中南大学典型系统的时域响应和稳定性分析实验报告
实验一系统响应及系统稳定性实验报告精修订

实验一系统响应及系统稳定性实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]一、实验目的(1)掌握求系统响应的方法(2)掌握时域离散系统的时域特性(3)分析、观察及检验系统的稳定性二、实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应。
已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter函数。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
注意在以下实验中均假设系统的初始状态为零。
二、实验内容及步骤(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,用filter函数或conv函数求解系统输出响应的主程序。
程序中要有绘制信号波形的功能。
程序代码xn=[ones(1,32)];hn=[0.2 0.2 0.2 0.2 0.2];yn=conv(hn,xn);n=0:length(yn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a)y(n)波形');xlabel('n');ylabel('y(n)')输出波形(2)给定一个低通滤波器的差分方程为输入信号)()(81nRnx=①分别求出系统对)()(81nRnx=和)()(2nunx=的响应序列,并画出其波形。
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
典型系统动态性能和稳定分析

实验报告课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:年月日典型系统动态性能和稳定性分析一·实验目的1学习和掌握动态性能指标的测试方法。
2研究典型系统参数对系统动态性能和稳定性的影响。
二·实验要求1定性的影响。
2定性的影响。
1 2.1.1和图2.1.2设计U9、U15、U11和U82利34 2.2.1和图2.2.2设计并连接由一个U9、U15、U11、U10和U8连成5并测出其超调量和调节时间。
672、3与5、6参阅“实验一”的实验步骤2实验步骤7“实验一”的实验步骤3这里不再赘述。
1典型二阶系统典型二阶系统的方块结构图如图 2.1.1其开环传递函数为其闭环传递函数为其中取二阶系统的模拟电路如图2.1.2该系统的阶跃响应如图2.1.3Rx接U4单元的220K 电位器改变元件参数Rx 2.1.3a 2.1.3b 2.1.3c分别对应2典型三阶系统的方块结构图如图2.2.1其开环传递函数为其中取三阶系统的模拟电路如图2.2.2所示。
该系统开环传递函数为Rx的单位为K系统特征方程为系统稳定 0<K<12系统临界稳定 K=12系统不稳定 K>12根据K求取Rx。
这里的Rx可利用模拟电路单元的220K Rx即可改变K2而改变K该系统的阶跃响应如图2.2.3 a、2.2.3b 和2.2.3c稳定、临界稳定和稳定的三种情况。
实验数据记录:二阶欠阻尼二阶过阻尼振荡二阶临界阻尼振荡三阶稳定六、实验结果与分析。
系统的时域实验报告

系统的时域实验报告系统的时域实验报告一、引言时域实验是系统动态特性研究中的重要手段之一。
通过对系统的输入和输出信号进行时域分析,可以揭示系统的动态响应规律,并对系统进行性能评估和优化设计。
本实验旨在通过对某一系统的时域实验研究,探索系统的动态特性和性能指标。
二、实验目的1. 了解时域分析的基本原理和方法;2. 掌握系统的时域响应测量技术;3. 研究系统的动态特性和性能指标。
三、实验装置与方法1. 实验装置:系统输入信号发生器、系统输出信号采集器、计算机数据处理软件等;2. 实验方法:根据实验要求,设置系统的输入信号,采集系统的输出信号,并通过计算机软件进行数据处理和分析。
四、实验步骤1. 系统建模:根据实际情况,对系统进行数学建模,得到系统的传递函数或状态空间模型;2. 实验准备:将系统输入信号发生器与系统输出信号采集器连接,设置合适的参数;3. 实验测量:根据实验要求,设置不同的输入信号,采集系统的输出信号;4. 数据处理:将采集到的数据导入计算机软件中,进行时域分析和性能指标计算;5. 结果分析:根据实验结果,分析系统的动态特性和性能指标,得出结论。
五、实验结果与分析根据实验所得数据,通过计算机软件进行时域分析和性能指标计算,得到系统的动态响应曲线和相关参数。
通过对曲线的观察和分析,可以得出以下结论:1. 系统的时间常数:通过观察系统的动态响应曲线,可以确定系统的时间常数,即系统从初始状态到达稳定状态所需的时间。
时间常数越小,系统的响应速度越快。
2. 系统的超调量:超调量是指系统响应的最大偏离量与稳态值之间的差值。
通过观察系统的动态响应曲线,可以测量出系统的超调量。
超调量越小,系统的稳定性越好。
3. 系统的峰值时间:峰值时间是指系统响应曲线达到最大值所需的时间。
通过观察系统的动态响应曲线,可以测量出系统的峰值时间。
峰值时间越小,系统的响应速度越快。
4. 系统的上升时间:上升时间是指系统响应曲线从初始状态到达稳定状态所需的时间。
系统响应及系统稳定性实验报告

