400km所用的时间,因此,t==+≥2=10.当且仅当=,即v=80时取“=”.故这些汽车以80km/h的速度匀速行驶时,所需时间最少要10小时.故答案为:1019.分析:首先右边是xy的形式,左边是2x+y和常数的和的形式,考虑把左边也转化成xy的形式,使形式统一.可以猜想到应用基本不等式.转化后变成关于xy的不等式,可把xy看成整体换元后,求最小值.解:由条件利用基本不等式可得,令xy=t2,即 t=>0,可得.即得到可解得.又注意到t>0,故解为,所以xy≥18.故答案应为18.20.分析:利用基本不等式,根据xy≤把题设等式整理成关于x+y的不等式,求得其范围,则x+y的最大值可得.解:∵x2+y2+xy=1,∴(x+y)2=1+xy,∵xy≤,∴(x+y)2﹣1≤,整理求得﹣≤x+y≤,∴x+y的最大值是,故答案为:21.分析:利用基本不等式可得,同理,,三式相加即可得证.证明:∵a,b,c均为正实数,∴,当且仅当a+1=2,即a=1时取等号;同理,当且仅当b+1=2,即b=1时取等号;,当且仅当c+1=2,即c=1时取等号.以上三个不等式相加,可得.∴,当且仅当a=b=c=1时取等号.22.分析:(1)由分析法,只可证明(a﹣c)()>0,再由基本不等式证明;(2)只需(a﹣c)()>0,左边=2﹣p+≥4﹣p,即可求得p值.解:(1)证明:由a>b>c,得a﹣b>0,b﹣c>0,a﹣c>0,要证,只要证(a ﹣c)()>0,左边=[(a﹣b)+(b﹣c)]()=1+>0,当且仅当a﹣b=b﹣c,即a+c=2b时等号成立;(2)解:要使,只需(a﹣c)()>0,左边=[(a﹣b)+(b ﹣c)]()=2﹣p+≥4﹣p>0,则p<4,∵p∈N*,∴可取p=2或3.取p=2,问题转化为>0.证明如下:要证>0,只需证明(a﹣c)()>0,左边=[(a﹣b)+(b﹣c)]()=≥>0,当且仅当a﹣b=b﹣c,即a+c=2b时等号成立.23.分析:根据基本不等式即可求出.解:∵0<x<1,∴4﹣3x>0,∴x(4﹣3x)=•3x(4﹣3x)≤×()2=,当且仅当3x=4﹣3x时,即x=时取等号,故x(4﹣3x)取得最大值时x的值为.24.分析:先将函数解析式整理成基本不等式的形式,然后利用基本不等式求得函数的最大值和此时x的取值即可.解:∵∴5﹣4x>0,∴=﹣(5﹣4x+)+3≤﹣2+3=1,当且=1.∴函数的最大值仅当5﹣4x=,即x=1时,上式成立,故当x=1时,ymax为1.25.分析:先利用换元法得到f(t)=t++2,然后结合基本不等式可求.解:设x﹣1=t(t>0),则x=t+1,∴f(t)==t++2+2,当且仅当t=时取等号,∴函数的最小值为2+2.26.分析:(1)将所求的式子进行化简变形,转化为乘积为定值的结构,然后利用基本不等式求解最值即可;(2)将已知的等式变形为,然后利用“1”的代换将所求式子进行变形,再利用基本不等式求解最值即可.解:(1)因为x>1,则x﹣1>0,所以函数==≥=,当且仅当,即x=时取等号,所以函数的最小值为.(2)因为x+3y=5xy,则,又x,y均为正数,所以3x+4y=(3x+4y)=≥=5,当且仅当且,即时取等号,所以3x+4y的最小值为5.27.分析:把已知2x+8y﹣xy=0,变形为,而x+y=,展开再利用基本不等式的性质即可.解:由2x+8y﹣xy=0,及x>0,y>0,得.∴x+y==10+2=18,当且仅当,,即x=12,y=6时取等号.∴x+y的最小值为18.故答案为18.28.分析:化简==﹣[(1﹣x)+],根据基本不等式即可求出.解:∵﹣4<x<1,∴1﹣x>0,∴==[(x﹣1)+]=﹣[(1﹣x)+]≤﹣×2=﹣1,当且仅当1﹣x=时,即x=0时取等号,故的最大值为﹣1.29.分析:由于x>0,利用基本不等式可得y=x+≥4,满足等号成立的条件,于是问题解决.解:∵x>0,∴y=x+≥2=4,当且仅当x=,即x=2时取“=”.故y=x+的最小值为4,当x=2时,有最小值.30.分析:根据题意,由0<x<可得3﹣2x>0,则可以将4x(3﹣2x)变形为2[2x(3﹣2x)],再由基本不等式的性质可得2[2x(3﹣2x)]≤2()2,即可得答案.解:∵0<x<,∴3﹣2x>0,则y=4x(3﹣2x)=2[2x(3﹣2x)]≤2()2=,当且仅当2x=3﹣2x,即x=时等号成立,答:当0<x<时,函数y=4x(3﹣2x)的最大值为.31.分析:直接利用基本不等式的应用求出结果.解:由于x>2,所以x﹣2>0;故+2+2≥6,当且仅当x=4时,等号成立.故最小值为6.32.分析:利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,所以x+y=(x+y)()=10++≥10+2=16,当且仅当=,即x=4,y=12时取等号,所以x+y的最小值为16.33.分析:先利用基本不等式求出的最小值,然后将所求函数转化为,即可得到答案.解:因为x∈(0,+∞),所以,当且仅当,即x=时取等号,则=,所以的最大值为.34.分析:(1)由题目中产品的年销售量x万件与年促销费用m万元的函数关系式为:,当m=0时,x=1,可得k的值,即得x关于m的解析式;又每件产品的销售价格为1.5倍的成本,可得利润y与促销费用之间的关系式;(2)对(1)利润函数解析式进行变形,进而利用基本不等式求最大值即可.解:(1)由题意知,当m=0时,x=1,∴1=3﹣k,即k=2,∴;每件产品的销售价格为1.5×(万元),∴利润函数y=x[1.5×]﹣(8+16x+m)=4+8x﹣m=4+8(3﹣)﹣m=﹣[+(m+1)]+29(m≥0).(2)因为利润函数y=﹣[+(m+1)]+29(m≥0),所以,当m≥0时,+(m+1)≥2==21(万元).所以,该厂家8,∴y≤﹣8+29=21,当且仅当=m+1,即m=3(万元)时,ymax2013年的促销费用投入3万元时,厂家的利润最大,最大为21万元.35.分析:(1)设AD=x,DQ=y,由题意可得x2+4xy=200,把y用含有x的代数式表示,即可求得总造价S关于x的函数关系式(2)把(1)中的函数解析式利用基本不等式求最值得答案.解:(1)设AD=x,DQ=y,则x2+4xy=200,∴y=,则S==38000+(0);(2)S=38000+≥38000+2=38000+2=118000(0<x <),当且仅当4000x2=,即x=时上式等号成立.故当AD的长为米时,总造价S有最小值118000元.36.分析:(1)根据2021年的利润等于年销售额减去固定成本和另投入成本,分段求出利润W(x)关于x的解析式即可.(2)根据(1)求出的利润W(x)的函数解析式,分别利用二次函数的性质和基本不等式求出每段上的最大值,取两者中较大的利润值,即为年企业最大利润.解:(1)由题意可知,2021年的利润等于年销售额减去固定成本和另投入成本,①当0<x<40时,W(x)=0.7×1000x﹣(10x2+100x+1000)﹣250=﹣10x2+600x﹣1250,②当x≥40时,W(x)=0.7×1000x﹣(701x+﹣8450)﹣250=﹣(x+)+8200,所以W(x)=.(2)①当0<x<40时,W(x)=﹣10x2+600x﹣1250,此时函数W(x)为开口向下的二次函数,所以当x=30时,W(x)取得最大值,最大值为W(30)=7750(万元),②当x≥40时,W(x)=﹣(x+)+8200,因为x>0,所以x+=200,当且仅当x=即x=100时,等号成立.即当x=100时,W(x)取得最大值﹣200+8200=8000(万元),综上所述,当x=100时,W(x)的值最大,最大值为8000(万元),故当2021年产量为100千部时,企业所获利润最大,最大利润是8000万元.37.分析:由已知可求p:0<x<3,由¬p是¬q的必要条件可知p是q的充分条件,从而可得x2﹣mx+4≥0对于任意的x∈(0,3)恒成立,进而转化为m=对于任意的x∈(0,3)恒成立,利用基本不等式可求解:∵1<2x<8,∴p:0<x<3,∵¬p是¬q的必要条件,∴p是q的充分条件即p⇒q,∵x2﹣mx+4≥0对于任意的x∈(0,3)恒成立,∴m=对于任意的x∈(0,3)恒成立,∵=4,当且仅当x=即x=2时等号成立.∴m≤438.分析:(1)根据基本不等式的性质即可求解m的最小值;(2)根据a+b≤m恒成立,由(1)可得a+b的最大值为m,取绝对值即可求解;解:(1)∵a2+b2≥2ab,∴2a2+2b2≥(a+b)2,∴(a+b)2≤16,∴(a+b)≤4,故m≥4;(2)由2|x﹣1|+|x|≥a+b恒成立,由(1)可得a+b的最大值为4,故只需2|x﹣1|+|x|≥4,即:当x≥1时,2(x﹣1)+x≥4,解得:x≥2;当0≤x<1时,2(1﹣x)+x≥4,无解;当x<0时,2(1﹣x)﹣x≥4,解得;x,故得实数x的取值范围是.39.分析:(1)由题意利用基本不等式求得u=xy的最大值为10.(2)由题意利用基本不等式求得+的最小值为,可得 m2+4m≤,由此求得m的范围.解:(1)∵正实数x,y满足等式2x+5y=20≥2,∴≤10,∴xy≤10,∴u=xy的最大值为10.(2)∵=1,∴+=+=1+++≥+2=,当且仅当=时,等号成立,故+的最小值为.∵不等式恒成立,∴m2+4m≤,求得﹣≤m≤,即m的范围为[﹣,].40.分析:利用综合法,通过两数和的平方以及重要不等式即可得出.