【学案】用代数式表示实际中的数量关系
(部编版)2020七年级数学上册第二章整式2.1.1用式子表示实际问题中的数量关系备课资料教案

第二章 2.1.1用式子表示实际问题中的数量关系
知识点:代数式
用基本的运算符号(包括加、减、乘、除、乘方、开方)把数和表示数的字母连接而成的式子就叫做代数式,单独的一个数或一个字母也是代数式.
归纳整理:代数式书写时需注意:
(1)代数式中数与字母、字母与字母相乘,通常应省略乘号,如5×m常写作5m,而数与数相乘时,则不能把“×”简写成“·”号或省略不写.
(2)数与字母相乘,数应写在字母的前面,如a不能写成a.
(3)除法运算写成分数形式,如s除以a与b的差应写成,而不能写成s÷(a-b).
(4)带分数与字母相乘,应把带分数化为假分数,如-x不能写成-1x.
(5)最后一步是加减运算的代数式,若须说明单位,则要用括号把整个代数式括起来,如(2a+3b)千克而不能写成2a+3b千克.
考点1:用字母表示数
【例1】甲车的速度为每小时x千米,乙车的速度为每小时y千米. 若甲、乙两车由两地同时出发,相向而行,t小时后相遇,则两地距离为千米. 若两车同时分别从两地出发,同向而行,t小时甲车追上乙车,则两地距离为千米.
答案:tx+ty tx-ty.
点拨:本题考查的是行程问题中的相遇问题和追击问题,在相遇问题中是甲、乙行程和等于总路程,在追击问题中是快的行程减去慢的行程等于距离.
考点2:解释数学式子的实际意义或几何背景
【例2】体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则式子500-3a-2b表示的数为.
答案:体育委员买了3个足球、2个篮球剩余的钱
点拨:由题意可知3a表示买3个足球所需的钱数,2b表示买两个篮球所需的钱数,所以500-3a-2b表示体育委员买了3个足球、2个篮球剩余的钱.
1。
【学案】《代数式》学案

数学:5.2《代数式》学案2(青岛版七年级上)一、学习目标:知识与技能:1、在具体情景中,进一步理解字母表示数的意义,经历代数式概念的产生过程.2、会列代数式,能解释一些简单代数式的实际背景或几何意义,发展符号感.过程与方法:1、通过丰富的实例使学生经历从语言叙述到代数表示,从代数表示到语言叙述的双向过程.2、通过列代数式,初步体会到数学中抽象概括的思维方法。
情感、态度与价值观:在与同伴探索、交流的学习过程中形成良好的学习态度,逐步体会数学语言的简洁美,培养学生分析问题的能力和语言表达能力.二、学习重点:代数式的概念,列代数式.学习难点:理解描述数量关系的语句,正确列出代数式。
三、学习过程:(一)自主学习请同学们认真阅读课本105页----106页内容,完成下面的练习:1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长2张强比王华大3岁,当张强a岁时,王华的年龄是多少?3a千克大米的售价是6元,1千克大米售多少元?4圆的半径是R厘米,它的面积是多少?5用代数式表示:(1)长为a,宽为b米的长方形的周长;(2)宽为b米,长是宽的2倍的长方形的周长;(3)长是a米,宽是长的的长方形的周长;(4)宽为b米,长比宽多2米的长方形的周长(二)精讲点拨例4 、用代数式表示:(1)某数的3倍与2的差的平方(2)三个连续偶数的和(3)m与n的和除以10的商;(4)m与5n的差的平方;(5)x 的2倍与y 的和;(6)ν的立方与t 的3倍的积分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面例5请对代数式a+2的实际意义作出解释例6 说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3) (4)a- b (5)a 2+b 2 (6)(a+b) 2对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点(三)有效训练1、指出下列各式中,哪些是代数式,哪些不是代数式。
代数式1学案1

5.2 代数式教学案 时间:2011.11·学习目标:1、了解代数式的意义,能根据简单的数量关系列代数式;能用自然语言(或普通语言)表示代数式的意义,发展符号感。
2、经历探索事物之间的数量关系并用代数式表示的过程,体会数和符号是刻画现实世界数量关系的重要语言。
● 学习重点、难点:列代数式● 关键:正确理解数量关系及实际问题中的各种量之间的关系。
● 教学过程:情境引入(1)大西洋是世界第二大洋,据测量,它的东西宽度每年增加4厘米,经过n 年将增加 厘米。