系统响应及系统稳定性实验报告实验课程:数字信号处理实验名称:系统响应及系统稳定性实验时间:12月1日实验设备:电脑、matlab软件实验目的:在matlab 环境下,掌握求系统相应的方法,掌握时域离散系统的时域特性。
实验内容:原理:在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函。
也可以用MATLAB语言的工具箱函数conv函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
实际中检查系统是否稳定,不可能检查系统对所有有界的输入信号,输出是否都是有界输出,或者检查系统的单位脉冲响应满足绝对可和的条件。
可行的方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括零),就可以断定系统是稳定的。
系统的稳态输出是指当n→∞时,系统的输出。
如果系统稳定,信号加入系统后,系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳定,达到稳态输出。
但是在实验中全部都假设系统的初始状态为零。
实验内容:(1)编制程序,包括产生输入信号、单位脉冲响应序列的子程序,以及用filter函数或conv函数求解系统为3输出响应的主程序。
(2)给定一个低通滤波器的差分方程y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n),x2(n)=u(n)分别求出x1(n)=R8(n),x2(n)=u(n)的系统响应,并画出其波形。
实验一-系统响应及系统稳定性实验报告

实验一-系统响应及系统稳定性实验报告
一、实验目的
设计一个生态缸,观察这一人工生态系统的稳定性
二、实验原理
在有限的空间内,依据生态系统原理将生态系统具有的基本成分进行组织,构建一个人工微生态系统.
三、实验材料
(1)器材:一个长20cm,宽、高10cm的生态缸;
一块长10cm宽5cm的硬质棉花;
保鲜膜和透明胶布
(2)生物:两条小金鱼、两颗小青菜、一株水草、一个仙人掌一抔菜地土壤和鱼缸里的水
四、
(1)将土堆在缸的一侧成一个长方形,青菜、仙人掌植入其上,水草
植入其下;将棉花放在土壤一侧,防止水变浑浊.
(2)取鱼缸内的水,注入生态缸,直至高5cm;
(3)放入金鱼
(4)于1月13日,用保鲜膜和透明胶布在教室封缸,开始观察1月13日晴金鱼很有活力青菜未有变化
1月14日晴金鱼很有活力青菜未有变化
1月15日阴金鱼游动频率下降青菜微微泛黄
1月16日阴周六未观察
1月17日雨周日未观察
1月18日阴金鱼表面开始有白色物质脱落类似蜕皮
可能发炎青菜已有部分变黄
1月19日晴金鱼白色物质脱落严重青菜泛黄面积增大
1月20日晴金鱼、青菜全员生还解封
五实验结论
恰当的组成成分,可以使生态系统具有一定的稳定性,维持自身物质循环和能量流动
六注意事项
(1)保持水质较为清澈,不能太过浑浊
(2)生态缸要放置于通风,光线良好的地方
(3)不能暴晒
(4)缸内生物并非越多越好,要根据缸的大小,和缸内植物决定。
中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。
系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。
将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。
2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
典型环节的时域响应实验报告.doc

