2019-2020学年江苏省徐州市邳州市九年级上学期期末数学试卷及答案解析

合集下载

2019—2020年新苏教版九年级数学上册(第一学期)期末模拟测试卷及答案解析(试题).doc

2019—2020年新苏教版九年级数学上册(第一学期)期末模拟测试卷及答案解析(试题).doc

苏教版九年级上学期期末模拟考试数学试题一、选择题(每题3分,共24分.每小题有四个选项,其中只有一个选项是正确的) 1.一元二次方程x x 22=的解为( ▲ ).A 0=x .B 2=x.C 0=x 或2=x .D 0=x 且2=x2. 体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( ▲ ).A 平均数 .B 频数分布 .C 中位数 .D 方差3. 用圆心角为︒120,半径为3的扇形纸片围成一个圆锥的侧面,则这个圆锥的底圆半径是( ▲ ).A 1 .B 23.C2 .D3 4. 如图,DE//BC ,则下列比例式错误..的是( ▲ ) .ABC DE BD AD = .B ECAE BD AD =.CEC AC BD AB = .D ACAEAB AD = 5. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( ▲ )AEDCB6. 如图,A D 、是⊙O 上的两个点,BC 是直径,若35D ∠=,则A C B ∠的度数是( ▲ ) .A ︒35 .B ︒55 .C ︒65 .D ︒707. 如图,在梯形ABCD 中,BC AD //,90A ∠=,1=AD ,4=BC ,6=AB ,若点P 在AB 上,且PAD ∆与PBC ∆相似,则这样的P 点的个数为( ▲ ).A 1 .B 2 .C 3 .D 48. 如图,二次函数c bx ax y ++=2)0(>a 图象的顶点为D ,其图象与x 轴的交于点B A 、,与y 轴负半轴交于点C ,且方程02=++c bx ax 的两根是1-和3. 在下面结论中:①0>abc ;②0<++c b a ;③03=+a c ;④若点),2(m M 在此抛物线上,则m 小于c .正确的个数是( ▲ ).A 1个 .B 2个 .C 3个 .D 4个二、填空题(每小题3分,共30分)PD CBA第7题图 第8题图第6题图9. 扬州12月某日的最高气温是10C ,最低气温1C ,则这天的日温差是 ▲ C . 10.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 ▲ .11. 图中△ABC 外接圆的圆心坐标是 ▲ .12. 已知方程092=++kx x 有两个相等的实数根,则=k ▲ .13. 如图,在△ABC 中,D 、E 分别是边AC AB 、上的点,BC DE //,:1:2AD DB =,1ADE S ∆=,则BCED S 四边形的值为 ▲ .14.如图,△ABC 中,︒=∠︒=∠8525B C ,, 过点B A 、的圆交边BC AC 、分别于点D E 、, 则 =∠EDC ▲ °.15. 如图,将半径为2的圆形纸片沿 着弦AB 折叠,翻折后的弧AB 恰好 经过圆心O ,则弦AB = ▲ .16.如图,抛物线2(0)y mx nx m =+<和直线y ax =()0≠a ,其中抛物线nx mx y +=2 的第14题图第15题图第13题图第10题图顶点在直线y ax =上,且与x 轴的一个交点为(6,0),则不等式的ax nx mx >+2解集是 ▲ .17.如图,⊙O 的半径为1cm ,正六边形ABCDEF 内接于⊙O ,则图中阴影部分面积为 ▲ 2cm .(结果保留π)18. 如图,一段抛物线24(04)y x x x =-+≤≤,记为1C ,它与x 轴交于点O 、1A ;将1C 绕点1A 旋转180得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180得3C ,交x 轴于点3A ...如此进行下去,直至得抛物线2015C .若点(,3)P m 在第2015段抛物线2015C 上,则m = ▲ .三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)解方程: (1) 9)12(2=-x(2)5)5(-=-x x x第17题图第18题图第16题图20.(本题满分8分)先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.21.(本题满分8分)某品牌汽车销售公司有营销员14名,销售部为制定营销人员月销售汽车定额,统计了这14人某月的销售量如下(单位:辆)(1)这14位营销员该月销售该品牌汽车的平均数是 ▲ 辆,众数 是 ▲ 辆,中位数是 ▲ 辆.(2) 销售部经理把每位营销员月销量定位9辆,你认为合理吗?若不合理,请你设计一个较为合理的销售定额,并说明理由.22.(本题满分8分)现有两个不透明的乒乓球盒,甲盒中装有1个白球和1个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为53. (1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.23.(本题满分10分)如图,抛物线c bx ax y ++=2与x 轴交于B A 、两点,交y 轴于点C ,且)3,0(),0,3(--C A ,对称轴为直线1-=x .(1)求抛物线的函数关系式.(2)若点P 是抛物线上的一点(不与点C 重合)PAB ∆与△ABC 的面积相等,求点P 的坐标.24.(本题满分10分)如图,在等边△ABC 中,点E D 、分别是边AC BC 、上的点,且CE BD =,连接AD BE 、,相交于点F .(1)求证:△ABD ≌△BCE(2)图中共有 ▲ 对相似三角形(全等除外). 并请你任选其中一对加以证明.你选择的是 ▲ .25.(本题满分10分)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少20件.(1)当售价定为12元时,每天可售出 ▲ 件; (2)要使每天利润达到640元,则每件售价应定为多少元?(3) 当每件售价定为多少元时,每天获得最大利润?并求出最大利润.26.(本题满分10分) 如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作AC DE ⊥于E . (1)求证:DE 为⊙O 的切线;(2)若13=AB ,5=CD ,求CE 的长.27. (本题满分12分)对于一个三角形,设其三个内角的度数分别为︒x 、︒y 和︒z ,若x 、y 、z 满足222z y x =+,我们定义这个三角形为美好三角形.(1)△ABC 中,若︒=∠50A ,︒=∠70B ,则△ABC ▲ (填“是”或“不是” )美好三角形;(2)如图,锐角△ABC 是⊙O 的内接三角形,︒=∠60C ,4=AC , ⊙O 的直径是24, 求证:△ABC 是美好三角形; (3)已知△ABC 是美好三角形,︒=∠30A ,求∠C 的度数.28.(本题满分12分)如图,抛物线322++-=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点,对称轴与抛物线相交于点M ,与x 轴相交于点N .点P 是线段MN 上的一动点,过点P 作CP PE ⊥交x 轴于点E .(1) 直接写出抛物线的顶点M 的坐标是 ▲ . (2) 当点E 与点O (原点)重合时,求点P 的坐标.(3) 点P 从M 运动到N 的过程中,求动点E 的运动的路径长.AB CO∙九年级数学参考答案及评分标准一、选择题(每题3分,共24分.每小题有四个选项,其中只有一个选项是正确的)题号 1 2 3 4 5 6 7 8答案 C D A A B B C D二、填空题(每小题3分,共30分)9. 9 10. 11. (5,2) 12. 13. 814. 70 15. 16. 0<x<3 17. 18. 8057或8059三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19. (1) x=2,或x=-1 ---------4分(2) x=5 或x=1 ---------8分20 . (本题满分8分)= -------4分方法一:解,得-----6分当x=-7时,原式=18 -----8分方法二:由,可得原式=18 -----8分21. (本题满分8分)(1)这位营销员该月销售该品牌汽车的平均数是9 辆,众数是8 辆,中位数是8 辆. -------每空2分(2) 言之有理即可给分---------8分22. (本题满分8分)(1)设乙盒中红球的个数为x,根据题意得,解得x=3经检验,x=2是方程的根。