证明:∵a,b∈R,∴(a+b)2=a2+b2+2ab,∵a2+b2≥2ab,∴(a+b)2≥4ab,∴ab≤()2,当且仅当a=b>0时取等号.41.分析:(1)变形利用基本不等式的性质即可得出.(2)直接利用基本不等式的性质即可得出.解:(1)∵x>1,∴x+=x﹣1++1≥2+1=3,当且仅当x=2时取等号,因此x+的最小值为3.(2)由x(10﹣x)≥0,解得0≤x≤10.∴≤=5,当且仅当x=5时取等号.∴的最大值是5.42.分析:设底面的长为x,宽为y,则y=,设房屋总造价为f(x),由题意可得:f(x)=3600x++5800,再利用基本不等式即可得x=8时,f(x)的值最小,故当房屋底面的长为8m,宽为6m时,这时的房屋总造价最低,最低总造价是63400元.解:如图所示,设底面的长为x,宽为,则xy=48,∴y=,设房屋总造价为f(x),由题意可得:f(x)=3x•1200+3××800×2+5800=3600x++5800≥+5800=63400,当且仅当,即x=8时,等号成立,故当房屋底面的长为8m,宽为6m 时,这时的房屋总造价最低,最低总造价是63400元.(2)43.分析:(1)根据几何图形的面积即可得到函数的解析式,并求出函数的定义域,即可得到答案.设正十字形的外接圆的直径为d,则,利用基本不等式可以求出d的最小值,进而求出外接圆面积的最小值.解:(1)由题意可得:,则,∵y>x,∴,解得,∴y关于x的解析式为(0<x<).(2)设正十字形的外接圆的直径为d,由图可知=,当且仅当时,不等式等号成立,所以正十字形的外接圆直径d的最小值为,则半径的最小值为.所以正十字形的外接圆面积最小值为.此时.所以当时正十字形的外接圆面积最小,最小值为.。
不等式的基本性质--习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ; 5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b)D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x -10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a-b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.。
惠州市七年级数学下册第九单元《不等式与不等式组》经典练习题(培优专题)(1)

一、选择题1.如图是测量一物体体积的过程:步骤一:将180 mL 的水装进一个容量为300 mL 的杯子中; 步骤二:将三个相同的玻璃球放入水中,结果水没有满; 步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm 3)( ). A .10 cm 3以上,20 cm 3以下 B .20 cm 3以上,30 cm 3以下 C .30 cm 3以上,40 cm 3以下D .40 cm 3以上,50 cm 3以下2.运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A .7B .8C .9D .103.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b >C .若a b >,且0c ≠,则ac bc >D .若||||a b c c >,则a b > 4.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥5.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .26.不等式-3<a≤1的解集在数轴上表示正确的是( ) A . B . C .D .7.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解8.已知01m <<,则m 、2m 、1m( ) A .21m m m >>B .21m m m >>C .21m m m>>D .21m m m>> 9.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤10.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为( ) A .B .C .D .11.若a b <,则下列不等式中不正确的是( ) A .11+<+a bB .a b ->-C .22a b --<--D .44a b< 12.关于x 的不等式620x x a -≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >313.不等式组32153x x ->⎧⎨-<-⎩的解集在数轴上的表示是( )A .B .C .D .14.若01x <<,则下列选项正确的是( )A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 15.下列是一元一次不等式的是( ) A .21x > B .22x y -<-C .23<D .29x <二、填空题16.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 17.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____. 18.不等式组63024x x x -⎧⎨<+⎩的解集是__.19.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 20.不等式组2x ax >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 21.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶. 22.若不等式a x cx c b +>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .23.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限 24.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.25.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.26.关于x 的不等式组460930x x ->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题27.某电器超市销售A 、B 两种型号的电风扇,表中是近两周的销售情况:(2)若A 、B 两种型号的电风扇每台进价分别为200元,170元,该超市准备采购这两种型号的电风扇共30台,且费用不多于5400元. ①最多能采购A 种型号的电风扇多少台?②设超市销售完这30台电风扇所获得的利润为W 元,试问利润能否达到1400元?若能,请给出相应的采购方案;若不能,请说明理由.28.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元? 29.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++. 30.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩。
初一数学一元一次不等式练习题汇总(复习用)[1]
![初一数学一元一次不等式练习题汇总(复习用)[1]](https://img.taocdn.com/s3/m/f6bdb609bfd5b9f3f90f76c66137ee06eff94ee1.png)
一元一次不等式和分式测试卷一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x <0,x________2;3. 代数式536x -的值不大于零,则x__________; 4. 不等式13-3x >0的正整数解是__________;5. 不等式组⎩⎨⎧+--023,043 x x 的解集是____________.6在分式443y x +,a b 424+,1142--x x ,222b ab aba --中,最简分式有 。
7当x 时,分式6532+--x x x 无意义。
8若方程87178=----x x x 有增根,则增根是 。
9当x 时,分式6)2)(2(2---+x x x x 的值为零。