(2)长方形的长和宽分别是a 和b ,正方形的边长是c ,长方形与正方形面积的和是 。
(3)七年级一班有学生n 人,其中男生有m 人,那么女生有多少人?(4)七年级一班有女生a 人,男生是女生人数的 倍,那么男生有多少人?(5)从小亮家到学校的路程是2千米,小亮骑自行车的速度是v 千米/时,小亮骑自行车从家到学校需要多少时间?(6)甲、乙两人分别从A 、B 两地同时出发,相向而行。
甲的速度为a 千米/时,乙的速度为b 千米/时,经过2时两人相遇,那么A 、B两地的距离是多少?探求新知一、 代数式的意义:像4n ,ab+c 2,n-m , a ,2(a+b ),ab+ac 等,都是代数式。
注意:1.单独一个字母或一个数也是代数式。
如x 、m 、0、-9等都是代数式。
2. 公式、等式和不等式都不是代数式;如:s=ab ,x+1=2,3>2等都不是代数式。
代数式不含“=”、“>”、“<”、“≤”、“≥”。
练习:判断下列式子哪些是代数式,哪些不是。
(1) a 2+b 2 (2)ts(3) 13 (4) x=2 (5) 3×4 -5(6) 3×4 -5 =7 (7) x -1≤0 (8) x+2>3 (9) 10x+5y=15 (10)3434代数式的规范写法(1) a ×b 通常写作 a·b 或ab ; (2) 1÷a 通常写作a1;(3) 数字通常写在字母前面; 如:a ×3通常写作3a ; (4)带分数一般写成假分数.如:511×a 通常写作56a ;(5)和、差形式的代数式后有单位时,应将代数式用括号括起来。
3.2代数式学案.doc

§3.2代数式(1)(学案)一、读一读(学习目标)(1分钟)1.了解代数式的概念,能用代数式表示简单问题中的数量关系;2.在具体情境中,解释代数式的实际意义;3.能解释一些简单代数式的实际背景或几何意义。
二、试一试(8分钟)1、a与b的和的平方可以表示为______________ 。
2、x的4倍与3的差可以表示为________________ 。
3、汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有________________ 名乘客。
像(a+bF、4x-3、a-b+c……等的式子都是代数式。
用基本_______________ 把数和字母连接而成的式子,叫做代数式。
单独的____________ 或者 _____________ 也是代数式。
s4、下列各式中,⑴、a2+b2(2) - (3) 13 (4) x=2 (5) 3X4-5 (6) 3X4-5=7t(7) x-l<0 (8) x+2>3 (9) 10x+5y=15 (10) +c其中恳代数式的是:________________________ ,不呈代数式的是:________________________ (填序号)5、某动物园的门票价格是:成人票每张10元,学生票每张5元。
一个旅游团有成人x人、学生y人。
(1)那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?6、想一想:现实生活中,10x+5y还可以表示什么意思?请写下来。
归纳:(1)代数式的书写要求:母与字母或者数字与字母相乘时,乘号"x”通常写成“ •”或省略不写。
如4xa通常写作4・a或4a;带分数与字母相乘时应把带分数化成假分数,并把数字写在字母的前面。
如axl-应写成-«;l^a通4 4常写作丄;③数字与数字相乘时仍用"X”号;④在代数式中出现除法运算时应写成分数形式。
冀教版数学七上3.2.3用代数式表示实际问题中的数量关系 教案

第三章 代数式3.2 代数式第3课时 用代数式表示实际问题中的数量关系教学目标1.使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和解释简单实际问题中的数量关系.2.渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.教学重难点重点:会用代数式表示简单的数量关系. 难点:会用代数式表示简单的数量关系.教学过程导入新课已知甲、乙、丙三个数的比为1∶2∶3.如果设甲数为x ,请表示出甲、乙两数的和减去丙数后的差;如果设丙数为z ,请表示出甲、丙两数的和减去乙数后的差. 学生独立完成,然后找学生讲解.答案:x +2x -3x 1233z z z +- 探究新知探究一:小亮和大华的打字速度都有了提高,小亮的打字速度达到80个/min ,大华比小亮每分钟多打10个字.