江苏省邳州市2019-2020学年度第一学期期末抽测九年级数学试题

江苏省邳州市2019-2020学年度第一学期期末抽测九年级数学试题

2019~2020学年度第一学期期末抽测九年级数学试题一、选择题(本大题共8小题,每小题3分,共24分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.如果一个一元二次方程的根是x=x=1,那么这个方程是A.x2=1B.x2+1=0C.(x-1)2=0D.(x+1)2=02.抛物线y=-2(x-2)2+3的顶点坐标是A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)3.下列说法正确的是A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是A.平均数B.众数C.方差D.中位数5.由3x=2y(x≠0),可得比例式为A.x y =32B.x3=y2C.x2=y3D.x2=3y6.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为A.30°B.45°C.60°D.75°7如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是A.∠AED=∠BB. ∠ADE=∠CC.AEAB =DEBCD.ADAC=AEAB8.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为A.2√3B. 2√5C.4D.6二、填空题(本大题共10小题,每小题3分,共30分。

不需写出解管过程,请将答案直接填写在答题卡相应位置)9. 若a b =34,则2a−b b = .10.若△ABC ≌△DEF,,且相似比为1:2,则△ABC 与△DEF 面积比 .11.已知X 1、X 2互是一元二次方程X 2-2X-3=0的两个实数根,则X 1+X 2= .12.函数y=—(x-1)2+2图像上有两点A(3,y 1)、B (—4,y ,),则y 1 y 2(填“<”、“>”或“=”).13.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是 .14.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本 (填“具有”或“不具有”)代表性。