二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a 的取值范围是( ).(A)a >0; (B)a ≥0; (C)a <0; (D)自然数.2.不等式23>7+5x 的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m ≠n,则|m|≠|n|; (B)若a+b=0,则ab >0;(C)若ab <0,且a <b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x 取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若11|1|-=--x x ,则x 的取值范围是( ).(A)x >1; (B)x ≤1; (C)x ≥1; (D)x <1.6 .分式2232b a c ,c b a 443-,c a b225的最简公分母是 () A 、12a 2b 4c 2 B 、24a 2b 4c 2 C 、24a 4b 6c D 、12a 2b 4c7. 若3x=2y,则2294x y 的值等于 ( )A 、32B 、1C 、8116D 、2788 .化简b a c cb ac b c b a c b a c b a ---++-+---++-232所得正确结果是 () A 、0 B 、cb ac b -+-)2(2 C 、1 D 、以上结论都不对9 . 化简xx x x 1112++-的结果为 ( )A 、x+1B 、 x-1C 、(x-1)2D 、11-x10 .若x 等于本身的倒数,则633622-++÷---x x x x x x 的值是 ()A 、-3B 、-2C 、-1D 、0三 .解答题1. 解不等式(组),并在数轴上表示它们的解集. (1)213-x (x-1)≥1; (2)21322-++-x x x ; (3)⎪⎩⎪⎨⎧≥--+.052,1372x x x (4)⎪⎩⎪⎨⎧---+.43)1(4,1321x x x x(5)()2232633x x x ⎛⎫---⎡⎤ ⎪⎣⎦⎝⎭≥(6)()40.30.5 5.8115134x x x x -<+⎧⎪⎨->-+⎪⎩2. x 取什么值时,代数式251x -的值不小于代数式4323+-x 的值.3. K 取何值时,方程k x 332-=5(x-k)+1的解是非负数.4.用不等式表示:(1)a 与1的和是正数; (2)x 的21与y 的31的差是非负数;(3)x 的2倍与1的和大于3; (4)a 的一半与4的差的绝对值不小于a .(5)x 的2倍减去1不小于x 与3的和; (6)a 与b 的平方和是非负数;(7)y 的2倍加上3的和大于-2且小于4; (8)a 减去5的差的绝对值不大于5、若方程组212x y x y m +=⎧⎨-=⎩的解x 、y 的值都不大于1,求m 的取值范围。
不等式的基本性质-习题精选(一)

不等式的基本性质 习题精选(一)★不等式的基本性质1.不等式的基本性质1:如果a>b ,那么 a+c____b+c , a -c____b -c .不等式的基本性质2:如果a>b ,并且c>0,那么ac_____bc .不等式的基本性质3:如果a>b ,并且c<0,那么ac_____bc .2.设a<b ,用“<”或“>”填空.(1)a -1____b -1;(2)a+1_____b+1;(3)2a____2b ;(4)-2a_____-2b ;5)-a 2_____-b 2;(6)a 2____b2.3.根据不等式的基本性质,用“<”或“>”填空.(1)若a -1>b -1,则a____b ;(2)若a+3>b+3,则a____b ;(3)若2a>2b ,则a____b ;(4)若-2a>-2b ,则a___b .4.若a>b ,m<0,n>0,用“>”或“<”填空.(1)a+m____b+m ;(2)a+n___b+n ;(3)m -a___m -b ;(4)an____bn ;(5)a m ____b m ;(6)a n _____bn ;5.下列说法不正确的是( )A .若a>b ,则ac 2>bc 2(c 0)B .若a>b ,则b<aC .若a>b ,则-a>-bD .若a>b ,b>c ,则a>c★不等式的简单变形6.根据不等式的基本性质,把下列不等式化为x>a 或x>a 的形式:(1)x -3>1;(2)-32x>-1;(3)3x<1+2x ;(4)2x>4. [学科综合]7.已知实数a 、b 、c 在数轴上对应的点如图13-2-1所示,则下列式子中正确的是( )A.bc>ab B.ac>ab C.bc<ab D.c+b>a+b8.已知关于x的不等式(1-a)x>2变形为x<21-a,则1-a是____数.9.已知△ABC中三边为a、b、c,且a>b,那么其周长p应满足的不等关系是()A.3b<p<3a B.a+2b<p<2a+b C.2b<p<2(a+b) D.2a<p<2(a+b)[创新思维](一)新型题10.若m>n,且am<an,则a的取值应满足条件()A.a>0 B.a<0 C.a=0 D.a≥0(二)课本例题变式题11.(课本p6例题变式题)下列不等式的变形正确的是()A.由4x-1>2,得4x>1 B.由5x>3,得x>35 C.由x2>0,得x>2D.由-2x<4,得x<-2(三)易错题12.若a>b,且m为有理数,则am2____bm2.13.同桌甲和同桌乙正在对7a>6a进行争论,甲说:“7a>6a正确”,乙说:“这不可能正确”,你认为谁的观点对?为什么?(四)难题巧解题14.若方程组2x+y=k+1x+2y=-1⎧⎨⎩的解为x,y,且3<k<6,则x+y的取值范围是______.(五)一题多解题15.根据不等式的基本性质,把不等式2x+5<4x_1变为x>a或x<a的形式.[数学在学校、家庭、社会生活中的应用]16.如图13-2-2所示,一个已倾斜的天平两边放有重物,其质量分别为a和b,如果在天平两边的盘内分别加上相等的砝码c,看一看,盘子仍然像原来那样倾斜吗?[数学在生产、经济、科技中的应用]17.小明用的练习本可以到甲商店购买,也可到乙商店购买,已知两商店的标价都是每本1元,但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是:从第1本开始就按标价的85%卖.(1)小明要买20本时,到哪个商店购买较省钱?(2)写出甲商店中收款y(元)与购买本数x(本)(x>10)之间的关系式.(3)小明现有24元钱,最多可买多少本?[自主探究]18.命题:a,b是有理数,若a>b,则a2>b2.(1)若结论保持不变,那么怎样改变条件,命题才能正确?;(2)若条件保持不变,那么怎样改变结论,命题才能正确?[潜能开发]19.甲同学与乙同学讨论一个不等式的问题,甲说:每个苹果的大小一样时,5个苹果的重量大于4个苹果的重量,设每个苹果的重量为x则有5x>4x.乙说:这肯定是正确的.甲接着说:设a为一个实数,那么5a一定大于4a,这对吗?乙说:这与5x>4x不是一回事吗?当然也是正确的.请问:乙同学的回答正确吗?试说明理由.[信息处理]20.根据不等式的基本性质,把下列不等变为x>a或x<a的形式:(1)1x2>-3;(2)-2x<6.解:(1)不等式的两边都乘以2,不等式的方向不变,所以1x2>-322⨯⨯,得x>-6.(2)不等式两边都除以-2,不等式方向改变,所以-2x6>-2-2,得x>-3.上面两小题中不等式的变形与方程的什么变形相类似?有什么不同的?[开放实践]21.比较a+b与a-b的大小.[经典名题,提升自我][中考链接]22.(2004·山东淄博)如果m<n<0,那么下列结论中错误的是()A.m-9<n-9 B.-m>-n C.11>n m D.mn>123.(2004·北京海淀)若a-b<0,则下列各题中一定成立的是()A.a>b B.ab>0 C.ab>0 D.-a>-b[奥赛赏析]24.要使不等式…<753246a<a<a<a<a<a<a<…成立,有理数a的取值范围是()A.0<a<1 B.a<-1 C.-1<a<0 D.a>1[趣味数学]25.(1)A、B、C三人去公园玩跷跷板,如图13-2-3①中,试判断这三人的轻重.(2)P、Q、R、S四人去公园玩跷跷板,如图13-2-3②,试判断这四人的轻重.答案1.> > > <2.(1)<(2)<(3)<(4)>(5)>(6)<3.(1)>(2)>(3)>(4)<4.(1)>(2)>(3)<(4)>(5)<(6)>5.C 点拨:a>b,不等式的两边同时乘以-1,根据不等式的基本性质3,得-a<-b,所以C选项不正确.6.解:(1)x-3>1,x-3+3>1+3,(根据不等式的基本性质1)x>4;(2)-23x>-1,-23x·(-32)<-1·(-32),(根据不等式的基本性质3)x<32;(3)3x<1+2x,3x-2x<1+2x-2x,(根据不等式的基本性质1)x<1;(4)2x>4,2x4>22,(根据不等式的基本性质2)x>2.7.A 8.负 9.D 10.B 11.B 12.错解:am2>bm2错因分析:m2应为大于或等于0的数,忽略了m等于0的情况正解::am2≥bm213.错解1:甲对,因为7>6,两边同乘以一个数a,由不等式的基本性质2,可得7a>6a.错解2:乙对,因为a为负数或零时,原不等式不成立.错因分析:本题没有加以分析,只片面的认为a为正数或负数,实际a为任意数,有三种情况:a为负数,a为正数,a为0,应全面考察各种.正解:两人的观点都不对,因为a的符号没有确定:①当a>0时,由性质2得7a>6a,②当a<0时,由性质3得7a<6a,③当a=0时,得7a=6a=0.14.1<x+y<2点拨:两方程两边相加得3(x+y)=k.3<k<6,即3<3(x+y)<6,∴1<x+y<2.15.解法1:2x+5<4x-1,2x+5-5<4x-1-5,2x<4x-6,2x-4x<4x-6-4x,-2x<-6,-2x-6>-2-2,x>3.