江苏省徐州市邳州市2020-2021学年八年级下学期期中数学试题(1)
2020-2021学年八年级下期中数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b =2a+bC .a 2−b 2a−b=a +bD .(−120)0=04.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)−2=(x+y)2(x−y)2. A .1个 B .2个C .3个D .4个6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A .2个B .3个C .4个D .5个二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x 道题,根据题意,可列出关于x 的不等式为 . 8.若关于x 的分式方程2x−3+x+m 3−x=2有增根,则m 的值为 .9.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 cm 2.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为11.不等式组﹣1<x <4的整数解有 个.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 .三.解答题(共5小题,满分30分,每小题6分) 13.(6分)计算题(1)分解因式:2x 2y ﹣8xy +8y (2)解方程:x x−1=3x 2−2x+114.(6分)先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中x =2.15.(6分)如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3). (1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .四.解答题(共3小题,满分24分,每小题8分) 18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:的解;(2)不等式kx+b<0的解集是;(3)当x时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.19.(8分)若一多项式除以2x2﹣3,得到的商式为x+4,余式为3x+2,求此多项式.20.(8分)若3x−5x2−2x−3=ax−3−bx+1(a,b为常数),求(a+2b)b的值.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?22.(9分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B (b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是;②线段AC,CD,CE之间的数量关系是.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共6小题,满分18分,每小题3分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确; B 、不是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项错误; D 、不是轴对称图形,是中心对称图形,故此选项错误; 故选:A .2.式子“①3x +y =2;②3x >y ;③4x +2y ;④4x ﹣3y ≥1;⑤4x <0,”属于不等式的有( ) A .2个B .3个C .4个D .5个【解答】解:式子“3x >y ;4x ﹣3y ≥1;4x <0,”属于不等式, 故选:B .3.下列计算正确的是( ) A .(−32)﹣1=32B .1a+1b=2a+bC .a 2−b 2a−b=a +bD .(−120)0=0 【解答】解:A 、原式=−23,错误; B 、原式=a+bab ,错误; C 、原式=(a+b)(a−b)a−b =a +b ,正确;D 、原式=1,错误; 故选:C .4.如图,AC =AD ,BC =BD ,则有( )A .AB 与CD 互相垂直平分 B .CD 垂直平分ABC .AB 垂直平分CDD .CD 平分∠ACB【解答】解:∵AC =AD ,BC =BD , ∴AB 是线段CD 的垂直平分线, 故选:C .5.下列各式中,正确的有( )①(3b 22a )3=3b 62a 3;②(2x x+y )2=4x 2x 2+y 2;③−a+b −a−b =a+b a−b ;④−x+y x−y =−1;⑤x+y x+y=0;⑥(x−y)−2(x+y)=(x+y)2(x−y). A .1个B .2个C .3个D .4个【解答】解:①(3b 22a )3=27b 68a 3,故选项错误;②(2x x+y )2=4x 2x 2+2xy+y 2,故选项错误;③−a+b −a−b =a−b a+b,故选项错误;④−x+y x−y =−1,故选项正确;⑤x+y x+y=1,故选项错误;⑥(x−y)−2(x+y)=(x+y)2(x−y),故选项正确;所以正确的有2个. 故选:B .6.如图,在等边△ABC 中,AD ⊥BC 于D ,延长BC 到E ,使CE =12BC ,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG ,AD 于点M ,点N ,连接GN ,CN ,下列结论:①EG ⊥AB ;②GF =12EF ;③∠GNC =120°;④GN =GF ;⑤∠MNG =∠ACN .其中正确的个数是( )A.2个B.3个C.4个D.5个【解答】解:①∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,AC=BC,∵CE=12BC,F是AC的中点,∴CF=CE,∴∠E=∠CFE,∵∠ACB=∠E+∠CFE=60°,∴∠E=30°,∴∠BGE=90°,∴EG⊥AB,故①正确;②设AG=x,则AF=FC=CE=2x,∴FG=√3x,BE=6x,Rt△BGE中,BG=3x,EG=3√3x,∴EF=EG﹣FG﹣3√3x−√3x=2√3x,∴GF=12EF,故②正确;③如图,过N作NH⊥AC于H,连接BN,等边三角形ABC,∵AD⊥BC,∴AD平分∠BAC,BN=CN,∵MN⊥AB,∴NH=NM,∵MN是BG的垂直平分线,∴BN=NG,∴BN=CN=NG,在Rt△NGM和Rt△NCH中,{MN=NHGN=NC,∴Rt△NGM≌Rt△NCH(HL),∴∠GNM=∠CNH,∴∠MNH=∠CNG,∵∠ANM=∠ANH=60°,∴∠CNG=120°,故③正确;④∵MN是BG的垂直平分线,∴BM=MG=32x,∴AM=x+32x=52x,等边△ABC中,AD⊥BC,∴∠BAD=30°,∴MN=5√3x 6,∴GN=√GM2+MN2=(32x)2+(53x6)2=√39x2≠FG,故④不正确;⑤∵BN=CN=NG,∴∠DCN=∠DBN,∠NBM=∠NGM,∵∠ACN=∠ACB﹣∠DCN=60°﹣∠DBN=∠ABN=∠NGM,∵MG=32x,MN=5√36x,∴MG≠MN,∴∠NGM≠∠MNG,∴∠MNG≠∠ACN,故⑤不正确;其中正确的有:①②③,一共3个,故选:B.二.填空题(共6小题,满分18分,每小题3分)7.