(1)小亮和大华a min 分别能打多少个字?(2)b min 大华比小亮多打多少个字? (3)将同为c 个字的两篇文章分别交给小亮和大华打,如果要求他们同时完成任务,那么小亮比大华要提前多少分钟开始打字?小组讨论交流,选代表板书并讲解.答案:(1)小亮打字80a 个,大华打字90a 个; (2)10b ;(3)min 8090c c ⎛⎫- ⎪⎝⎭. 探究二: 例 从A 地乘火车到北京,普通票价格为40元/人,学生票价格为20元/人.星期日,A 地某学校组织部分师生到天安门广场观看升旗仪式. (1)如果有教师14人,学生180人,那么买单程火车票共需多少元? (2)如果有教师x 人,学生y 人,那么买单程火车票共需多少元?(3)如果教师人数恰好是学生人数的112,将教师的人数或学生的人数用字教学反思母表示,那么买单程火车票共需要多少元?小组讨论交流,然后选代表板演并讲解. 解:(1)40×14+20×180=4 160(元). (2)(40x +20y )元.(3)如果设教师有x 人,那么学生有12x 人,买单程车票共需(40x +20× 12x )元;教师归纳:列代数式表示较为复杂的实际问题时,需认真审题,弄清问题中各数量之间的关系和运算顺序,即必须把实际情境中数量关系分析清楚,然后按照代数式书写格式的规范进行书写.课堂练习1.火车平均每小时运行v km ,用代数式表示: (1) 经过2 h ,火车运行了 km ;(2) 如果火车行驶400 km ,那么需要 h.2.三个相邻的奇数,中间的一个为m ,则较小的一个为 ,较大的一个为 .3.汽车厂去年生产汽车a 台,今年比去年增产p%,那么今年生产了汽车台.4.a 是一个两位数,已知十位数字为b ,则个位数字是 ,交换个位、十位上的数字后,所得的新的两位数是 .5.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元,现在某人租船要行驶s 千米(s 为整数,s ≥1),所需运费表示为 元.6.一台电视机成本a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台实际售价为 元.7.邮购一种图书,每册书定价为a 元,另加书价的10%作为邮费,购书n 册,总计金额为y 元,则y 为 元. 参考答案1.(1)2v (2) 400v 2.m -2 m +2 3.a (1+p %)4.a -10b 10(a -10b )+b5.[25+5(s -1)]6. [a (1+25%)×70%]7.(a +10%a )n课堂小结 用代数式表示实际问题中的数量关系时,要注意: 1.抓住关键词语,确定所求问题与已知条件之间的数量关系;2.厘清问题中的语句的层次,明确运算顺序;3.熟悉相关知识,正确使用括号;4.若用“和”“总”表示后式子后面有单位,式子要放到括号内.布置作业教材第106页习题A 组第1,2,3题.教学反思1210402020.123yy y y y y ⎛⎫⎛⎫⨯++ ⎪ ⎪⎝⎭⎝⎭如果设学生有人那么教师有人买单程车票共需元即元,,,教学反思板书设计第三章代数式3.2 代数式第3课时用代数式表示实际问题中的数量关系探究一:探究二:。
人教版七年级数学上册代数式学案

人教,版,七年级,数学,上册,代数式,学案,一,、,一、学习目标1.理解代数式的定义,知道什么样的式子是代数式;2.把语言描述的数量关系用代数式表示出来;3.掌握代数式的写法和读法;4.能说出一个代数式所表示的数量关系,能判断一个式子是不是代数式;5.在具体情境中,能求出代数式的值,并解释它的实际意义;6.培养自己良好的思维习惯,能在独立思考的基础上积极参与数学问题的讨论.二、知识回顾三、新知讲解1.代数式的定义用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.2.列代数式把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来,便是列代数式.列代数式的一般步骤:(1)辨析词语意义;(2)分清数量关系;(3)明确运算顺序.3.代数式的书写要求代数式的书写应符合特定的规范形式,基本书写规则要求如下:(1)关于乘号:数字与字母相乘,或者字母与字母相乘,乘号一般不写成“×”,而是写成“·”,或者省略不写.(2)关于数字:如果字母与数字相乘,那么一般把数字写在字母的前面;如果数字为带分数的,应化为假分数.(3)关于除法:在代数式中出现除法运算时,一般不写“÷”,而是写成分数的形式.