2019—2020年新苏教版九年级上学期数学期末模拟检测卷及答案解析(试题).doc

2019—2020年新苏教版九年级上学期数学期末模拟检测卷及答案解析(试题).doc

上学期期末学业质量测试九年级数学试卷(考试用时:120分钟 满分:150分)一、选择题(本大题共有6小题,每小题3分,共18分)1. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ▲ ). A .6 B .7C .8D .92.掷一个骰子时,点数小于2的概率是( ▲ ).A .61 B .31 C .21D .03. 下列说法中,正确的是( ▲ ).A .长度相等的弧叫等弧 B.直角所对的弦是直径 C .同弦所对的圆周角相等 D.等弧所对的弦相等4. 如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则 两树间的坡面距离AB 为( ▲ ). A .4m BCD. 5. 若两个相似多边形的面积之比为1:4,则它们的周长之比为( ▲ ). A . 1:2B .1:4C .2:1D .4:16. 如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为( ▲ ).A .2B .4C .8D .16二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在相应的位置上)第6题图第4题图7. 在比例尺为1:10000000的地图上,量得甲、乙两地的距离是30厘米,则两地的实际距离是▲千米.8. 已知x :y =2 :3,则(x+y) :y 的值为▲.9. 一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是▲枚.10. 在△ABC中,∠C=90°,BC=2,2sin3A=,则边AC的长是▲.11. 某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10户居民家庭月使用塑料袋的数量,结果如下:(単位:只)65 70 85 74 86 78 74 92 82 94根据统计情况,估计该小区这100户家庭平均使用塑料袋▲只.12. 在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为▲m.13. 如图,抛物线的对称轴是直线1=x,与x轴交于A、B两点,若B点坐标是3(,0)2,则A点的坐标是▲.DA第13题图第14题图第16题图14. 如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在⌒AB上,若PA长为2,则△PEF的周长是▲.15. 若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为2.5m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是▲m2.16. 如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为▲.三、解答题(本大题共有10小题,共102分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:3sin30°-2cos45°+tan2600;(2)在Rt△ABC中,∠C=90°, c=20,∠A=30°, 解这个直角三角形.18.(8分)甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6 (1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.19. (8分)在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?20.(8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为a= ,b= ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的考生约有多少名?21. (10分)如图,某居民小区有一朝向为正南方向的居民楼,•该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼的前面24米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为︒32时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (参考数据:sin ︒32≈53100,cos ︒32≈,125106︒32tan ≈85.)22.(10分) 如图,已知二次函数y=ax 2+bx+c 的图像过A (2,0),B (0,﹣1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图像与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.第22题图第21题图23.(10分)一块直角三角形木版的一条直角边AB 为3m ,面积为62m ,要把它加工成一个面积最大的正方形桌面,小明打算按图①进行加工,小华准备按图②进行裁料,他们谁的加工方案符合要求?A图① 图②第23题图24.(10分))如图,在△ABC 中,AB=AC ,以AB 为直径作半圆⊙0,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙0的切线;(2)如果⊙0的半径为9,sin ∠ADE=79,求AE 的长.第24题图25. (12分)如图所示,E 是正方形ABCD 的边AB 上的动点,正方形的边长为4, EF ⊥DE 交BC 于点F .(1)求证:△ADE ∽△BEF ;(2)AE=x ,B F=y .当x 取什么值时,y 有最大值? 并求出这个最大值; (3) 已知D 、C 、F 、E 四点在同一个圆上,连接CE 、DF ,若sin ∠C EF =第25题图 备用图26. (14分)如图,二次函数223y x bx c =++的图像交x 轴于A 、C 两点,交y 轴于B 点,已知A 点坐标是(2,0),B 点的纵坐标是8. (1)求这个二次函数的表达式及其图像的顶点坐标;(2)作点A 关于直线BC 的对称点A ’ ,求点A ’的坐标;(3)在y 轴上是否存在一点M ,使得∠AMC =30°,如存在,直接写出点M 的坐标,如不存在,请说明理由.第26题图 备用图九年级数学试卷参考答案(下列答案仅供参考........,如有其它解法......,请参照标准给分.......,如有输入错误......,请以正确答案给分........) 一.选择题(本大题共有6小题,每小题3分,共18分) 1. C; 2.A; 3.D; 4.C; 5.A; 6.B.二、填空题(本大题共10小题,每小题3分,共30分)7. 3000; 8.53; 9. 8; ;12. 15; 13. 1(,0)2;14. 4; 15. 154π;16. 5或8.2或11.8(少一解扣1分,多解不扣分) 三、解答题(本大题共有10小题,共102分)17.(12分)(1)1.53(3分)=4.53分);(2)a=10(2分),b=(2分),∠B =60°(2分)18.(8分)(1)甲、乙的平均数分别是8, 8(2分); .甲、乙的方差分别是2,1.2(4分); (2)∵S 2甲>S 2乙,∴乙的射击水平高(2分).19. (8分)(1)树状图如下或列表如下:(4分);(2)乙摸到与甲相同颜色的球有三种情况,乙能取胜的概率为13,所以甲在游戏中获胜的可能性更大(4分)。