某校组织开展了“诗词大会”的知识竞赛初赛,共有20道题.答对一题加10分,答错或不答一题扣5分,小辉在初赛得分超过160分顺利进入决赛.设他答对x道题,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160.【解答】解:设他答对x道题,则答错或不答的题数为(20﹣x)道,根据题意,可列出关于x的不等式为10x﹣5(20﹣x)>160,故答案为:10x﹣5(20﹣x)>160.8.若关于x的分式方程2x−3+x+m3−x=2有增根,则m的值为﹣1.【解答】解:方程两边都乘(x﹣3),得2﹣x﹣m=2(x﹣3)∵原方程增根为x=3,∴把x=3代入整式方程,得2﹣3﹣m=0,解得m=﹣1.故答案为:﹣1.9.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为168cm2.【解答】解:∵直角梯形ABCD沿AD方向平移到梯形EFGH,∴HG=CD=24,∴DW=DC﹣WC=24﹣6=18,∵S阴影部分+S梯形EDWF=S梯形DHGW+S梯形EDWF,∴S阴影部分=S梯形DHGW=12(DW+HG)×WG=12×(18+24)×8=168(cm2).故答案为168.10.如图.网格上的小正方形边长均为1,△ABC 和△DEF 的顶点都在格点上.若△DEF 是由△ABC 向右平移a 个单位,再向下平移b 个单位得到的.则ba 的值为23【解答】解:由图知△DEF 是由△ABC 向右平移3个单位,再向下平移2个单位得到的, ∴a =3、b =2, 则ba=23,故答案为:23.11.不等式组﹣1<x <4的整数解有 4 个.【解答】解:在﹣1<x <4范围内的整数只有0,1,2,3, 所以等式﹣1<x <4的整数解有4个, 故答案为4.12.如图,已知点O 为△ABC 内角平分线的交点,过点O 作MN ∥BC ,分别交AB 于AC 点M 、N ,若AB =12,AC =14,则△AMN 的周长是 26 .【解答】解:∵BO 平分∠ABC , ∴∠MBO =∠CBO , ∵MN ∥BC , ∴∠MOB =∠CBO , ∴∠MOB =∠MBO , ∴OM =BM , 同理CN =NO ,∴BM+CN=MN,∴△AMN的周长是AN+MN+AM=AN+CN+OM+ON=AB+AC=12+14=26.故答案为:26.三.解答题(共5小题,满分30分,每小题6分)13.(6分)计算题(1)分解因式:2x2y﹣8xy+8y(2)解方程:xx−1=3x2−2x+1【解答】解:(1)原式=2y(x2﹣4x+4)=2y(x﹣2)2;(2)去分母得:2x=﹣3x+2x﹣2,解得:x=−2 3,经检验x=−23是分式方程的解.14.(6分)先化简,再求值:(2−x−1x+1)÷x2+6x+9x2−1,其中x=2.【解答】解:(2−x−1x+1)÷x2+6x+9x2−1=2(x+1)−(x−1)x+1⋅(x+1)(x−1)(x+3)2=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x+3 x+1⋅(x+1)(x−1)(x+3)2=x−1 x+3,当x=2时,原式=2−12+3=15.15.(6分)如图,△ABC的顶点坐标分别为A(0,1),B(3,3),C(1,3).(1)画出△ABC关于点O的中心对称图形△A1B1C1.(2)①画出△ABC绕原点O逆时针旋转90°的△A2B2C2;②直接写出点B2的坐标为(﹣3,3).【解答】解:(1)如图,△A 1B 1C 1为所作; (2)①画如图,△A 2B 2C 2为所作;②点B 2的坐标为(﹣3,3). 故答案为(﹣3,3).16.(6分)是否存在这样的整数m ,使方程组{x +y =m +22x −y =5m +4的解满足x ≥0,y >0;若存在,求m 的取值;若不存在,请说明理由.【解答】解:解方程组{x +y =m +22x −y =5m +4得:{x =2m +2y =−m ,根据题意,得:{2m +2≥0−m >0,解得:﹣1≤m <0, 则整数m =﹣1.17.(6分)如图,在Rt △ABC 中,∠C =90°,点D 是CB 的中点,将△ACD 沿AD 折叠后得到△AED ,过点B 作BF ∥AC 交AE 的延长线于点F .求证:BF =EF .【解答】证明:如图,连接DF,∵D是CB的中点,∴CD=BD.∵将△ACD沿AD折叠后得到△AED,∴CD=ED,∠AED=∠C=90°,∴BD=ED,∠DEF=90°,∵BF∥AC,∠C=90°,∴∠CBF=180°﹣∠ACB=90°,∴∠DBF=∠DEF=90°,在Rt△DBF和Rt△DEF中,{DF=DFDE=DB,∴Rt△DBF≌Rt△DEF(HL),∴BF=EF.四.解答题(共3小题,满分24分,每小题8分)18.(8分)如图,请根据图象所提供的信息解答下列问题:(1)交点P的坐标(1,1)是二元一次方程组:{y=2x−1y=−12x+32的解;(2)不等式kx+b<0的解集是x>3;(3)当x≤1时,kx+b≥mx﹣n;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.【解答】解:(1)把A (0,﹣1),P (1,1)分别代入y =mx ﹣n 得{−n =−1m −n =1,解得{m =2n =1,所以直线l 1的解析式为y =2x ﹣1,把P (1,1)、B (3,0)分别代入y =kx +b 得{k +b =13k +b =0,解得{k =−12b =32, 所以直线l 2的解析式为y =−12x +32,所以交点P 的坐标(1,1)是一元二次方程组{y =2x −1y =−12x +32的解; (2)不等式kx +b <0的解集为x >3; (3)当x ≤1时,kx +b ≥mx ﹣n ;(4)当y =0时,2x ﹣1=0,解得x =12,则M 点的坐标为(12,0);当x =0时,y =−12x +32=32,则N 点坐标为(0,32),所以四边形OMPN 的面积=S △ONB ﹣S △PMB =12×3×32−12×(3−12)×1 =1.故答案为{y =2x −1y =−12x +32;x >3;≤1.19.(8分)若一多项式除以2x 2﹣3,得到的商式为x +4,余式为3x +2,求此多项式. 【解答】解:根据题意得:(2x 2﹣3)(x +4)+3x +2=2x 3+8x 2﹣10. 20.(8分)若3x−5x 2−2x−3=a x−3−bx+1(a ,b 为常数),求(a +2b )b 的值.【解答】解:a x−3−bx+1=ax+a−bx+3b(x−3)(x+1)=(a−b)x+a+3bx 2−2x−3,∵3x−5x 2−2x−3=a x−3−bx+1,∴{a −b =3a +3b =−5, 解得,{a =1b =−2,∴(a +2b )b =[1+2×(﹣2)]﹣2=(﹣3)﹣2=19.五.解答题(共2小题,满分18分,每小题9分)21.(9分)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同. (1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?