解法2:2x+5<4x-1,2x+5-2x<4x-1-2x,5+1<2x-1+1,6<2x,62x<22,3<x,即x>3.16.解:从图中可看出a>b,存在这样一个不等式,两边都加上c,根据不等式的基本性质1,则a+c>b+c,所以,盘子仍然像原来那样倾斜.17.解:(1)若到甲商店购买,买20本共需10+1⨯70%⨯10=17(元),到乙商店购买20本,共需1⨯0.85⨯220=17元,因为到甲、乙两个商店买20本都需花17元,故到两个商店中的任一个购买都一样.(2)甲商店中,收款y(元)与购买本数x(本)(x>10)之间的关系式为y=10+0.7(x-10),即y=0.7x+3(其中x>10).(3)小明现有24元钱,若到甲商店购买,可以得到方程24=0.7x+3,解得x=30(本).若到乙商店购买,则可买24÷(1 0.85)≈28(本).30>28,故小明最多哥买30本.a>b18.解:(1)a,b是有理数,若a>b>0,则22(2)a,b是有理数,若a>b,则a+1>b+1.19.解:乙同学的回答不正确,5a不一定大于4a.当a>0时,5a>4a>0;当a=0时,5a=4a=0;当a<0时,5a<4a<0.20.解:这里的变形与方程中的“将未知数的系数化为1”相类似,但是也有所不同;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.21.解:a+b-(a-b)=2b,当b>0时,a+b>a-b;当b=0时,a+b=a-b;当b<0时,a+b<a -b.22.C 23.Da<a<a<0…,则24.B 点拨:a的奇数次方一定小于a的偶数次方,则a是负数,且246这个负数一定小于-1,故应选B.25.解:(1)三人由轻到重排列顺序是B、A、C.(2)四人由轻到重排列顺序是Q、P、S、R.(注:文档可能无法思考全面,请浏览后下载,供参考。
利用均值不等式求最值练习题一
利用均值不等式求最值练习题一1.(2020春•西城区校级月考)已知a>0,b>0,a+b=1,若11==a ba bαβ++,,则α+β的最小值是( )A.3 B.4 C.5 D.62.(2020春•蚌埠期末)已知x+1>y>0,则x++的最小值为( ) A.﹣1 B. C.2﹣1 D.3﹣13.(2020春•沙坪坝区校级期末)正数m,n满足m+n=2,则+的最小值为( ) A. B. C. D.24.(2020春•西安区校级期末)已知0<x<1,则的最小值为( )A.9 B. C.5 D.5.(2020春•南昌期末)已知a,b>0,且满足a2+ab=1,则3a+b的最小值为( ) A. B. C.2 D.26.(2020春•九龙坡区校级期中)若x,y∈R+,且,则3x+4y的最小值是( )A.5 B. C. D.7.(2019秋•南城县校级期末)已知正数x,y满足x+y=1,且≥m,则m的最大值为( ) A. B. C.2 D.48.(2019秋•淮安期末)函数y=2x+(x>1)的最小值是( )A.2 B.4 C.6 D.89.(2019秋•诸暨市期末)已知a,b>0,a+b=1,则的最小值是( ) A. B. C. D.10.(2020•兖州区模拟)已知正数m,n满足m(n﹣1)=8n,则m+2n的最小值是( ) A.18 B.16 C.8 D.1011.(2020春•宣城期末)已知x>0,y>0,2x+y=2xy,若x+ay的最小值为8,则正实数a的值为( )A.2 B. C.3 D.12.(2020春•如皋市期末)设a>0,b>0,且2a+b=1,则( )A.有最小值为4 B.有最小值为C.有最小值为 D.无最小值13.(2020春•浙江期末)实数x,y,x>﹣1,且满足xy+y=﹣x+3,则x+y的最小值是( )A.1 B. C.2 D.314.(2020•镇海区校级模拟)若a>0,b>0,且,则a2+b2的最小值为( )A.2 B. C.4 D.15.(2020春•工农区校级期末)若正数x,y满足x+4y﹣xy=0,则的最大值为( ) A. B. C. D.116.(2020春•南关区校级期中)若x>0,则的最小值为( )A. B. C.1 D.17.(2020春•沙坪坝区校级期中)已知实数x,y满足x+y=1,﹣1<x<1,则的最小值为( ) A. B. C.5 D.218.(2020春•昌吉市期中)若a>0,b>0,a+2b=3,则的最小值为( ) A.5 B.6 C.8 D.919.(2020•滨海新区模拟)已知正实数a,b满足a+b=1,则的最小值为( ) A.13 B.11 C.10 D.920.(2020•和平区二模)已知a,b>0,,则当取最小值时,的值为( ) A.2 B. C.3 D.421.(2020春•四川月考)已知实数a>0,b>1满足a+b=5,则+的最小值为( ) A. B. C. D.22.(2020•邯郸模拟)设m,n为正数,且m+n=2,则的最小值为( )A. B. C. D.23.(2020•济宁模拟)已知实数a,b满足ab>0,则﹣的最大值为( ) A.2﹣ B.2+ C.3﹣2 D.3+224.(2019秋•梅河口市校级期末)已知a,b为正数,4a2+b2=7,则的最大值为( ) A. B. C. D.225.(2019秋•开封期末)已知m>0,n>0,,若不等式m+n≥﹣x2+2x+a对已知的m,n及任意实数x恒成立,则实数a的取值范围是( )A.[8,+∞) B.[3,+∞) C.(﹣∞,3] D.(﹣∞,8]26.(2019秋•楚雄州期末)已知x>0,y>0,若不等式恒成立,则正数m的最小值是( )A.2 B.4 C.6 D.827.(2020•湖北模拟)若不等式﹣m≥0对x∈(0,)恒成立,则实数m的最大值为( )A.7 B.8 C.9 D.1028.(2019秋•滨海新区期末)若正数x,y满足x2+xy﹣2=0,则3x+y的最小值是( )A.4 B. C.2 D.429.(2020春•重庆期末)已知关于x的一元二次不等式kx2﹣x+1<0的解集为(a,b),则2a+b的最小值是( )A.6 B.5+2 C.3+2 D.330.(2020春•襄城区校级月考)若正实数x,y满足4x+y=xy,且恒成立,则实数a的取值范围为( )A.[﹣1,4] B.(﹣1,4) C.[﹣4,1] D.(﹣4,1)31.(2020春•浙江期中)已知正实数x,y,z满足x2+y2+z2=1,则u=的最小值是( ) A.9 B.3 C.4 D.532.(2020春•驻马店期末)已知正实数x,y满足x+2y=2xy.则x+y的最小值为( )A.4 B. C. D.33.(2020春•渝中区校级期末)已知实数a>0,b>0,=,则a+2b的最小值为( ) A.2 B.6 C.3 D.334.(2020春•合肥期末)已知a>0,b>0,且不等式≥恒成立,则实数m的取值范围是( )A.[﹣4,4] B.(﹣∞,4] C.[﹣4,+∞) D.[﹣3,3]35.(2020春•丽水期末)已知实数x,y满足x>y>0,且x+y=1,则的最小值为( ) A. B.+ C.3+2 D.236.(2020春•路南区校级月考)若a,b为大于1的实数,且满足a+b=ab,则的最小值是( )A.2 B.4 C.6 D.837.(2020•浙江模拟)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0,且使|2a+b|最大时,的最小值为( )A. B. C.﹣2 D.238.(2019秋•越城区校级期末)已知x,y都是正实数,则+的最大值为( ) A. B. C. D.39.(2020春•湖北期末)若x>0,y>0,且=1,则2x+y的最小值为( ) A.2 B.2 C. D.4+240.(2020•天津)已知a>0,b>0,且ab=1,则++的最小值为 .参考答案1.(2020春•西城区校级月考)已知a>0,b>0,a+b=1,若11==a ba bαβ++,,则α+β的最小值是( )A.3 B.4 C.5 D.6解:∵a>0,b>0,a+b=1,若11==a ba bαβ++,∴α+β=a+b++=1+=3+≥3+2=5,当且仅当,也即当a=b=时,α+β取最小值5.故选:C.2.(2020春•蚌埠期末)已知x+1>y>0,则x++的最小值为( ) A.﹣1 B. C.2﹣1 D.3﹣1解:根据题意,x++=+++﹣1=(+)+(+)﹣1,又x+1>y>0,则+≥2=2,当且仅当x+y+1=2时等号成立,+≥2=,当且仅当x﹣y+1=时等号成立,故x++=(+)+(+)﹣1≥3﹣1,当且仅当x+1=,y=时等号成立.故选:D.3.(2020春•沙坪坝区校级期末)正数m,n满足m+n=2,则+的最小值为( ) A. B. C. D.2解:∵正数m,n满足m+n=2,∴(m+1)+(n+2)=5,+=1,∴+=(+)(+)=++≥+2=,当且仅当m=,n=时“=”成立,故选:B.4.(2020春•西安区校级期末)已知0<x<1,则的最小值为( )A.9 B. C.5 D.解:因为=+=(+)(x+1﹣x)=++.∵0<x<1,∴x>0且1﹣x>0,,当且仅当,即时,取得最小值2.∴的最小值为.故选:B.5.(2020春•南昌期末)已知a,b>0,且满足a2+ab=1,则3a+b的最小值为( ) A. B. C.2 D.2解:∵a2+ab=1,∴.即3a+b==.当且仅当a=时取等号.∴3a+b的最小值为,故选:C.6.