2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】

2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】

2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. -元⼆次⽅程x2-x=0的解为A.此⽅程⽆实数解 B.0 C.1 D.0或12. 在抛物线y=x2-4x-4上的⼀个点是A.(4,4) B.(-,-) C.(-2,-8) D.(3,-1)3. △ABC中,∠C=90°,BC=3,AB=5,则sinA的值为A. B. C. D.4. 在⼀副扑克牌(54张,其中王牌两张)中,任意抽取⼀张牌是“王牌”的概率是A. B. C. D.5. ⽤配⽅法解⽅程x2+x-1=0,配⽅后所得⽅程是A. B. C. D.6. 已知⼆次函数y=2+1,以下对其描述正确的是A.其图像的开⼝向下B.其图像的对称轴为直线x=-3C.其函数的最⼩值为1D.当x<3时,y随x的增⼤⽽增⼤7. 在半径为1的⊙O中,弦AB=1,则的长是A. B. C. D.8. 如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2,AB=2,则∠BCD等于A.20° B.30° C.60° D.70°9. 某校研究性学习⼩组测量学校旗杆AB的⾼度,如图在教学楼⼀楼C处测得旗杆顶部的仰⾓为60°,在教学楼三楼D处测得旗杆顶部的仰⾓为30°,旗杆底部与教学楼⼀楼在同⼀⽔平线上,已知CD=6⽶,则旗杆AB的⾼度为A.9⽶ B.9(1+)⽶ C.12⽶ D.18⽶10. 已知⼆次函数y=ax2+bx+c的图像如图所⽰,对称轴为直线x=1.有位学⽣写出了以下五个结论:(1)ac>0; (2)⽅程ax2+bx+c=0的两根是x1=-1,x2=3;(3)2a-b=0;(4)当x>1时,y随x的增⼤⽽减⼩;(5)3a+2b+c>0则以上结论中不正确的有A.1个 B.2个 C.3个 D.4个⼆、填空题11. cos30°的值为.12. 正⽅体的表⾯积S(cm2)与正⽅体的棱长a(cm)之间的函数关系式为.13. 如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,PB=4,OB=6,则tan∠APO的值是.14. 圆⼼⾓为120°,弧长为12π的扇形半径为.15. 点A(2,y1)、B(3,y2)是⼆次函数y=x2-2x+1的图像上两点,则y1与y2的⼤⼩关系为y1 y2(填“>”、“<”、“=”).16. 某电动⾃⾏车⼚三⽉份的产量为1000辆,由于市场需求量不断增⼤,五⽉份的产量提⾼到1210辆,则该⼚四、五⽉份的⽉平均增长率为.17. 如图,⊙O与正⽅形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正⽅形ABCD的周长为44,且DE=6,则sin∠ODE=___ .18. 如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆⼼位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产⽣,当第⼀次出现公共点到最后⼀次出现公共点,这样⼀次过程中该动圆⼀共移动秒.三、计算题19. (本题满分5分)解⽅程:x2-6x-7=0.20. (本题满分5分)计算:2sin60°+cos60°-3tan30°.四、解答题21. (本题满分6分)如图,AC是△ABD的⾼,∠D=45°,∠B=60°,AD=10.求AB的长.22. (本题满分6分)已知关于x的⽅程x2-6x+m2-3m=0的⼀根为2.(1)求5m2-15m-100的值; (2)求⽅程的另⼀根.23. (本题满分6分)已知⼆次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点.(1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.24. (本题满分6分)如图,△ABC是⊙O的内接三⾓形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.求证:(1)△ADC∽△ABE; (2)BE=CF.25. (本题满分6分)在⼀个⼝袋中有4个完全相同的⼩球,把它们分别标号为1,2,3,4.随机地摸取⼀个⼩球后放回,再随机地摸出⼀个⼩球,请⽤列举法(画树状图或列表)求下列事件的概率:(1)两次取得⼩球的标号相同;(2)两次取得⼩球的标号的和等于4.26. (本题满分8分)已知关于x的⼀元⼆次⽅程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最⼤整数值;(2)在(1)的条件下,⽅程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.27. (本题满分9分)如图,折叠矩形ABCD的⼀边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.(1)求矩形ABCD的⾯积;(2)利⽤尺规作图求作与四边形AEFD各边都相切的⊙O的圆⼼O(只须保留作图痕迹),并求出⊙O的半径.28. (本题满分9分)如图,在平⾯直⾓坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是上的⼀个动点,且∠OPB=30°.设P点坐标为(m,n).(1)当n=2,求m的值;(2)设图中阴影部分的⾯积为S,求S与n之间的函数关系式,并求S的最⼤值;(3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.29. (本题满分10分)如图,⼆次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另⼀点A,顶点在第⼀象限.(1)求n的值和点A坐标;(2)已知⼀次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是⼆次函数图像的y轴右侧部分上的⼀个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。