(4)带单位的代数式:从总体上看代数式,若结果是乘除关系的,直接在后面写单位;若结果是加减关系时,先把式子用括号括起来,再在后面写上单位.四、典例探究扫一扫,有惊喜哦!1.根据题意列代数式【例1】根据题意列出代数式.【例2】(2012•洪山区模拟)用代数式表示“x的4倍与y的差的平方”正确的是()A.(4x﹣y)2 B.4x﹣y2 C.4(4x﹣y)2 D.(x﹣4y)2练1.有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)平方米 B.x(12﹣x)平方米C.x(6﹣3x)平方米 D.平方米练2.下列代数式正确的是()A.a与b的差的2倍是a﹣2b B.a与b的2倍的差是a﹣2bC.a与b、c两数之和的差是a﹣b+c D.b两数之差与c的和是a﹣(b+c)2.代数式的判断与书写规范【例3】在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A.3个 B.4个 C.5个 D.6个【例4】下列各式:①;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A.5个 B.4个 C.3个 D.2个练3.下列各式中不是代数式的是()A. B. C.π÷3.14 D.π≈3.14练4.以下代数式符合书写规范的是()A.(a+b)×2 B. C. D.x+y厘米五、课后小测一、选择题1.一辆汽车可装a箱货物,每箱货物重40千克,b辆这样的汽车一共可装()千克货物.A.40ab B. C. D.2.已知a是两位数,b是一位数,把a接写在b的后面,就成为一个三位数.这个三位数可表示成()A.10b+a B.ba C.100b+a D.b+10a3.下列语句正确的是()A.0是代数式 B.S=2πR是一个代数式C.单独的一个数不是代数式 D.单独一个字母a不是代数式4.下列各式中,符合代数式书写要求的是()(1);(2)a×3;(3)ab÷2;(4).A.4个 B.3个 C.2个 D.1个二、填空题5.一艘轮船在静水中的速度为a千米/小时,水流速度为b千米/小时,则船顺流航行的速度为千米/小时.6.在①2x,②3x﹣2≠5,③3x﹣2y﹣z,④x>3,⑤(x+3)2,⑥y=2x+1中,是代数式的有.(只填番号)7.下列格式中(1)ab÷2;(2);(3)ab;(4)2(a+b);(5)t﹣3℃,符合代数式书写要求的是.(填序号)三、解答题8.列代数式:(1)a的2倍与b的和;(2)x的相反数与y的倒数的和.9.下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y10.王刚同学拟了一张招领启事:“今天拾到钱包一个,内有人民币8.5元,请失主到一(1)班认领”.你认为这个启事合理吗?如果不合理,问题在哪里?请你改正过来.。
【学案】列代数式

列代数式【学习目标】应用数学知识解决实际问题是学习数学的目的,学会灵活运用代数式,可以解决许多实际问题。
【导学指导】例题:甲乙两地之间的公路全长为100千米,某人从甲地到乙地每小时走m千米,用代数式表示:(1)某人从甲地到乙地需要走多少小时?(2)如果每小时多走2千米,某人从甲地到乙地需要走多少小时?(3)速度变化后,某人从甲地到乙地比原来少用多少小时?(1)小时,(2)小时;(3)(-)小时点评:时间=,如用S表示路程,t表示时间,v表示速度,则t=。
例2:某市公园的门票价格是:成人票每张20元,学生票每张10元。
某旅游团成人a人,学生b人,那么该旅游团应付多少门票费?解析: (20a+10b)元想一想:20a+10b还可以表示什么?解析:(1)若用a千米/秒表示王明骑自行车的速度,用b千米/秒表示王明跑步的速度,那么他先骑车20秒,再跑步10秒,共行驶了多少路程?(2)若用a元/千克表示苹果的单价,用b元/千克表示梨的单价,那么买20千克苹果,再买10千克梨共花费多少元?点评:实际问题的数量可以用代数式表示,另一方面,同一个代数式可以表示多种实际问题中的数量【课堂练习】1.一个三位数,它的百位上数字为a,十位上数字为b,个位上数字为c,则这个三位数为2、三个连续奇数,中间一个为2n+1,则三个连续奇数的和为3、汽车每小时行v千米,则t小时可以行千米,全程s千米需行驶小时。
若每小时加快a千米,则全程s千米需行驶小时,加快后比原来行驶全程可以少用小时。