(2020春•九龙坡区校级期中)若x,y∈R+,且,则3x+4y的最小值是( )A.5 B. C. D.解:∵x,y∈R+,且,∴3x+4y===,当且仅当,即时等号成立,故选:A.7.(2019秋•南城县校级期末)已知正数x,y满足x+y=1,且≥m,则m的最大值为( ) A. B. C.2 D.4解:根据题意,正数x,y满足x+y=1,则=+=(y+1)+﹣4+(x+1)+﹣4=(+)﹣5,又由+=(+)[(x+1)+(y+1)]=[8++]≥,当且仅当x=y=时等号成立,则=(+)﹣5≥﹣5=,即的最小值为,若≥m,则m的最大值为;故选:B.8.(2019秋•淮安期末)函数y=2x+(x>1)的最小值是( )A.2 B.4 C.6 D.8解:因为y=2x+=2(x﹣1)++2=6,当且仅当2(x﹣1)=即x=2时取等号,此时取得最小值6.故选:C.9.(2019秋•诸暨市期末)已知a,b>0,a+b=1,则的最小值是( ) A. B. C. D.解:∵a,b>0,a+b=1,∴由权方和不等式可得,(,“=”),故选:A.10.(2020•兖州区模拟)已知正数m,n满足m(n﹣1)=8n,则m+2n的最小值是( ) A.18 B.16 C.8 D.10解:∵正数m,n满足m(n﹣1)=8n,∴.∴m+2n=≥10+=18,当且仅当,即m=12,n=3时取等号,∴m+2n的最小值为18.故选:A.11.(2020春•宣城期末)已知x>0,y>0,2x+y=2xy,若x+ay的最小值为8,则正实数a的值为( )A.2 B. C.3 D.解:因为x>0,y>0,2x+y=2xy,所以=2,x+ay=(x+ay)()×=(2a+1+)≥(2a+1+2)=,当且仅当时取等号,由题意可得,=8,则正实数a=.故选:D.12.(2020春•如皋市期末)设a>0,b>0,且2a+b=1,则( )A.有最小值为4 B.有最小值为 C.有最小值为 D.无最小值解:∵a>0,b>0,且2a+b=1,∴b=1﹣2a>0,解得0<a<.∴=+=+﹣2=(a+1﹣a)(+)﹣2=3++﹣2≥2+1=2+1,当且仅当a=﹣1,b=3﹣2时取等号.∴有最小值2+1. 故选:B.13.(2020春•浙江期末)实数x,y,x>﹣1,且满足xy+y=﹣x+3,则x+y的最小值是( )A.1 B. C.2 D.3解:实数x,y,x>﹣1,且满足xy+y=﹣x+3,∴3﹣(x+y)=xy≤,化为:(x+y+6)(x+y﹣2)≥0,∵x>﹣1,∴y=>0,∴x+y+6=x+1++4≥8.解得x+y≥2,当且仅当x=y=1时取等号.∴x+y的最小值是2.故选:C.14.(2020•镇海区校级模拟)若a>0,b>0,且,则a2+b2的最小值为( )A.2 B. C.4 D.解:∵a>0,b>0,且,∴≥2,可得ab≥2.当且仅当a=b=时取等号.∴a2+b2≥2ab≥4,当且仅当a=b=时取等号.则a2+b2的最小值为4,故选:C.15.(2020春•工农区校级期末)若正数x,y满足x+4y﹣xy=0,则的最大值为( )A. B. C. D.1解:因为正数x,y满足x+4y﹣xy=0,所以x+4y=xy即=1,x+y=(x+y)()=5+≥5+4=9,当且仅当且=1,即y=3,x=6时取等号,此时x+y取得最小值9,则的最大值为.故选:A.16.(2020春•南关区校级期中)若x>0,则的最小值为( )A. B. C.1 D.解:因为x>0,则==,当且仅当即x=1时取等号,故选:D.17.(2020春•沙坪坝区校级期中)已知实数x,y满足x+y=1,﹣1<x<1,则的最小值为( ) A. B. C.5 D.2解:由x+y=1可得x+1+y=2,则=()(x+1+y)×=(+5),当且仅当且x+y=1即x=﹣,y=时取等号,故选:A.18.(2020春•昌吉市期中)若a>0,b>0,a+2b=3,则的最小值为( ) A.5 B.6 C.8 D.9解:∵()(a+2b)=(312)≥×(15+2=9等号成立的条件为,即a=b=1时取等,所以的最小值为9.故选:D.19.(2020•滨海新区模拟)已知正实数a,b满足a+b=1,则的最小值为( ) A.13 B.11 C.10 D.9解:由==1∵a+b=1,∴=()(a+b)=5+,当且仅当b=,a=时取等号. ∴的最小值为9+1=10故选:C.20.(2020•和平区二模)已知a,b>0,,则当取最小值时,的值为( ) A.2 B. C.3 D.4解:由得,,等号成立时,即b=2a,此时故选:C.21.(2020春•四川月考)已知实数a>0,b>1满足a+b=5,则+的最小值为( ) A. B. C. D.解:因为a>0,b>1满足a+b=5,则+=(+)[a+(b﹣1)]×,=,当且仅当时取等号,故选:A.22.(2020•邯郸模拟)设m,n为正数,且m+n=2,则的最小值为( ) A. B. C. D.解:当m+n=2时,,因为,当且仅当m+1=n+2,即时取等号,则,即最小值为.故选:D.23.(2020•济宁模拟)已知实数a,b满足ab>0,则﹣的最大值为( ) A.2﹣ B.2+ C.3﹣2 D.3+2解:∵ab>0,则﹣====3, 当且仅当时取等号,此时取得最大值为3.故选:C.24.(2019秋•梅河口市校级期末)已知a,b为正数,4a2+b2=7,则的最大值为( ) A. B. C. D.2解:因为4a2+b2=7,则==≤=2,当且仅当4a2=1+b2时,取得最大值.故选:D.25.(2019秋•开封期末)已知m>0,n>0,,若不等式m+n≥﹣x2+2x+a对已知的m,n及任意实数x恒成立,则实数a的取值范围是( )A.[8,+∞) B.[3,+∞) C.(﹣∞,3] D.(﹣∞,8]解:∵,当且仅当时等号成立,∴﹣x2+2x+a≤9,即a≤x2﹣2x+9=(x﹣1)2+8,∴a≤8.故选:D.26.(2019秋•楚雄州期末)已知x>0,y>0,若不等式恒成立,则正数m的最小值是( )A.2 B.4 C.6 D.8解:因为x>0,y>0,正数m;∴=,因为不等式恒成立,所以,即,解得,所以m≥4.故选:B.27.(2020•湖北模拟)若不等式﹣m≥0对x∈(0,)恒成立,则实数m的最大值为( ) A.7 B.8 C.9 D.10解:根据题意,x∈(0,),则1﹣4x>0,则=+=[4x+(1﹣4x)](+)=5++≥5+2×=9,当且仅当1﹣4x=2x时等号成立,则的最小值为9,若不等式﹣m≥0对x∈(0,)恒成立,即式≥m恒成立,必有m≤9恒成立, 故实数m的最大值为9;故选:C.28.(2019秋•滨海新区期末)若正数x,y满足x2+xy﹣2=0,则3x+y的最小值是( )A.4 B. C.2 D.4解:因为x2+xy﹣2=0,所以=,所以3x+y=3x+=2x+≥4,当且仅当x=1时等号成立,故选:A.29.(2020春•重庆期末)已知关于x的一元二次不等式kx2﹣x+1<0的解集为(a,b),则2a+b的最小值是( )A.6 B.5+2 C.3+2 D.3解:由(a,b)是不等式kx2﹣x+1<0的解集,所以a,b是方程kx2﹣x+1=0的两个实数根, 所以a+b=,ab=,且k>0;所以a+b=ab,且a>0,b>0;即+=1;所以2a+b=(2a+b)•(+)=3++≥3+2=3+2,当且仅当b=a时“=”成立;所以2a+b的最小值为3+2.故选:C.30.(2020春•襄城区校级月考)若正实数x,y满足4x+y=xy,且恒成立,则实数a的取值范围为( )A.[﹣1,4] B.(﹣1,4) C.[﹣4,1] D.(﹣4,1)解:因为正实数x,y满足4x+y=xy,所以,所以x+=(x+)()=2+=4,当且仅当且,即x=2,y=8时取得等号,此时取得最小值4,因为恒成立,所以4>a2﹣3a,解可得,﹣1<a<4.故选:B.31.(2020春•浙江期中)已知正实数x,y,z满足x2+y2+z2=1,则u=的最小值是( ) A.9 B.3 C.4 D.5解:∵正实数x,y,z满足∴x2+y2+z2=1,∴0<z<1,0<1﹣z<1,由基本不等式可得,z(1﹣z)=,当z=1﹣z即z=时取等号,∵x2+y2+z2=1,∴1﹣z2=x2+y2≥2xy,当且仅当x=y=时取等号,∴=≥1,∴,则u==4,当且仅当x=y=,z=时取等号,此时取得最小值4.故选:C.32.(2020春•驻马店期末)已知正实数x,y满足x+2y=2xy.则x+y的最小值为( )A.4 B. C. D.解:∵正实数x,y满足x+2y=2xy,∴=2,即+=2,∴x+y=()•(+)=+1++≥+2=+,当且仅当x2=2y2时,等号成立,则x+y的最小值为+,故选:D.33.(2020春•渝中区校级期末)已知实数a>0,b>0,=,则a+2b的最小值为( ) A.2 B.6 C.3 D.3解:令s=a+1,t=b+1,则s>1,t>1,且=,∴a+2b=(s﹣1)+2(t﹣1)=s+2t﹣3,而s+2t=2(s+2t)•()=2(1+++2)≥2×(3+2)=2(3+),当且仅当=,即s=t时,等号成立.∴s+2t的最小值为2(3+),∴a+2b=s+2t﹣3≥2(3+)﹣3=3+4.故选:D.34.(2020春•合肥期末)已知a>0,b>0,且不等式≥恒成立,则实数m的取值范围是( )A.[﹣4,4] B.(﹣∞,4] C.[﹣4,+∞) D.