【解答】解:(1)设甲品牌消毒剂每瓶的价格为x 元;乙品牌消毒剂每瓶的价格为(3x ﹣50)元, 由题意得:300x=4003x−50,解得:x =30,经检验,x =30是原方程的解且符合实际意义, 3x ﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元; (2)设购买甲种品牌的消毒剂y 瓶,则购买乙种品牌的消毒剂(40﹣y )瓶, 由题意得:30y +40(40﹣y )=1400, 解得:y =20, ∴40﹣y =40﹣20=20,答:购买了20瓶乙品牌消毒剂.22.(9分)如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点A (0,a ),点B(b,0),且a、b满足a2﹣4a+4+√2b+2=0.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC交x轴于点F.①求证CF=12BC;②直接写出点C到DE的距离.【解答】解:(1)∵a2−4a+4+√2b+2=0,∴(a−2)2+√2b+2=0,∵(a﹣2)2≥0,√2b+2≥0,∴a﹣2=0,2b+2=0,∴a=2,b=﹣1;(2)由(1)知a=2,b=﹣1,∴A(0,2),B(﹣1,0),∴OA=2,OB=1,∵△ABC是直角三角形,且∠ACB=45°,∴只有∠BAC=90°或∠ABC=90°,Ⅰ、当∠BAC=90°时,如图1,∵∠ACB =∠ABC =45°, ∴AB =CB ,过点C 作CG ⊥OA 于G , ∴∠CAG +∠ACG =90°, ∵∠BAO +∠CAG =90°, ∴∠BAO =∠ACG , 在△AOB 和△BCP 中, {∠CGA =∠AOB =90°∠ACG =∠BAO AC =AB, ∴△AOB ≌△CGA (AAS ), ∴CG =OA =2,AG =OB =1, ∴OG =OA ﹣AG =1, ∴C (2,1),Ⅱ、当∠ABC =90°时,如图2,同Ⅰ的方法得,C (1,﹣1);即:满足条件的点C (2,1)或(1,﹣1) (3)①如图3,由(2)知点C (1,﹣1), 过点C 作CL ⊥y 轴于点L ,则CL =1=BO ,在△BOE 和△CLE 中, {∠OEB =∠LEC ∠EOB =∠ELC BO =CL, ∴△BOE ≌△CLE (AAS ), ∴BE =CE , ∵∠ABC =90°, ∴∠BAO +∠BEA =90°, ∵∠BOE =90°, ∴∠CBF +∠BEA =90°, ∴∠BAE =∠CBF , 在△ABE 和△BCF 中, {∠BAE =∠CBF AB =BC ∠ABE =∠BCF, ∴△ABE ≌△BCF (ASA ), ∴BE =CF , ∴CF =12BC ;②点C 到DE 的距离为1.如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,由①知BE=CF,∵BE=12BC,∴CE=CF,∵∠ACB=45°,∠BCF=90°,∴∠ECD=∠DCF,∵DC=DC,∴△CDE≌△CDF(SAS),∴∠BAE=∠CBF,∴CK=CH=1.六.解答题(共1小题,满分12分,每小题12分)23.(12分)如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:(1)①∠ACE的度数是60°;②线段AC,CD,CE之间的数量关系是AC=CD+CE.(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.【解答】解:(1)①∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=60°,由旋转知,AD=AE,∠DAE=60°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,故答案为60°;②由(1)知,△ABD≌△ACE,∴BD=CE,∴BC=BD+CD=CE+CD,∵△ABC是等边三角形,∴AC=BC,∴AC=CE+CD,故答案为AC=CE+CD;(2)在△ABC中,AB=AC,∠BAC=90°,∴BC=√2AC,由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,∴√2AC=CE+CD;(3)由(2)知,△ABD≌△ACE,∴∠ACE=∠ABD,在△ABC中,AB=AC,∠BAC=90°,∴∠ABD=∠ACB=45°,∴∠ACE=45°,∴∠BCE=∠ACB+∠ACE=90°,∵∠DAE=90°,∴∠BCE+∠DAE=180°,∴点A,D,C,E在以DE为直径的圆上,∵AC与DE交于点F,∴AF是直径DE上的一点到点A的距离,即:当AF⊥DE时,AF最小,∴∠CFD=90°,∴∠CDF=90°﹣∠ACB=45°,∵∠ADE=45°,∴∠ADC=90°,∴四边形ADCE是矩形,∴AF最小=12AC=4.。
2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
邳州期中试卷初二数学答案

一、选择题1. 选择题答案:D解析:由题意知,正方形的边长为4,对角线长度为4√2,故面积S=4×4=16。
2. 选择题答案:B解析:由题意知,等腰三角形的底边长为8,腰长为6,高为√(6^2-4^2)=√20=2√5,故面积S=1/2×8×2√5=8√5。
3. 选择题答案:A解析:由题意知,圆的半径为5,故圆的周长C=2π×5=10π。
4. 选择题答案:C解析:由题意知,直角三角形的直角边长分别为3和4,斜边长为√(3^2+4^2)=√25=5,故斜边上的高为1/2×3×4=6。
5. 选择题答案:B解析:由题意知,等边三角形的边长为a,故面积S=√3/4×a^2。
二、填空题6. 填空题答案:3解析:由题意知,等腰三角形的底边长为8,腰长为6,故底边上的高为√(6^2-4^2)=√20=2√5,故三角形面积为1/2×8×2√5=8√5,即8√5=8×3,解得√5=3。
7. 填空题答案:12解析:由题意知,梯形的上底长为6,下底长为10,高为4,故梯形面积为1/2×(6+10)×4=1/2×16×4=32。
8. 填空题答案:9解析:由题意知,圆的半径为3,故圆的面积S=π×3^2=π×9。
9. 填空题答案:4解析:由题意知,正方形的边长为4,故对角线长度为4√2,故正方形的面积S=4×4=16,即16=4×4,解得4=4。
10. 填空题答案:6解析:由题意知,等边三角形的边长为a,故面积S=√3/4×a^2,即S=√3/4×6^2=√3/4×36=9√3。
三、解答题11. 解答题答案:(1)√3/2(2)4解析:由题意知,等腰直角三角形的腰长为4,故斜边长为4√2,故三角形面积为1/2×4×4=8,即8=1/2×4×√2,解得√2=2,故√3/2=√3/√2=√6/2。
2020-2021学年八年级数学下学期期中考试试题(含答案) (1)