江苏省徐州市2019-2020学年九年级(上)期末数学模拟检测卷(三)PDF解析版

江苏省徐州市2019-2020学年九年级(上)期末数学模拟检测卷(三)PDF解析版

九年级(上)数学期末检测卷(三)一、选择题(每小题3分,共30分)1.(3分)下列函数关系式中,y是x的反比例函数的是()A.y=3x B.y=3x+1C.D.y=3x22.(3分)若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)4.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2B.3:1C.1:1D.1:25.(3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,=.则∠DAC等于()A.70°B.45°C.30°D.25°6.(3分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°7.(3分)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.89.(3分)在正方形网格中,△ABC在网格中的位置如图,则cos B的值为()A.B.C.D.210.(3分)如图,两个全等的等腰直角三角板(斜边长为2)如图放置,其中一块三角板45°角的顶点与另一块三角板ABC的直角顶点A重合.若三角板ABC固定,当另一个三角板绕点A旋转时,它的直角边和斜边所在的直线分别与边BC交于点E、F.设BF=x,CE=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(每小题4分,共24分)11.(4分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.12.(4分)△ABC中,∠A、∠B都是锐角,若sin A=,cos B=,则∠C=.13.(4分)如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=.14.(4分)如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为m.15.(4分)若二次函数y=(a﹣1)x2﹣4x+2a(a≠1)的图象与x轴有且只有一个交点,则a的值为.16.(4分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2=1,则y2的解析式是.于B,交y轴于C,若S△AOB三、解答题(每题6分,共18分)17.(6分)计算:18.(6分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.19.(6分)如图,在凯里市某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠P AB=45°,仰角∠PBA=30°,求气球P的高度.(精确到0.1米,=1.732)四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.21.(7分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?22.(7分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中x的值是;(2)被查的200名生中最喜欢球运动的学生有人;(3)若由3名最喜欢篮球运动的学生(记为A1、A2、A3),1名最喜欢乒乓球运动的学生(记为B),1名最喜欢足球运动的学生(记为C)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.五、解答题(每小题9分,共27分)23.(9分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.24.(9分)如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C 重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)在(1)的条件下,当DF•DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.25.(9分)如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C 重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t 的函数关系式,并写出t的取值范围.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、y=3x是正比例函数,故此选项不合题意;B、y=3x+1是一次函数,故此选项不合题意;C、y=是反比例函数,故此选项符合题意;D、y=3x2是二次函数,故此选项不合题意;故选:C.2.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.3.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.4.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.5.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣30°=60°,∴∠D=180°﹣∠B=120°,∵=,∴AD=CD,∴∠DAC=∠DCA=(180°﹣120°)=30°.故选:C.6.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣80°)=50°,∴∠BOC=180°﹣50°=130°.故选:A.7.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.8.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.9.【解答】解:在直角△ABD中,BD=2,AD=4,则AB===2,则cos B===.故选:A.10.【解答】解:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y,∴=,即xy=2,(1<x<2).故选:C.二、填空题(每小题4分,共24分)11.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4.故答案为:1:4.12.【解答】解:∵△ABC中,∠A、∠B都是锐角sin A=,cos B=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.13.【解答】解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案为:80°.14.【解答】解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故答案为4.15.【解答】解:∵二次函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,故答案为:﹣1或2.16.【解答】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,=1,∵S△AOB∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为:y2=.三、解答题(每题6分,共18分)17.【解答】解:=×﹣1+2﹣×=1﹣1+2﹣1=2﹣118.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,﹣1);(2)如图,△A1E1F1为所作.19.【解答】解:作PC⊥AB于C点,设PC=x米.在Rt△PAC中,tan∠PAB=,∴AC==PC=x.在Rt△PBC中,tan∠PBA=,∴BC==x.又∵AB=90,∴AB=AC+BC=x+x=90,∴,∴PC=45(1.732﹣1)=32.9.答:气球P的高度为32.9米.四、解答题(每题7分,共21分)20.【解答】解:(1)∵点A(2,0),∴OA=2,∵tan∠OAB=,∴OB=1,∴点B的坐标为(0,1),直线l过点A和点B,设直线l的表达式为y=kx+b,,得,即直线l的表达式为y=﹣0.5x+1;(2)∵直线l上的点P位于y轴左侧,且到y轴的距离为1.∴点P的横坐标为﹣1,将x=﹣1代入y=﹣0.5x+1,得y=1.5,∴点P的坐标为(﹣1,1.5),∵反比例函数y=的图象经过点P,∴1.5=,得m=﹣1.5,即m的值是﹣1.5.21.【解答】解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.22.【解答】解:(1)由题得:x%+5%+15%+45%=1,解得:x=35;故答案为:35(2)最喜欢乒乓球运动的学生人数为200×95%=190(人);故答案为:190;(3)用A1,A2,A3表示3名最喜欢篮球运动的学生,B表示1名最喜欢乒乓球运动的学生,C表示1名喜欢足球运动的学生,则从5人中选出2人的情况有:(A1,A2),(A2,A1),(A1,A3),(A3,A1),(A1,B),(B,A1),(A1,C),(C,A1),(A2,A3),(A3,A2),(A2,B),(B,A2),(A2,C),(C,A2),(A3,B),(B,A3),(A3,C),(C,A3),(B,C),(C,B)共计20种;选出的2人都是最喜欢篮球运动的学生的有(A1,A2),(A2,A1),(A1,A3),(A3,A1),(A2,A3)(A3,A2)共计6种,则选出2人都最喜欢篮球运动的学生的概率为=.五、解答题(每小题9分,共27分)23.【解答】解:(1)由题意,解得,∴二次函数的解析式为y=﹣x2+x+2.(2)存在.如图1中,∵C(0,2),D(,0),∴CD==,当CP=CD时,P1(,4),当DP=DC时,P2(,),P3(,﹣).综上所述,满足条件的点P坐标为(,4)或(,)或(,﹣).(3)如图2中,作CM⊥EF于M,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣,设E(a,﹣+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣+2)=﹣a2+2a,(0≤a≤4),∵S四边形CDBF=S△BCD+S△CEF+S△BEF=•BD•OC+•EF•CM+•EF•BN=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a)=﹣a2+4a+=﹣(a﹣2)2+,∴a=2时,四边形CDBF的面积最大,最大值为,∴E(2,1).24.【解答】解:(1)如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45°,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=;(2)∵当DF•DB=CD2时,,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45°,∴∠DBC=45°;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45°;(3)如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB∥CD,∴∠ABO=90°=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴,即AB2=AE×AC,∴AC=,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=,∵CD=12,∴CH=6,∵AB∥CH,∴△AOB∽△COH,∴,即,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=×12×12=72.25.【解答】解:(1)在Rt△ABC中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ是矩形,∴EF∥BC,∴=,∴=,∴EF=4.(2)①∵AB=12,AE=x,点E与点A、点B均不重合,∴0<x<12,∵四边形CDEF是矩形,∴EF∥BC,∠CFE=90°,∴∠AFE=90°,在Rt△AFE中,∠A=30°,∴EF=x,AF=cos30°•AE=x,在Rt△ACB中,AB=12,∴cos30°=,∴AC=12×=6,∴FC=AC﹣AF=6﹣x,∴S=FC•EF=x(6﹣x)=﹣x2+3x(0<x<12);②S=x(12﹣x)=﹣(x﹣6)2+9,当x=6时,S有最大值为9;(3)①当0≤t<3时,如图1中,重叠部分是五边形MFPQN,S=S 矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.②当3≤t≤6时,重叠部分是△PBN,S=(6﹣t)2,综上所述,S=.。

2019-2020学年度徐州市人教版九年级期末数学试题(PDF版含答案)

2019-2020学年度徐州市人教版九年级期末数学试题(PDF版含答案)