[﹣3,3]解:因为a>0,b>0,且不等式≥恒成立,所以≥m2,即10+≥m2,因为10+=16,当且仅当即a=b时取等号,m2≤16,所以﹣4≤m≤4.故选:A.35.(2020春•丽水期末)已知实数x,y满足x>y>0,且x+y=1,则的最小值为( ) A. B.+ C.3+2 D.2解:因为实数x,y满足x>y>0,且x+y=1,所以x>1﹣x>0,解可得1>x>>y>0,则==,=()[(3﹣2x)+(2x﹣1)],=[3+]=,当且仅当=时取等号,故选:B.36.(2020春•路南区校级月考)若a,b为大于1的实数,且满足a+b=ab,则的最小值是( )A.2 B.4 C.6 D.8解:若a,b为大于1的实数,且满足a+b=ab,所以(a﹣1)(b﹣1)=1,即,故=4(b﹣1)+(a﹣1)=4b+a﹣5,同时a,b为大于1的实数,且满足a+b=ab,整理得.所以4a+b==4+,(当且仅当a=2b时,等号成立) 故4b+a﹣5的最小值为9﹣5=4.故选:B.37.(2020•浙江模拟)对于c>0,当非零实数a,b满足4a2﹣2ab+4b2﹣c=0,且使|2a+b|最大时,的最小值为( )A. B. C.﹣2 D.2解:∵4a2﹣2ab+4b2﹣c=0,∴=(a﹣)2+,由柯西不等式得,[(a﹣)2+][22+()2]≥[2(a﹣)+b•]2=|2a+b|2故当|2a+b|最大时,有=,∴a=b,c=10b2,∴=﹣+=()2﹣=()2﹣2,当b=时,取得最小值为﹣2. 故选:C.38.(2019秋•越城区校级期末)已知x,y都是正实数,则+的最大值为( ) A. B. C. D.解:因为x,y都是正实数,则+==1+=1+≤.当y=2x时取等号,∴+的最大值为.故选:B.39.(2020春•湖北期末)若x>0,y>0,且=1,则2x+y的最小值为( ) A.2 B.2 C. D.4+2解:(法一)=1可变形为,所以2x+y=(4x+2y)=[(3x+3)+(x+2y)]﹣=[(3x+3)+(x+2y)]()﹣=[4+]﹣≥﹣=,当且仅当x+2y=3x+3即x=,y=时取等号,(法二)原式可得y=,则2x+y=2x+=≥2+=+, 当且仅当,即x=时取“=”故选:C.40.(2020•天津)已知a>0,b>0,且ab=1,则++的最小值为 4.解:a>0,b>0,且ab=1,则++=+=+≥2=4,当且仅当=,即a=2+,b=2﹣或a=2﹣,b=2+取等号,故答案为:4。
最新初中数学方程与不等式之不等式与不等式组技巧及练习题含答案(1)
最新初中数学方程与不等式之不等式与不等式组技巧及练习题含答案(1)一、选择题1.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】 解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.故选C .【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.不等式组13x x -≤⎧⎨<⎩的解集在数轴上可以表示为( ) A .B .C .D .【答案】B【解析】【分析】分别解不等式组中的每一个不等式,再求解集的公共部分.【详解】由-x≤1,得x≥-1,则不等式组的解集为-1≤x <3.故选:B .【点睛】此题考查在数轴上表示不等式的解集.解题关键是求不等式组的解集,判断数轴的表示方法,注意数轴的空心、实心的区别.4.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤<【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.解不等式组3422133x x x -≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A .B .C .D .【答案】D【解析】【分析】 先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:1x ≤-,解不等式②得:5x <,将两不等式解集表示在数轴上如下:故选:D .【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.不等式组30213x x +⎧⎨->⎩…的解集为( ) A .x >1B .x≥3C .x≥﹣3D .x >2 【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:30213x x +>⎧⎨->⎩①②, 由①得,x ≥﹣3,由②得,x >2,故此不等式组的解集为:x>2.故选:D .【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.8.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.9.如果不等式(2)25a x a ->-的解集是4x <,则不等式251a y ->的解集是( ).A .52y < B .25y < C .52y > D .25y > 【答案】B【解析】【分析】 根据不等式的性质得出20a -<,2542a a -=-,解得32a =,则2a=3,再解不等式251a y ->即可.【详解】解:∵不等式(a-2)x >2a-5的解集是x <4,∴20a -<, ∴2542a a -=-, 解得32a =, ∴2a=3, ∴不等式2a-5y >1整理为351y ->, 解得:25y <. 故选:B .【点睛】本题考查了含字母系数的不等式的解法,有一定难度,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.10.若a b <,则下列各式中一定成立的是( )A .a b -<-B .11a b -<-C .33a b >D .ac bc < 【答案】B【解析】【分析】关键不等式性质求解.【详解】∵a <b ,∴a b ->-,11a b -<-,33a b <, ∵c 的符号未知∴,ac bc 大小不能确定.【点睛】考核知识点:不等式性质.理解不等式性质是关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.下列不等式变形中,一定正确的是( )A .若ac bc >,则a b >B .若a b >,则22ac bc >C .若22a b c c >,则a b > D .若0a >,0b >,且11a b>,则a b > 【答案】C【解析】【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.故选:C .【点睛】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.13.已知不等式组122x a x b +>⎧⎨+<⎩的解集为23x -<<,则2019()a b +的值为( ) A .-1 B .2019 C .1 D .-2019【答案】A【解析】【分析】根据不等式组的解集即可得出关于a 、b 的方程组,解方程组即可得出a 、b 值,将其代入计算可得.【详解】解不等式x +a >1,得:x >1﹣a ,解不等式2x +b <2,得:x <22b -, 所以不等式组的解集为1﹣a <x <22b -. ∵不等式组的解集为﹣2<x <3,∴1﹣a =﹣2,22b -=3, 解得:a =3,b =﹣4, ∴201920192019()(34)(1)a b +=-=-=﹣1.故选:A .【点睛】本题考查了解一元一次不等式组,解题的关键是求出a 、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.14.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得2ax bc >C .由a b >,得ac bc <D .由a b >,得a c b c ->-【答案】D【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确.故选:D【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.15.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4,因为不等式组1132xa x-⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a﹣2<1,解得:2≤a<3,故选C.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a的不等式是解答本题的关键.16.不等式组26020xx+>⎧⎨-≥⎩的解集在数轴上表示为()A.B.C.D.【答案】C【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:26020xx+>⎧⎨-≥⎩①②,由①得:3x>-;由②得:2x≤,∴不等式组的解集为32x-<≤,表示在数轴上,如图所示:故选:C.【点睛】考核知识点:解不等式组.解不等式是关键.17.