2020-2021学年八年级数学下学期期中考试试题时间:90分钟 满分:120分 考试内容:第十六章至第十八章一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一个选项是符合题目要求的)1.(2020江苏连云港赣榆期末,4,★☆☆)若3-m 为二次根式,则m 的取值范围是 ( )A.m<3B.m≤3C.m≥3D.m>32.(2020江苏盐城期末,5,★☆☆)若a>0,则下列二次根式中,属于最简二次根式的是 ( )A.1aB.1a2 C. aD.a 23.(2020上海浦东新区建平中学期末,2,★☆☆)下列计算正确的是 ( )A.-(-3)2=-3B.(- 3 )2=9C.(-3)2=±3 D.9116 =3144.(2019山西忻州期中,1,★☆☆)下列各式化简后,与3的被开方数相同的是 ( )A.12B.18C.19D.235.如图,每个小正方形的边长为1,四边形的顶点A,B,C,D 都在格点上,则下面4条线段的长度为10 的是( A. ABB.BCC. CDD. AD6.如图,在四边形ABCD 中,∠ABC=90°,AB=3,BC =4,CD =12,AD =13,则四边形ABCD 的面积为 ( )A.72B.36C.66D.427.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,则下列说法正确的是 ( )A. CE =BCB. DE =12ABC.∠AED=∠CD.∠A=∠C8.(2020湖南邵阳隆回期末,5,★☆☆)如图,已知直线a∥b∥c,直线d 与直线a,b,c 分别垂直且相交于A,B,C 三点,若AB =2,AC =6,则平行线b 、c 之间的距离是 ( )A.2B.4C.6D.89.(2020四川眉山东坡学校模拟,11,★★☆)如图,已知菱形ABCD 的对角线AC 、BD 的长分别为10cm 、24cm,AE ⊥BC 于点E,则AE 的长是 ( )A.5 3 cmB.2 5 cmC.24013cm D.1201310.(2020四川宜宾叙州期末,12,★★☆)如图正方形ABCO 和正方形DEFO 的顶点A,E,0在同一直线l 上,且EF =2 ,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD =17 ,④△COF 的面积S △CDF =3,其中正确结论 的个数为 ( )A.1B.2C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)11.(2020湖北武汉东湖高新区期末,11,★☆☆)49=________;1-33 的相反数为________; 3 -2 =________12.(2020福建厦门湖里五缘实验学校期末,13,☆☆)在□ABCD 中,∠C:∠D=5:4,则∠B 的度数为________ 13.已知△ABC 的三边长分别为a,b,c,且a,满足b =5-a +a -5 +12,c =13,则S △A BC =________14.如图,∠CAB=30°,点D 在射线AB 上,且AD =4,点P 在射线AC 上运动,当△ADP 是直角三角形时,PD 的长为 ________15.(2020广东清远英德期末,16,★★☆)如图,在平行四边形ABCD 中,∠C=42°,过点D 作BC 的垂线DF,交AB 于点E,交CB 的延长线于点F,则∠BEF 的度数为________16.如图,正方形ABCD 的边长是2,对角线AC 、BD 相交于点O,点E 、F 分别在边AD 、AB 上,且OE⊥OF,则四边形 AFOE 的面积为________17.(2020湖南娄底期末,18,★★☆)1+13=213,2+14=314,3+15=415,……观察各式,则第n(n≥1)个等式为________________________。
2020-2021苏科版八年级数学下学期期中试卷(含答案)

苏科版八年级下学期数学期中试卷一、选择题1、下列电视台的台标,是中心对称图形的是( )A. B. C. D.2、下列问题用普查(即全面调查)较为合适的是( )A .了解高州市中小学生对“创文”知识的了解情况B .检验一批药品针对新型冠状病毒肺炎的治疗效果C .了解50位同学对于垃圾分类知识的掌握情况D .检测一批地板砖的强度3、有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是( ) A .事件A ,B 都是必然事件 B .事件A ,B 都是随机事件C .事件是A 必然事件,事件B 是随机事件D .事件是A 随机事件,事件B 是必然事件 4、如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .245、要使分式23-x 有意义,则x 的取值范围是( ) A .x ≠﹣2 B .x >2C .x <2D .x ≠26、若函数()21-+=m x m y 是反比例函数,则=m ( ) A .1±B .3±C .1-D .17、已知关于x 的函数y =k (x +1)和y =﹣(k ≠0)它们在同一坐标系中的大致图象是( )A .B .C .D .8、如图,函数1(0)y x x =>和3(0)y x x=>的图象分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .34二、填空题9、已知菱形ABCD 的对角线相交于点O ,AC =8cm ,BD =6cm ,则菱形的面积为 cm 2.10、如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=OD D .AB=AD ,CB=CD11、若用去分母法解分式方程xmx x -=--332会产生增根,则m 的值为 . 12、如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象都经过点A (-1,2),若y 1>y 2,则x 的取值范围是____________.13、如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积为________.14、点P (1,a )在反比例函数y =kx的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,则此反比例函数的表达式为________.15、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .16、如图,在△ABC 中,∠BAC=90°,AB=AC=3,D 为BC 边上一点,且:1:2BD DC =,以D 为一个顶点作正方形DEFG ,且DE=BC ,连接AE ,将正方形DEFG 绕点D 旋转一周,在整个旋转过程中,当AE 取得最大值时AG 的长为_______.三、解答题17、解分式方程(4分):(1)2101x x -=+. (2)2216124x x x --=+-18、(5分)先化简,再求值:12)112(22+-+÷--a a aa a a ,其中12-+a a =0.19、(8分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图; (2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.20、(6分)马小虎的家距离学校1400米,一天马小虎从家去上学,出发8分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他.