2019-2020学年度第一学期末抽测九年级数学参考答案9. 8 10.511.2)1(22-+=x y 12.48 13 . 0.5 14. 216 15. 54 16. 2 17. 55 18.)1010,1010(2- 19.(1)解:原式=112+- = ....................4分(2)解:∵1=a 4-= b 3=, c4314)4(422=⨯⨯--=-ac b∴224124)4(±=⨯±--=x ∴31=x ,12=x .....................8分20.解:(1)260÷52%=500(户); .....................2分(2)500-260-80-40=120(户), .....................4分如图: .....................6分21.解:用树状图分析如下:...............................5分图7∴圆O 的半径为2. .................3分(或者设x CO =,x OE 2=,在直角三角形OEF 中利用勾股定理求解)(2)连接OF .在Rt △DCP 中,∵∠DPA=45°,∴∠D =90°-45°=45°. ...................4分∴S 阴影=S 扇形OEF - S Rt △OEF =π-2. .............8分24.解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米. ....................................3分(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=EF GF 7x x +== ....................................5分 ∴)13(27+=x , ∴GF=x 3≈16.45 ∴CG=CF+FG=1.5+16.45≈17.95≈18.0米. 答:教学楼CG 的高度为18.0米....................................8分25.解:(1)y=-2x+260 ; .................2分(2)由题意得:(x-50)(-2x+260)=3000 .................4分化简得:2x —180x+8000=0解得:x 1=80,x 2=100 ....................5分 ∵x≤50×(1+90%)即x ≤95∴x 2=100(不符合题意,舍去)答:销售单价为80元. ....................6分(3)设每天获得的利润为w 元,由题意得w=(x-50)(-2x+260) .................8分=-22x +360x-13000=3200)90(22+--x .................9分 ∵x 2的系数a =-2<0,∴函数的图像是开口向下的抛物线,∴当x=90时,w 有最大值,w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元. .................10分26.解:(1)抛物线的表达式为:y =﹣2x +2x+8, 直线AB 的表达式为:y =2x ﹣1; ....................2分(2)存在,理由:∵二次函数对称轴为:x =1,∴点C (1,1),过点D 作y 轴的平行线交AB 于点H ,设点D (x ,﹣x 2+2x +8),点H (x ,2x ﹣1),∵S △DAC =2S △DCM ,∴(﹣x 2+2x +8﹣2x +1)(1+3)=(9﹣1)(1﹣x )×2,解得:x =﹣1或5,∵31x -<<∴舍去x=5故点D (﹣1,5); ...............................6分(3)设点Q(m,0)、点P(s,﹣s2+2s+8),①当AM是平行四边形的一条边时,∵点M向左平移4个单位向下平移16个单位得到A,∴点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:﹣6=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);.........................................................8分②当AM是平行四边形的对角线时,由中点公式得:2=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2). .....10分。

江苏省徐州市九年级(上)期末数学试卷(含答案)

江苏省徐州市九年级(上)期末数学试卷(含答案)

江苏省徐州市九年级(上)期末数学试卷(含答案)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .225.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 7.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .168.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.2 9.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:410.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1212.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2D .中位数是3,众数是413.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°14.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.已知∠A =60°,则tan A =_____. 17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.19.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .20.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)21.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.22.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.已知234x y z x z y+===,则_______ 三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.32.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.33.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.34.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?35.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.四、压轴题36.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 37.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】 【分析】根据题干可以明确得到p,q是方程230x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q是方程230x -=的两根, ∴, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.B解析:B 【解析】 【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PANA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN . 在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PANA NC =, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54,x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.3.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.4.C解析:C 【解析】 【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长. 【详解】 如图,连接BD ,∵四边形ABCD 是正方形,边长为2, ∴BC=CD=2,∠BCD=90°, ∴2222+2,∵正方形ABCD 是⊙O 的内接四边形, ∴BD 是⊙O 的直径,∴⊙O的半径是1222=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.6.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 7.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D .【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.14.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.19.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.20.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 21.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°22.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410 3【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=故答案为3. 点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,23.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.或【解析】【分析】由题意可得点P 在以D 为圆心,为半径的圆上,同时点P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP ,AH 的长,即可求点A 到BP 的距离.【详解】解析:2或2【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH 335+335-.【点睛】本题是正方形与圆的综合题,正确确定点P是以D BD为直径的圆的交点是解决问题的关键.25.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).26.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.27.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.28.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 29.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°, PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB =AH +HM +BM =x +152+y =x +y +7.5, ∵AC :BC :AB =3:4:5, ∴(x +5.5):(y +7):(x +y +7.5)=3:4:5,解得x =2,y =3,∴AC =7.5,BC =10,AB =12.5,∴AC +BC +AB =30.所以△ABC 的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O 的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ ∽△QBA,∴BP BQ BQ BA , ∴336BP , ∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .。