若整数a使关于x的分式方程111a x ax x++=-+的解为负数,且使关于x的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10 【答案】C【解析】【分析】解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出a 的范围,继而可得整数a 的所有取值,然后相加.【详解】解:解关于x 的分式方程111a x a x x ++=-+,得x =−2a+1, ∵x ≠±1,∴a ≠0,a≠1,∵关于x 的分式方程111a x a x x ++=-+的解为负数, ∴−2a+1<0, ∴12a >, 解不等式1()02x a -->,得:x <a , 解不等式2113x x +-≥,得:x≥4, ∵关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解, ∴a ≤4,∴则所有满足条件的整数a 的值是:2、3、4,和为9,故选:C .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的方法,并根据题意得到a 的范围是解题的关键.18.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b >【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A、由a>b,不等式两边同时减去2可得a-2>b-2,故此选项错误;B、由a>b,不等式两边同时乘以-2可得-2a<-2b,故此选项正确;C、当a>b>0时,才有|a|>|b|;当0>a>b时,有|a|<|b|,故此选项错误;D、由a>b,得a2>b2错误,例如:1>-2,有12<(-2)2,故此选项错误.故选:B.【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.19.不等式组10235xx+≤⎧⎨+<⎩的解集在数轴上表示为()A.B.C.D.【答案】C【解析】【分析】先分别解不等式,得到不等式组的解集,再在数轴上表示解集.【详解】因为,不等式组10235xx+≤⎧⎨+<⎩的解集是:x≤-1,所以,不等式组的解集在数轴上表示为故选C【点睛】本题考核知识点:解不等式组.解题关键点:解不等式.20.下列四个不等式:(1)ac bc >;(2)-ma mb <;22 (3) ac bc >;(4)1a b >,一定能推出a b >的有() A .1个B .2个C .3个D .4个【答案】A【解析】【分析】根据不等式的性质逐个判断即可求得答案.【详解】解:在(1)中,当c <0时,则有a <b ,故不能推出a >b ,在(2)中,当m >0时,则有-a <b ,即a >-b ,故不能推出a >b ,在(3)中,由于c 2>0,则有a >b ,故能推出a >b ,在(4)中,当b <0时,则有a <b ,故不能推出a >b ,综上可知一定能推出a >b 的只有(3),故选:A .【点睛】 本题考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.。
高中数学必修一不等式习题
高中数学必修一不等式习题1.(2022·山东滕州·高一期末)“x6”是“sinx1”的充要条件。
2.(2022·四川广元·高二期末(理))命题“x R,均有x2cosx12”的否定为“x R,使得x cosx12”。
3.(2011·上海·高考真题(文))若a,b R,且ab0,则恒成立的不等式是a b2ab。
4.(2013·重庆·高考真题(文))关于x的不等式x22ax8a20(a0)的解集为(x1,x2),且:x2x115,则a=15/2.5.(2015·湖南·高考真题(文))若实数a,b满足a+b=1,则ab的最小值为1/4.6.(2021·全国·高一单元测试)若不等式ax22x c0的解集是(-∞,-1/3]∪[1/2,+∞),则不等式cx22x a0的解集是[1/1,1/2]。
7.(2021·XXX(XXX)高一阶段练)若正实数a,b满足a+b=1,则a+b的最大值为2,ab的最小值为1/4.8.(2021·全国·高一期中)已知a>0,若a+4b=4ab,则a+b的最小值是2.9.(2021·XXX高一期中)对于所有的实数x,不等式(a-2)x+2(a-2)x-4<XXX成立,则a的取值范围是a≤-2或a≥2.10.(2020·XXX高一期末)不等式(x+3)2-2}。
11.(2022·北京石景山·高一期末)函数不等式 $ax^2-x+c>0$ 的解集为 $\{x| -4\leq x\leq -2\} \cup (-2<x<1)$,则函数$y=ax^2+x+c$ 的图像大致为选项 $\text{B}$。
13.(2021·XXX高一阶段练)若两个正实数 $x$,$y$ 满足 $14y+x=\dfrac{1}{4}$,且存在这样的 $x$,$y$ 使不等式 $x+2<m^2+3m$ 有解,则实数 $m$ 的取值范围是选项$\text{B}$。
高考数学经典专题:三元基本不等式习题(含详解答案)
高考经典专题:三元基本不等式习题1.设0x >,则()2142f x x x =--的最大值为( ) A.4B.4C .不存在 D .52 2.函数()230y x x x=+>的最小值是 ( ) A.33218 B . C . D . 3.若2,3a b >>,则1(2)(3)a b a b ++--的最小值为________. 4.(1)已知,,x y z 均为正数,且1864xyz =,求证:(82)(82)(82)27x y z +++≥; (2)已知实数,m n 满足m 1≥,12n ≥,求证:222224142m n mn m n m n ++≤++. 5.已知正数x 、y 、z ,且1xyz =. (1)证明:222x y z y z x z y++≥; (2)证明:()()()22212x y y z z x +++++≥.6.已知,,a b c 为正数,且1abc =,求证333()()()24a b a c b c +++++≥.7.已知a ,b ,c 为一个三角形的三边长.证明:(1)3b c a a b c++≥; (2)22a b c >++.8.(选修4-5:不等式选讲)已知0,0,0x y z >>>,且1xyz =,求证:333x y z xy yz xz ++≥++参考答案1.D ()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭ 当21222x x x==即1x =时等号成立2.A 函数2233322y x x x x x =+=++≥=,当且仅当232x x =,即x=2时取等号,故函数()230y x x x =+>. 3.8令2,3a t b m -=-=2,3a b >>,20,30a b ∴->->,即0,0t m >>, 所以3115358(2)(3)a b t m t m a b tm ++=+++⨯⨯=--, 当且仅当1t m tm==,即123(2)(3)a b a b -=-=--,即当3,4a b ==时等号成立. 4.(1)证明:因为0x >,由三个正数的基本不等式可得,82811x x +=++≥18x时取等号;同理可得82y +≥82z +≥,当且仅当11,88y z ==时取等号;故(82)(82)(82)x y z +++≥18x y z ===时取等号, 因为1864xyz =,所以(82)(82)(82)27x y z +++≥, 当且仅当18x y z ===时取等号. (2)证明:要证222224142m n mn m n m n ++≤++,即证2222442210m n mn n m n m -+-+-≥,即证24(1)(22)(1)10mn m mn n m m --+-+-≥, 即证()2(1)42210m mn mn n ---+≥,即证(1)[2(21)(21)]0m mn n n ----≥, 即证(1)(21)(21)0m n mn ---≥,因为m 1≥,12n ≥,所以10m -≥,210n -≥,210mn -≥, 所以(1)(21)(21)0m n mn ---≥,所以222224142m n mn m n m n ++≤++得证..5.(1)因为x 、y 、z 为正数,且1xyz =,所以222x y y z z+≥==,当且仅当32y zx =时等号成立,即4y x =时,等号成立;同理22y z z x +≥,22x z y x y +≥,所以22222x y z y z x ⎛⎫++≥+ ⎪⎝⎭⎝⎭,即222x y z y z x ++≥,当且仅当1x y z ===时等号成立; (2)因为()()()222x y y z z x +++++≥由二元均值不等式得x y +≥y z +≥,z x +≥,当且仅当x y z ==时,等号同时成立,所以()24x y xy +≥,()24y z yz +≥,()24z x xz +≥, ()()()()22226464x y y z z x xyz ∴+++≥=,因此,()()()22212x y y z z x +++≥=++,当且仅当1x y z ===时,等号同时成立.6.证明:已知,,a b c为正数,且1abc =,故有 333()()()a b a c b c +++++≥3()()()a b b cc a =+++3≥⨯⨯⨯24=.当1a b c ===时等号成立.