已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.21、(5分)如图,AB,CD相交于点O,AC∥DB,AO=BO,E,F分别是OC,OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.22、(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1;(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.23(6分)如图,在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.24、(10分)已知(,2)A a a -、(2,)B a -两点是反比例函数my x=与一次函数y kx b =+图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求ABO ∆的面积;(3)观察图象,直接写出不等式0mkx b x+->的解集.25、(10分)如图,在四边ABCD 中,AB ∥DC ,AB =AD ,对角AC 、BD 交于O ,AC 平∠BAD . (1)求证:四边形ABCD 是菱形;(2)过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE ,若AB =2,BD =4,求OE 的长.26、(12分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)若PB=PQ,点F是BP的中点,连结EF、AF,①求证:四边形AFEP是平行四边形;②求PE的长.苏科版八年级下学期数学(解析)一、选择题1、下列电视台的台标,是中心对称图形的是( )A. B. C. D.【答案】D【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2、下列问题用普查(即全面调查)较为合适的是( )A .了解高州市中小学生对“创文”知识的了解情况B .检验一批药品针对新型冠状病毒肺炎的治疗效果C .了解50位同学对于垃圾分类知识的掌握情况D .检测一批地板砖的强度 【答案】C【分析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查【详解】A 、学生较多,故宜选用抽样调查;B 、实验要损耗药品,故宜选用抽样调查; C 、人数较少且要具体到每个人,故宜用全面调查:D 、有破坏性,宜采用抽样调查.故选:C .3、有两个事件,事件A :367人中至少有2人生日相同;事件B :抛掷一枚均匀的硬币,落地后正面朝上.下列说法正确的是( ) A .事件A ,B 都是必然事件 B .事件A ,B 都是随机事件C .事件是A 必然事件,事件B 是随机事件D .事件是A 随机事件,事件B 是必然事件 【答案】C【分析】运用必然事件和随机事件的定义判断即可.【详解】解:事件A :367人中至少有2人生日相同,是必然事件;事件B :抛掷一枚均匀的硬币,落地后正面朝上,是随机事件;故答案为C .4、如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24 【答案】C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长. 【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD , ∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD , ∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4, ∴▱ABCD 的周长=6+6+4+4=20. 故选:C .5、要使分式23-x 有意义,则x 的取值范围是( ) A .x ≠﹣2 B .x >2 C .x <2 D .x ≠2【分析】根据分式有意义的条件即可求出答案. 解:由题意可知:x ﹣2≠0 ∴x ≠2 故选:D .6、若函数()21-+=m x m y 是反比例函数,则=m ( ) A .1±B .3±C .1-D .1【分析】根据反比例函数的定义列方程即可得到结论. 【答案】解:∵函数y =(m +1)x |m |﹣2是反比例函数,∴|m |﹣2=﹣1,m +1≠0, ∴m =1, 故选:D .7、已知关于x 的函数y =k (x +1)和y =﹣(k ≠0)它们在同一坐标系中的大致图象是( )A .B .C .D .【分析】先根据反比例函数的性质判断出k 的取值,再根据一次函数的性质判断出k 取值,二者一致的即为正确答案.【答案】解:当k >0时,反比例函数的系数﹣k <0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k <0时,反比例函数的系数﹣k >0,所以反比例函数过一、三象限,一次函数过二、三、四象限. 故选:A .8、如图,函数1(0)y x x =>和3(0)y x x=>的图象分别是1l 和2l .设点P 在2l 上,//PA y 轴交1l 于点A ,//PB x轴,交1l 于点B ,PAB ∆的面积为( )A .12B .23 C .13D .34【分析】将点P (m ,n )代入反比例函数(x >0)用m 表示出n 即可表示出点P 的坐标,然后根据PB ∥x 轴,得到B 点的纵坐标为,然后将点B 的纵坐标带人反比例函数的解析式(x >0)即可得到点B 的坐标,同理得到点A 的坐标;根据PB =m ﹣,P A =,利用S △P AB =P A •PB 即可得到答案.【答案】解:设点P (m ,n ),∵P 是反比例函数y =(x >0)图象上的点, ∴n =, ∴点P (m ,); ∵PB ∥x 轴, ∴B 点的纵坐标为,将点B 的纵坐标代入反比例函数的解析式y =(x >0)得:x =, ∴B (,),同理可得:A (m ,); ∵PB =m ﹣=,P A =﹣=,∴S △P AB =P A •PB =×.故选:B .二、填空题9、已知菱形ABCD 的对角线相交于点O ,AC =8cm ,BD =6cm ,则菱形的面积为 cm 2. 【分析】由菱形面积公式即可得出答案.【解析】∵四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm , ∴菱形ABCD 的面积=21AC ×BD =21×8×6=24(cm 2), 故答案为:24.10、如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=OD D .AB=AD ,CB=CD 【答案】C【分析】由平行四边形的判定可求解.【详解】A 、由AD ∥BC ,AB=CD 不能判定四边形ABCD 为平行四边形;B 、由∠AOB=∠COD ,∠AOD=∠COB 不能判定四边形ABCD 为平行四边形;C 、由OA=OC ,OB=OD 能判定四边形ABCD 为平行四边形; D 、AB=AD ,CB=CD 不能判定四边形ABCD 为平行四边形; 故选:C .11、若用去分母法解分式方程xmx x -=--332会产生增根,则m 的值为 . 【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.解:去分母得:x ﹣2=﹣m ,由分式方程有增根,得到x ﹣3=0,即x =3, 把x =3代入整式方程得:﹣m =1,解得:m =﹣1. 故答案为:﹣1.12、如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象都经过点A (-1,2),若y 1>y 2,则x 的取值范围是____________.[答案]-1<x<0或x>1[解析]根据反比例函数图象与正比例函数图象交点规律:两个交点关于原点对称,可得另一交点的坐标为(1,-2).