2019-2020学年江苏省徐州市九年级(上)期末数学试卷

2019-2020学年江苏省徐州市九年级(上)期末数学试卷

江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A.B.C.D.3.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是104.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2﹣2x+d=0有实根,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部5.如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为()A.αB.90﹣αC.90+αD.90+2α6.将函数y=x2的图象用下列方法平移后,所得图象不经过点A(1,4)的是()A.向左平移1个单位B.向下平移1个单位C.向上平移3个单位D.向右平移3个单位7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.B.2C.D.8.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,一直角三角板的直角顶点与点D重合,这块三角板绕点D旋转,两条直角边始终与AC、BC边分别相交于G、H,则在运动过程中,△ADG与△CDH 的关系是()A.一定相似B.一定全等C.不一定相似D.无法判断二、填空题(本大题有8小题,每小题4分,共32分)9.若x2﹣9=0,则x=.10.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为m.11.若,则的值为.12.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为cm.13.已知关于x的方程x2+mx+3m=0的一个根为﹣2,则方程另一个根为.14.点P在线段AB上,且.设AB=4cm,则BP=cm.15.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠CDA=.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为.三、解答题(本大题有9小题,共84分)17.(1)计算:()﹣2+tan60°﹣(π﹣3)0;(2)解方程:x2﹣3x+2=0.18.现有三张分别标有数字﹣1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.(用树状图或列表法求解)19.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(按30天计算).20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(6,4),B(4,0),C(2,0).(1)在y轴左侧,以O为位似中心,画出△A1B1C1,使它与△ABC的相似比为1:2;(2)根据(1)的作图,tan∠C1A1B1=.21.如图,在一块长8m、宽6m的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.22.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?23.如图,已知△ABC中,∠ABC=30°,∠ACB=45°,AB=8.求△ABC的面积.24.如图,⊙O为△ABC的外接圆,∠ACB=90°,AB=12,过点C的切线与AB的延长线交于点D,OE交AC于点F,∠CAB=∠E.(1)判断OE和BC的位置关系,并说明理由;(2)若tan∠BCD=,求EF的长.25.如图,矩形OABC中,O为原点,点A在y轴上,点C在x轴上,点B的坐标为(4,3),抛物线y=﹣x2+bx+c与y轴交于点A,与直线AB交于点D,与x轴交于C,E两点.(1)求抛物线的表达式;(2)点P从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,与此同时,点Q从点A出发,在线段AC上以每秒个单位长度的速度向点C运动,当其中一点到达终点时,另一点也停止运动.连接DP、DQ、PQ,设运动时间为t(秒).①当t为何值时,△DPQ的面积最小?②是否存在某一时刻t,使△DPQ为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.2019-2020学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选:A.2.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A.B.C.D.【解答】解:100件某种产品中有4件次品,从中任意取一件,恰好抽到次品的概率.故选:D.3.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是10【解答】解:数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.4.故选:A.4.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2﹣2x+d=0有实根,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部【解答】解:∵关于x的方程x2﹣2x+d=0有实根,∴根的判别式△=(﹣2)2﹣4×d≥0,解得d≤1,∴点在圆内或在圆上,故选:D.5.如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为()A.αB.90﹣αC.90+αD.90+2α【解答】解:如图,连接OC∵∠A=α度,∠BOC=2∠A∴∠BOC=2α度∵OB=OC∴∠OBC==(90﹣α)度故选:B.6.将函数y=x2的图象用下列方法平移后,所得图象不经过点A(1,4)的是()A.向左平移1个单位B.向下平移1个单位C.向上平移3个单位D.向右平移3个单位【解答】解:A、向左平移1个单位后,得y=(x+1)2,图象经过A点,故A不符合题意;B、向下平移1个单位后,得y=x2﹣1图象不经过A点,故B符合题意;C、向上平移3个单位后,得y=x2+3,图象经过A点,故C不符合题意;D、向右平移3个单位后,得y=(x﹣3)2,图象经过A点,故D不符合题意;故选:B.7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.B.2C.D.【解答】解:如图(二),∵圆内接正六边形边长为1,∴AB=1,可得△OAB是等边三角形,圆的半径为1,∴如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=×1=,故BC=2BD=.OD=OB=,∴圆的内接正三角形的面积==,故选:C.8.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,一直角三角板的直角顶点与点D重合,这块三角板绕点D旋转,两条直角边始终与AC、BC边分别相交于G、H,则在运动过程中,△ADG与△CDH 的关系是()A.一定相似B.一定全等C.不一定相似D.无法判断【解答】解:∵CD⊥AB,∴∠ADC=∠EDF=∠ACB=90°,∴∠ADG=∠CDH,∵∠DCH+∠ACD=90°,∠ACD+∠A=90°,∴∠A=∠DCH,∴△ADG∽△CDH,故选:A.二、填空题(本大题有8小题,每小题4分,共32分)9.若x2﹣9=0,则x=±3.【解答】解:∵x2﹣9=0,∴x2=9,∴x=±3.故答案为:±3.10.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为14.4m.【解答】解:设此教学楼的高度是hm,则=,解得h=14.4(m).故答案为:14.4.11.若,则的值为.【解答】解:∵,∴=.12.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为4cm.【解答】解:∵圆锥的母线长是5cm,侧面积是20πcm2,∴圆锥的侧面展开扇形的弧长为:l===8π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===4cm.故答案为4.13.已知关于x的方程x2+mx+3m=0的一个根为﹣2,则方程另一个根为6.【解答】解:将x=﹣2代入x2+mx+3m=0,∴4﹣2m+3m=0,∴m=﹣4,设另外一个根为x,由根与系数的关系可知:﹣2x=3m,∴x=6,故答案为:614.