故333()()()24a b a c b c +++++≥.7.(1)证明:由三项基本不等式可知3b c a a b c ++≥= (2)证明:由于a ,b,c 为一个三角形的三边长,则有:2b c a=++>,>a=>,b >c >,相加得:a b c >++,左右两边同加a b c ++得:()22a b c>++所以22a b c >++8.证明:因为0,0,0x y z >>>,所以3333x y z xyz ++≥, 3313x y xy ++≥,3313y z yz ++≥,3313x z xz ++≥,将以上各式相加,得33333333333x y z xyz xy yz xz +++≥+++,又因为1xyz =,从而333x y z xy yz xz ++≥++.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式综合测试题一、选择题1.若110b a <<,则下列不等式不成立的是( ) A.11a b a>- B.a b < C.||||a b > D.22a b >2.给出下列不等式:①a a 232>+;② )1(222-->+b a b a ;③xy y x 222>+.其中恒成立的不等式的个数为( )A.3B.2C.1D.03.不等式102x x-≥-的解集是( ) A.[1,2] B.(,1][2,)-∞+∞ C.[1,2) D.(,1](2,)-∞+∞4.函数2012xy x x =>+()取最大值时x 的值为( ) A.22 B.42 C.2 D.225.下列结论中错误的是( )A.若0ab >,则2b a a b +≥ B.函数1cos 0cos 2y x x x π=+<<()的最小值为2 C.函数22x xy -=+的最小值为2 D.若01x <<,则函数1ln 2ln x x+≤-6.若变量,x y 满足⎪⎩⎪⎨⎧≤≤≥+-≥+10010x y x y x ,则y x 3-的最小值是( )A.5-B.3-C.1D.47.设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )A.4B.40C.2D.18 8.若关于x 的不等式2260x ax a -->(0a <)的解集为12(,)(,)x x -∞+∞,且21x x -=a =( )A.B.C.2-D.32-9.已知函数()lg ,0f x x a b =<<,若p f =,()2a b q f +=,r=12[f(a)+f (b )],则,,p q r 的大小关系是( )A.p r q =>B.p r q =<C.q r p =<D.q r p =>10.已知实数y x ,满足约束条件201 70x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则yx 的取值范围是( )A.[]1,3B.9[,3]5C.[]3,6D.9[,6]511.已知实数,x y 满足线性约束条件20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩若目标函数z kx y =+当且仅当3,1x y ==时取得最小值,则实数k 的取值范围是( )A.[2,1]-B.(2,1)-C.1(1,)2-D.1(,1][,)2-∞-+∞ 12.设,x y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,若目标函数()00>>+=b ,a by ax z 的最大值为10,则ba 45+的最小值为( ) A.6 B.8 C.4 D.10 二、填空题13.已知错误!未找到引用源。
,且211,()m n a a a b ab==+-,则错误!未找到引用源。
的最小值是_________.14.设实数x ,y 满足不等式组221x y y x y +≤⎧⎪-≤⎨⎪≥⎩,则22(3)x y ++的取值范围是 .15.对于实数x ,当且仅当1n x n ≤<+(n Z ∈)时,规定[]n x =,则不等式045][36][42<+-x x 的解集为________.16.某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲、乙两种产品每吨所需要的原材料A,B,C 的数量和一周内可用资源数量如下表所示:工厂每周可获得的最大利润为 元.20.(本小题满分12分)已知实数,x y 满足条件:7523071104100x y x y x y --≤⎧⎪+-≤⎨⎪++≥⎩,点()()2,1,,M P x y.(1)求74y x ++的取值范围; (2)求OM OP ⋅uuu r uu u r的最大值.不等综合测试题1.因为110b a<<,所以0a b <<,所以0a b ->->,所以||||a b >,22a b >,即选项B 、C 、D 中的不等式都成立.故选A . 2.因为()2232120a a a +-=-+>,所以①正确;因为0)1()1()1(22222≥-+-=---+b a b a b a ,0)(2222≥-=-+y x xy y x ,所以②③错误. 故恒成立的不等式的个数为1.3.原不等式等价于(1)(2)0x x --≥且20x -≠,解得12x ≤<,所以原不等式的解集是[1,2).4.因为211122x y x x x==≤=++12x x=,即x =时,等号成立. 5.对于A ,由0ab >知,0,0b aa b>>,所以2b a a b +≥=,故选项A 本身正确;对于B,1cos 2cos y x x =+≥=,但由于1cos cos x x =在02x π<<时不可能成立,所以不等式中的“=”实际上取不到,故选项B 本身错误;对于C ,因为222x x y -=+≥=,当且仅当22x x -=,即0x =时,等号成立,故选项C 本身正确;对于D ,由01x <<知,l n x <,所以D 本身正确. 故选B. y 3-,即1133y x z =-,过)2,1(A 5231min -=⨯-=z .18,故选D.8.21x x -===,又0a <,a ∴=.9.由2a b +>,函数x x f lg )(=在()0,+∞上单调递增,可得()2a b f f +>.又11(()())lg()22r f a f b ab f p =+====,()2a bq f +=,故p r q =<.10.设点(,)P x y ,又坐标原点(0,0)O ,所以0PO y y k x x -==-.于是,画出可行域(图略),由图可知:当59,22x y ==时,min 9()5y x =;当1,6x y ==时,max ()6y x =.故所求yx的取值范围是9[,6]5.12.根据约束条件画出可行域,如图所示,把目标函数化为a zyx b b=-+的形式,斜率始终为负值,发现只有通过点(4,5)A 才能取得最大值10,即4510a b +=.于是,5415411625()(45)(40)1010a ba b a b a b b a +=++=++,1(40810≥+=,当且仅当1625a b b a =,即1,45==b a 时,,等号成立. 13.由已知可得,22221111()4m n a a ab ab a ab ab a ab ab+=++=+-++≥--,当且仅当2a ==时,等号成立. 14.如图,不等式组表示的平面区域是图中的阴影部分,22(3)x y ++表示该区域上的点(,)x y 到点(3,0)-的距离的平方.从图中可以看出,这个最小值为5,最大值为17.因此22(3)x y ++的取值范围是[5,17]. 15.由24[]36[]450x x -+<,得315[]22x <<,根据[]x 所表示的意义可知7][2≤≤x ,从而82<≤x .故所求不等式的解集为{}82<≤x x .16.设工厂一周内安排生产甲产品x 吨、乙产品y 吨,所获周利润为z 元.依据题意,得目标函数为300200z x y =+,约束条件为5041602520000x y x x y y x +≤⎧⎪≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩.画出约束条件的可行域,如图阴影部分所示.求得有关点50100(400)(4010)()(040)33A B C D ,、,、,、,,将直线300x+200y=0向上平移,当经过可行域的点B 时,函数300200z x y =+的值最大,且最大值为14000.故工厂每周生产甲产品40吨,乙产品10吨时,工厂可获得最大的周利润14000元.20.解:如图所示,画出该不等式组所表示的平面区域,其中()()()4,1,1,6,3,2A B C ---.(1)74y x ++可以理解为区域内的点与点()4,7D --连线的斜率. 由图可知,连线与直线BD 重合时,倾斜角最小且为锐角;连线与直线CD 重合时,倾斜角最大且为锐角.又13DB k =,9CD k =,故所求74y x ++的取值范围为1[,9]3. (2)易知()()2,1,2OM OP x y x y ⋅=⋅=+uuu r uu u r.令2z x y =+,则2y x z =-+,其中z 表示直线2y x z =-+在y 轴上的截距. 由可行域可知,当直线2y x z =-+经过A 点时,z 取到最大值. 故所求最大值为2419⨯+=.。