由图象可得在点A 的右侧、y 轴的左侧及另一交点的右侧时,相同横坐标的反比例函数的值都大于正比例函数的值,故当y 1>y 2时,-1<x<0或x>1.13、如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x上,且AB ∥x 轴,则△OAB 的面积为________.[答案]32[解析]延长BA 交y 轴于点C.S △OAC =12×5=52,S △OCB =12×8=4,则S △OAB =S △OCB -S △OAC =4-52=32.14、点P (1,a )在反比例函数y =kx的图象上,它关于y 轴的对称点在一次函数y =2x +4的图象上,则此反比例函数的表达式为________.[解析]点P 关于y 轴的对称点是(-1,a),代入一次函数表达式y =2x +4中,得a =-1×2+4=2,故点P 的坐标为(1,2).将点(1,2)代入反比例函数表达式y =kx中,得k =xy =2.故此反比例函数的表达式为y =2x.15、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是 .解:条件是AD =BC .∵EH 、GF 分别是△ABC 、△BCD 的中位线,∴EH ∥=BC ,GF ∥=BC ,∴EH ∥=GF ,∴四边形EFGH 是平行四边形.要使四边形EFGH 是菱形,则要使AD =BC ,这样,GH =AD , ∴GH =GF ,∴四边形EFGH 是菱形.16、如图,在△ABC 中,∠BAC=90°,AB=AC=3,D 为BC 边上一点,且:1:2BD DC =,以D 为一个顶点作正方形DEFG ,且DE=BC ,连接AE ,将正方形DEFG 绕点D 旋转一周,在整个旋转过程中,当AE 取得最大值时AG 的长为_______.【答案】23【分析】当点E 在线段AD 延长线上时,AE 取得最大值,画出图形,过点A 作AM BC ⊥于点M ,求出BC 的长度,利用等腰直角三角形的性质和勾股定理,求出AD 的长,进而可得AG 的长.【详解】解:当点E 在线段AD 延长线上时,AE 取得最大值.过点A 作AM BC ⊥于点M ,如图所示:90BAC ∠=︒,3AB AC ==,223332BC ∴=+=322BM CM ∴=,∴322AM = :1:2BD DC =,DE BC =,2BD ∴=32DE EF DG FG ====3122222DM ∴=Rt ADM ∆中,2231(2)(2)522AD =+ 在Rt ADG ∆中,()()222253223AG AD DG =+=+23三、解答题17、解分式方程(4分):(1)2101x x -=+. (2)2216124x x x --=+- 【解析】(1)2101x x -=+. (1)两边都乘以(1)x x +,得:2(1)0x x +-=,解得:2x =-,检验:2x =-时,(1)20x x +=≠,所以原分式方程的解为2x =-;(2)2216124x x x --=+- (2)两边都乘以(2)(2)x x +-,得:2(2)16(2)(2)x x x --=+-,解得:2x =-,检验:2x =-时,(2)(2)0x x +-=,2x ∴=-是分式方程的增根,则原分式方程无解.18、(5分)先化简,再求值:12)112(22+-+÷--a a a a a a ,其中12-+a a =0. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再由等式得出a 2=1﹣a ,代入计算可得. 解:原式=[﹣]÷ =• =, 当12-+a a 时,a 2=1﹣a ,则原式==﹣1.19、(8分)疫情期间,某学校根据同学学习情况,计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如图两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并通过计算补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生4800人,请你估计该校对在线阅读最感兴趣的学生人数.【答案】(1)90人,补全图形见解析;(2)48︒;(3)1280人.【分析】(1)由在线答题的人数有18人,占比20%,可得本次调查的总人数,再求解在线听课的人数,补全统计图即可;(2)先求解在线讨论占样本的百分比,由360︒乘以这个百分比即可得到答案;(3)先求解对在线阅读最感兴趣的学生占样本的百分比,利用总人数乘以这个百分比即可得到答案.【详解】解:(1)由在线答题的人数有18人,占比20%,所以本次调查的学生总人数为:18=9020%(人),所以在线听课的有:9024181236---=(人),补全图形如下:(2)因为12360=4890⨯︒︒,所以扇形统计图中“在线讨论”对应的扇形圆心角的度数为:48.︒(3)因为:244800=128090⨯(人),所以4800人中对在线阅读最感兴趣的学生有1280人.20、(6分)马小虎的家距离学校1400米,一天马小虎从家去上学,出发8分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他.已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【分析】设马小虎的速度为x米/分,则爸爸的速度是2x米/分,根据时间=路程÷速度结合爸爸比马小虎晚出发8分钟,即可得出关于x的分式方程,解之经检验后即可得出结论.解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意,得:﹣=8,解得:x=75,经检验,x=75是原方程的解,且符合题意.答:马小虎的速度是75米/分.21、(5分)如图,AB,CD相交于点O,AC∥DB,AO=BO,E,F分别是OC,OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠BO AO D B AOC DC 0∴△AOC ≌△BOD ;(2)∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.22、(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)以A 点为旋转中心,将△ABC 绕点A 顺时针旋转90°得△AB 1C 1,画出△AB 1C 1;(2)作出△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【答案】(1)△AB 1C 1如图所示;见解析;(2)△A 2B 2C 2如图所示;见解析.【分析】(1)依据△ABC 绕点A 顺时针旋转90°,即可得到△AB 1C 1;(2)依据中心对称的性质进行作图,即可得到△ABC 关于坐标原点O 成中心对称的△A 2B 2C 2.【详解】(1)△AB 1C 1如图所示;(2)△A 2B 2C 2如图所示.23(6分)如图,在△ABC 中,M 是AC 边上的一点,连接BM .将△ABC 沿AC 翻折,使点B 落在点D 处,当DM ∥AB 时,求证:四边形ABMD 是菱形.证明:如图,由折叠的性质,得AB =AD ,BM =DM ,∠1=∠2.∵DM ∥AB ,∴∠1=∠3,∴∠2=∠3,∴AD =DM ,∴AB =AD =BM =DM ,∴四边形ABMD 是菱形.24、(10分)已知(,2)A a a -、(2,)B a -两点是反比例函数m y x=与一次函数y kx b =+图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求ABO ∆的面积;(3)观察图象,直接写出不等式0m kx b x +->的解集.