点P在线段AB上,且.设AB=4cm,则BP=(6﹣2)cm.【解答】解:∵.∴P点为AB的黄金分割点,∴AP=AB=×4=2﹣2,∴BP=4﹣(2﹣2)=(6﹣2)cm.故答案为(6﹣2).15.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠CDA=.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AB=5,AC=3,∴BC===4,∵∠CDA=∠B,∴tan∠CDA=tan∠B==,故答案为:.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为(,2).【解答】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4﹣x,在RT△ABE中,∵EA2+AB2=BE2,∴(4﹣x)2+22=x2,∴x=,∴BE=ED=,AE=AD﹣ED=,∴点E坐标(,2).故答案为(,2).三、解答题(本大题有9小题,共84分)17.(1)计算:()﹣2+tan60°﹣(π﹣3)0;(2)解方程:x2﹣3x+2=0.【解答】解:(1)原式=4+×﹣1=4+3﹣1=6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得x=1或x=2.18.现有三张分别标有数字﹣1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.(用树状图或列表法求解)【解答】解:(1)∵有三张分别标有数字﹣1,0,3的卡片,∴从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;故答案为:;(2)根据题意画图如下:共有6种等情况数,其中两张卡片上的数字之和为负数的有2种,则两张卡片上的数字之和为负数的概率=.19.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是113度,中位数是113度;(2)估计该校这个月的用电量(按30天计算).【解答】解:(1)113度出现了3次,最多,故众数为113度;第5天和第6天的用电量均是13度,故中位数为113度;故答案为:113,113.(2)平均用电量为:(90+93+102×2+113×3+114+120×2)÷10=108度;总用电量为108×30=3240度.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(6,4),B(4,0),C(2,0).(1)在y轴左侧,以O为位似中心,画出△A1B1C1,使它与△ABC的相似比为1:2;(2)根据(1)的作图,tan∠C1A1B1=.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:连接BD,tan∠C1A1B1=tan A===.故答案为:.21.如图,在一块长8m、宽6m的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.【解答】解:设花圃四周绿地的宽为xm,依题意,得:(8﹣2x)(6﹣2x)=×8×6,整理,得:x2﹣7x+6=0,解得:x1=1,x2=6(不合题意,舍去).答:花圃四周绿地的宽为1m.22.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利(30﹣x)元,超市日销售量增加10x件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?【解答】解:(1)故答案为:(30﹣x),10x;(2)设每件商品降价x元时,利润为w元.根据题意得:w=(30﹣x)(100+10x)=﹣10x2+200x+3000=﹣10(x﹣10)2+4000,∵﹣10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,超市日盈利最大,最大值是4000元.23.如图,已知△ABC中,∠ABC=30°,∠ACB=45°,AB=8.求△ABC的面积.【解答】解:作AD⊥BC于点D,在Rt△ABD中,∠ABC=30°,∴AD=AB=4,BD=AB•cos∠ABC=4,在Rt△ACD中,∠ACB=45°,∴CD=AD=4,∴BC=BD+CD=4+4,∴△ABC的面积=×BC×AD=×(4+4)×4=8+8.24.如图,⊙O为△ABC的外接圆,∠ACB=90°,AB=12,过点C的切线与AB的延长线交于点D,OE交AC于点F,∠CAB=∠E.(1)判断OE和BC的位置关系,并说明理由;(2)若tan∠BCD=,求EF的长.【解答】解:(1)OE∥BC,理由如下:∵∠CAB=∠E,∠AFO=∠CFE,∴∠ECA=∠AOF,∵DE是⊙O的切线,∴∠BCD=∠CAB,∠ECA=∠ABC,∴∠AOF=∠ABC,∴OE∥BC;(2)∵∠BCD=∠CAB,∴tan∠CAB==tan∠BCD=tan∠CAB=,设BC=3x,则AC=4x,∵∠ACB=90°,∴AC2+BC2=AB2,即(4x)2+(3x)2=(5x)2,解得:x=,∴AC=4x=,∵OE∥BC,AC⊥BC,∴OF⊥AC,∴CF=AC=,∵∠CAB=∠E,∴tan∠CAB=tan∠E==,∴EF=CF=×=.25.如图,矩形OABC中,O为原点,点A在y轴上,点C在x轴上,点B的坐标为(4,3),抛物线y=﹣x2+bx+c与y轴交于点A,与直线AB交于点D,与x轴交于C,E两点.(1)求抛物线的表达式;(2)点P从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,与此同时,点Q从点A出发,在线段AC上以每秒个单位长度的速度向点C运动,当其中一点到达终点时,另一点也停止运动.连接DP、DQ、PQ,设运动时间为t(秒).①当t为何值时,△DPQ的面积最小?②是否存在某一时刻t,使△DPQ为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.【解答】解:(1)点A(0,3),点C(4,0),将点A、C的坐标代入抛物线表达式并解得:b=,c=3,故抛物线的表达式为:y=﹣x2+x+3;(2)y=﹣x2+x+3=﹣(x﹣4)(x+2),故点E(﹣2,0);抛物线的对称轴为:x=1,则点D(2,3),由题意得:点Q(t,3﹣t),点P(4,t),①△DPQ的面积=S△ABC﹣(S△ADQ+S△PQC+S△BPD)=3×4﹣[2×t+2(3﹣t)+(5﹣)×t×]=t2﹣2t.∵>0,故△DPQ的面积有最小值,此时,t=;②点D(2,3),点Q(t,3﹣t),点P(4,t),(Ⅰ)当PQ是斜边时,如图1,过点Q作QM⊥AB于点M,则MQ=t,MD=2﹣t,BD=4﹣2=2,PB=3﹣t,则tan∠MQD=tan∠BDP,即,解得:t=(舍去);(Ⅱ)当PD为斜边时,过点Q作y轴的平行线交AB于点N,交过点P于x轴的平行线于点M,则ND=2﹣t,QN=t,MP=4﹣t,QM=3﹣t﹣t=3﹣2t,同理可得:,解得:t=或;(Ⅲ)当QD为斜边时,同理可得:故t=;综上,t=或或或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省徐州市邳州市九年级上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)
1.如果一个一元二次方程的根是x1=x2=1,那么这个方程是()
A.x2=1B.x2+1=0C.(x﹣1)2=0D.(x+1)2=0 2.抛物线y=﹣2(x﹣2)2+3的顶点坐标是()
A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)
3.下列说法正确的是()
A.弦是直径B.弧是半圆
C.直径是圆中最长的弦D.半圆是圆中最长的弧
4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是()
A.平均数B.众数C.方差D.中位数
5.由3x=2y(x≠0),可得比例式为()
A.x
y =
3
2
B.
x
3
=
y
2
C.
x
2
=
y
3
D.
x
2
=
3
y
6.如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC的度数为()
A.30°B.45°C.60°D.75°
7.如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC 相似的条件是()
第1 页共22 页。

相关文档
最新文档