典型环节的时域响应实验报告.doc
时域品响实验报告
实验目的:
本实验要求使用示波器对典型环节进行时域响应测试以及分析、评估环节上增益与相位特性。
实验原理:
示波器通过采用双向采样,检测来自信号源传输器的输入信号并将其转换为数字数据以及图形显示。
实验中使用一个典型环节对信号进行处理,示波器将其输入和输出的波形作为时域响应的测试对象,实验的目的是了解环节的相位特性以及增益计算,及通过观察响应信号的特点,判断环节的性能。
实验方法及步骤:
1. 使用测试设备准备实验的元器件,一个典型环节、一组示波器(主从),以及两组不同频率的信号源传输器
2. 使用示波器图形界面设置测量范围及分辨率,让示波器开始记录信号波形
3. 用信号源传输器向典型环节输入不同频率的信号
4. 记录典型环节响应信号输入及输出的幅值,计算该环节增益
5. 观察输入及输出信号的波形特性,判断环节的相位特性,以及反应时间等
6. 根据测量数据,计算环节的有效增益
实验结果:
通过这次实验得出的时域响应特性,描述了典型环节在不同信号频率下输出信号幅值以及输出信号相位特性及其波形特征,同时计算出该环节的有效增益。
结论:
本次实验分析该环节的时域特性,包括输出信号的增益以及相位特性,计算出该环节的有效增益处理,检测与测量数据吻合良好,可以正常使用该典型环节进行实际应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称典型系统的时域响应和稳定性分析系信息院专业班
姓名学号授课老师预定时间实验时间实验台号
一、目的要求
1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。
二、原理简述
1.典型的二阶系统稳定性分析
(1) 结构框图:如图所示。
(2) 理论分析
系统开环传递函数为:
开环增益
2.典型的三阶系统稳定性分析
(1) 结构框图:如图所示。
(2) 理论分析
系统开环传递函数为:
系统的特征方程为:
三、仪器设备
PC 机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
四、线路示图
1.典型的二阶系统稳定性分析
2.典型的三阶系统稳定性分析
五、内容步骤
1.典型的二阶系统稳定性分析
实验内容:
先算出临界阻尼、欠阻尼、过阻尼时电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
系统闭环传递函数为:
其中自然振荡角频率:
阻尼比:
2.典型的三阶系统稳定性分析
实验内容
实验前由Routh 判断得Routh 行列式为:
为了保证系统稳定,第一列各值应为正数,所以有
实验步骤:
1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设置了锁零场效应管,所以运放具有锁零功能。
将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出的方波幅值为1V,周期为10s 左右。
2. 典型二阶系统瞬态性能指标的测试
(1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K。
(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP、峰值时间tp 和调节时间tS。
(3) 分别按R = 50K;160K;200K;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP、tp 和tS,及系统的稳定性。
并将测量值和计算值进行比较(实验前必须按公式计算出)。
将实验结果填入表1.2-1 中。
表1.2-2 中已填入了一组参考测量值,供参照。
3.典型三阶系统的性能
(1) 按图1.2-4 接线,将1 中的方波信号接至输入端,取R = 30K。
(2) 观察系统的响应曲线,并记录波形。
(3) 减小开环增益(R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。
表1.2-4
中已填入了一组参考测量值,供参照。
六、数据处理
典型的二阶系统稳定性分析波形
(1)R=10k时波形图
(2)R=50k时波形图
(3)R=160k时波形图
(4)R=200k时波形图
(3)R=100K 时
波
形
图
七、分析讨论
1、典型二阶系统瞬态性能指标实验测试值
2、典型三阶系统在不同开环增益下的响应情况实验测试值
经过这次实验,我觉得我不仅更加深刻了解了TD-ACC+实验系统的使用,也收获了课堂上所得不到的知识,对系统的时域响应和稳定性有了更进一步的理解。
的确,亲自动手实验能使自己受益匪浅。
首先,在试验系统的使用中,熟练利用虚拟仪器,调整输出的方波是非常的方便的。
通过对实验所得波形与数据的分析,我总结了一下几点:
(1)通过调整系统的参数可改变系统阻尼系数,从而改变系统动态性能。
(2)当阻尼系数小于1为欠阻尼,阻尼系数越小,系统超调越大,峰值时间越小,调整时间越大。
(3)当阻尼系数等于1为临界阻尼,无超调,调整时间最小。
(4)当阻尼系数大于1为过阻尼,阻尼越大,响应越慢,调整时间越大。
总而言之,通过这次自动控制的实验,加深了我对典型系统的时域响应和稳定性分析的理解,能更清楚明白的分析二阶和三阶系统,为之后的学习打下了好的基础。
同时也加强了我们的动手能力,发现问题与解决问题的能力以及独立思考的能力。