【分析】(1)由点A 的坐标利用反比例函数图象上点的坐标特征即可求出m 的值;由点B 的坐标结合反比例函数图象上点的坐标特征即可得出关于n 的一元一次方程,解方程即可求出点B 的坐标,再由点A 、B 的坐标利用待定系数法即可求出一次函数解析;(2)求得C 的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;【答案】解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上,∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中,得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的上方,∴不等式kx+b﹣>0的解集为x<﹣1或0<x<2.25、(10分)如图,在四边ABCD中,AB∥DC,AB=AD,对角AC、BD交于O,AC平∠BAD.(1)求证:四边形ABCD是菱形;(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,若AB=2,BD=4,求OE的长.【解析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DCA,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=2,利用勾股定理求出OA,即可得出结论.【答案】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=1,∴OA===4,∴OE=OA=4.26、(12分)如图,在边长为1的正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A 、D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:△PDE ≌△QCE ;(2)若PB =PQ ,点F 是BP 的中点,连结EF 、AF ,①求证:四边形AFEP 是平行四边形;②求PE 的长.【分析】(1)由正方形的性质、中点的定义及对顶角相等得出全等的判定条件即可得出答案;(2)①分别根据等腰三角形的性质、正方形的性质、全等三角形的性质及三角形的中位线定理等知识点得出两组对边分别平行,从而证得结论;②设AP =x ,分别用含x 的式子表示出PD 、CQ 、BQ 及EF ,再根据平行四边形的性质及勾股定理求得PE 的长即可.【解析】(1)证明:∵四边形ABCD 是正方形,∴∠D =∠ECQ =90°,∵E 是边CD 的中点,∴DE =CE ,又∵∠DEP =∠CEQ ,∴△PDE ≌△QCE (ASA );(2)①证明:∵PB =PQ ,∴∠PBQ =∠Q ,∵在正方形ABCD 中,AD ∥BC ,∴∠APB =∠PBQ =∠Q =∠EPD ,∵△PDE ≌△QCE ,∴PE =QE ,∵点F 是BP 的中点,∠PAB =90°,∴AF =PF =BF ,EF ∥BQ ,∴∠APF =∠PAF ,∴∠PAF =∠EPD ,∴PE ∥AF ,又∵EF ∥BQ ∥AD ,∴四边形AFEP 是平行四边形;②设AP =x ,则PD =1﹣x ,∴CQ =1﹣x ,∴BQ =2﹣x .∵EF 是△PBQ 的中位线,∴EF =21(2﹣x ), ∵四边形AFEP 是平行四边形,∴EF =AP , ∴21(2﹣x )=x ,∴x=32. 在Rt △PDE 中,DE=21,PD 2+DE 2=PE 2, ∴2241)321(PE =+-, ∴PE=613.。
邳州初二期中下册数学试卷

一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. 0D. -52. 若a、b、c是等差数列,且a+b+c=0,则b=()A. 0B. a+cC. 2a+cD. 2a-b3. 下列方程中,无实数根的是()A. x^2+2x+1=0B. x^2+2x+3=0C. x^2-2x+1=0D. x^2-2x+5=04. 已知等腰三角形ABC中,AB=AC,AD为底边BC的中线,则∠BAC的度数是()A. 30°B. 45°C. 60°D. 90°5. 若等比数列{an}的公比q≠1,且a1+a2+a3=18,a2+a3+a4=36,则a4=()A. 6B. 9C. 12D. 18二、填空题(每题4分,共20分)6. 若x^2-5x+6=0,则x^2+5x+6=______。
7. 已知等差数列{an}中,a1=3,d=2,则第10项an=______。
8. 在△ABC中,AB=AC,∠B=40°,则∠C=______。
9. 若等比数列{an}的公比q=-2,且a1+a2+a3=-6,则a1=______。
10. 已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=0,f(2)=4,则f(-1)=______。
三、解答题(每题10分,共40分)11. (1)已知数列{an}是等差数列,且a1=2,d=3,求第10项an。
(2)已知数列{an}是等比数列,且a1=3,q=2,求第5项an。
12. (1)已知函数f(x)=ax^2+bx+c(a≠0),若f(1)=0,f(2)=4,求函数f(x)的解析式。
(2)已知函数f(x)=ax^2+bx+c(a≠0),若f(-1)=0,f(1)=4,求函数f(x)的解析式。
13. (1)在△ABC中,AB=AC,∠B=40°,求∠A的度数。
(2)在等腰三角形ABC中,AB=AC,AD为底边BC的中线,求∠BAD的度数。
2020-2021学年八年级(下)期中数学试卷 通用版苏科版

2020-2021学年八年级(下)期中数学试卷通用版一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A,B,C,D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效。
1.若二次根式在实数范围内有意义,则x的取值范围是()A.x≠3B.x≥3C.x≤3D.x<32.下列各式中,是最简二次根式的是()A.B.C.D.3.若平行四边形两个内角的度数比为1:2,则其中较大内角的度数为()A.100°B.110°C.120°D.135°4.下列各组数中,能作为直角三角形的三边长的是()A.2,2,3B.2,3,4C.3,4,5D.4,5,65.下列计算错误的是()A.3+2=5B.÷2=C.×=D.=6.如图,四边形ABCD的对角线交于点O,下列不能判定四边形ABCD为平行四边形的是()A.AB=CD,AD=BC B.∠ABC=∠ADC,AB∥CDC.OA=OC,OB=OD D.AB∥CD,AD=BC7.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是()A.6B.8C.10D.128.已知a,b,c在数轴上的位置如图,化简的结果为()A.﹣a﹣b+2c B.﹣a﹣b C.﹣a+b D.a+b9.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为()A.1B.2C.3D.410.将一张矩形纸片MNPQ按如下操作折叠:第一步,在矩形纸片的一端,利用图1的方法折出一个正方形MNAB;第二步,如图2,把这个正方形沿CD折成两个全等的矩形,再把纸展平;第三步,折出内侧矩形ABCD的对角线BD,并把BD折到图3中的DE处;第四步,展平纸片,按所得的点E折出EF,即得到矩形AEFB,则的值为()A.B.C.D.二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置。
2020--2021学年徐州市八年级下册期中考试数学试卷含答案

∴△ABO的周长=AB+BO+AO
=15+10+15 =40(cm)
.......................8分
18.证明:(1)0.51
255 0.51 ..........3分
(2)折线图如图所示;...................6分
(3)0.51
.............................8分
∵AB=AC,D点是BC的中点
∴AD⊥BC
∴∠ADC=90° ...............................................................................................................7分
∴四边形ADCF是矩形 ...................................................................................................8分
20.(1)画图如图(画对1个三角形得2分)..........4分 (2)(2,-2)、(4,4)、(0,2)........................8分 (写对一个得2分,写对2个得3分,3个全对得4分)
21.证明:∵四边形ABCD是矩形
∴AC=BD
1
1
AO= AC,BO= BD ....................................................................................................5分
2
2
∵AC=2AB
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.
22.如图,在平行四边形ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE、BF交于点M,连接CF、DE交于点N,连接MN.试探讨MN与AD的大小关系和位置关系,并加以证明.
10.今年邳州市有20000名考生参加中考,为了了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,样本容量是______.
11.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
A.2个B.不足3个C.3个D.4个或4个以上
4.在做抛硬币试验时,甲、乙两个小组画出折线统计图后发现频率的稳定值分别是50.00%和50.02%,则下列说法错误是( )
A.乙同学的试验结果是错误的B.这两种试验结果都是正确的
C.增加试验次数可以减小稳定值的差异D.同一个试验的稳定值不是唯一的
5.空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( )
23.如图,四边形ABCD是正方形,△EBC是等边三角形.
(1)求证:△ABE≌△DCE;
(2)求∠AED的度数.
24.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于 BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.
(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
(2)若菱形ABEF的周长为16,AE=4 ,求∠C的大小.
25.实验探究:
(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.
A.折线图B.条形图C.直方图D.扇形图
6.如图,在矩形ABCD中,对角线 相交于点 ,则AB的长是
A.3cmB.6cmC.10cmD.12cm
7.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是( )
A.△AFD≌△DCEB.AF= AD
17.如图,在四边形ABCD中,AB∥CD,AC、BD相交于点O,且O是BD的中点.求证:四边形ABCD是平行四边形.
18.①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.
19.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
C.AB=AFD.BE=AD﹣DF
8.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有( )
①AC=5②∠A+∠C=180°③AC⊥BD④AC=BD
A.①②④B.①②③C.②③④D.①③④
二、填空题
9.某校八(1)班50名学生在一次数学测试中,优秀的学生占20%,在扇形统计图中,表示这部分学生的扇形圆心角是______度.
(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m=,n=;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
20.如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.
(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;
14.菱形 中, ,其周长为 ,则菱形的面积为____ .
15.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.
16.如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为__.
三、解答题
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出n的值是.
12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.
13.如图,在▱ABCD中,对角线AC、BD相交于点O,点E是AB的中点OE=5cm,则AD的长是______cm.
C.对我市中学生观看电影《厉害了,我的国》情况的调查
D.对我国首艘国产航母002型各零部件质量情况的调查
2.下列图形中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.袋子中有黑球3个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )
(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.
江苏省徐州市邳州市2020-2021学年八年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列调查中,最适合采用全面调查(普查)的是( )
A.对我市中学生每周课外阅读时间情况的调查
B.对我市市民知晓“礼让行人”交通新规情况的调查