4、汽车从甲地开往乙地计划用t小时,路程是s千米,结果提前半小时到达,汽车的速度是 .5、梯形的上底为a,下底为b,高为h,则梯形的面积为6、小明用m元买n个球,若球的单价为a元,则应找回小明的钱数是7、一种电脑,买入价千元/台,提价10%后出售,这时售价为_______千元,后又降价5%,降价后的售价又为_______千元.8、下列列出的代数式中,错误的是()A、减去5等于x的数是x+5B、a与b的积的倒数是C、比x除以y的商小3的数是D、a与4的积的平方记为4a29、食堂现存有煤m吨,计划每天用煤n吨,实际每天节约a吨,节约后可多用的天数为()A、 B、 C、 D、【拓展训练】10、下列代数式的值一定是正数的是()A、(a+1)2B、|a+1|C、(-a)2+1D、1-(1-a)211、某商品按原零售价的九折降价后,又降价a元,每件商品现在售价是b元,那么该商品原零售价是()A、0.9(a+b)B、0.9(a-b)C、D、12、一个两位数,十位数字是a,并且十位数字比个位数字的多6,那么这个两位数是()A. 10a+ B. C. 10a+(3a-6) D. 10a+(3a-18)13、学校现有学生a人,若现在的学生人数比5年前增加了32%,那么5年前学生人数为多少?14、长沙市出租车收费标准为:起步价5元,3千米后每千米价2.2元.则某人乘坐出租车x(x>3)千米的付费为多少元?15、某钢铁厂2003年的年产量为A万吨,计划以后每年比上年增长P%,那么2005年这个钢铁厂的年产量是多少?16、要制造a个零件,原计划每天造b个,用代数式表示制造这批零件要多少天?如果每天比原计划多制造20个零件,用代数式表示可以提前几天完成?【归纳反思】。
【冀教版】七年级数学上册:第3章《代数式》全章教学案(含答案解析)

第三章代数式1.让学生经历用字母表示以前学过的运算律和计算公式,并体会用字母表示数的意义,形成初步的符号感.2.理解代数式的意义,能解释一些简单代数式的实际背景,并能体会代数式是反映数量之间关系的数学模型.3.会求代数式的值,能够根据特定的问题查阅资料,找到所需要的公式,并会代入字母的具体值进行计算.1.用代数式表示实际问题中的数量关系,要求学生逐步掌握一些分析数量关系的一般方法.2.学会“观察—归纳”的思维方法.3.将文字语言描述的数量或数量关系,用符号语言表示,使学生感悟其中“分析—综合”方法的应用.1.培养学生准确运算的能力,并适当地渗透特殊与一般的辩证关系的思想.2.培养学生养成认真做题的良好习惯,体会数学与现实的联系.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.本章内容包括用字母表示数、代数式、代数式的值.数的运算伴随着数的扩充与发展不断丰富,用字母表示数后,再用加、减、乘、除、乘方和开方等运算符号连接数和字母形成代数式,从而可以用方程刻画现实问题中的等量关系,用不等式表示数量间的不等关系,用函数研究数量间的变化以及对应关系.所以代数式是学习方程、不等式、函数的基础,它对整个第三学段代数知识的学习具有奠基作用.教材采用“大家谈谈”“一起研究”“做一做”等模块,以生动鲜活的例子引入课题,加强讨论与交流,实验与探究,以及动手操作活动的开展,进一步培养学生运用符号解决问题的能力和进行判断和推理的能力,以及培养学生的探索精神.【重点】1.列代数式,求代数式的值.2.培养学生对知识的抽象和概括能力.【难点】由实际问题列代数式及规律探究题的解法.1.教学中重点渗透具体数字到字母的抽象概括思维方式,并注意归纳、类比、转化等思想方法的应用.2.让学生经历观察、探究、思考交流,分析问题中的数量关系,来发展数学思维.3.用代数式表示实际问题的数量关系,要求学生逐步掌握一些分析数量关系的一般方法,对有些实际问题,可以借助表格或图形分析数量关系,使得思路更加清晰.4.在代数式求值的教学过程中,让学生体会到从运算的角度看,代数式是一个计算过程.可以借助图框教学来显示计算过程.对含一个字母的代数式,有意识地取字母的不同值,代入并进行计算,来感受代数式的值是随着字母取值的变化而变化的,渗透函数思想.在解决实际问题的过程中,采用“由特殊到一般再到特殊”的教学过程.5.代数式中字母的取值,要根据具体问题确定其范围,必须要保证代数式和其在实际问题中有意义.3.1用字母表示数1课时3.2代数式4课时3.3代数式的值2课时回顾与反思1课时3.1用字母表示数1.在观察、思考的过程中形成用字母表示数的一般概念.2.体会用字母表示数的特点和意义.3.通过用字母表示一些具体的数学量,初步培养抽象思维的能力和符号逻辑.在实践的过程中,体会到用一个一般的量来表示具体数值的必要性.通过自主式学习和研究式学习,在教师的帮助下形成代数的思维方式.1.通过实践、观察、思考、归纳等环节,总结规律,培养自主学习的能力.2.体会简单的数学思想是如何运用到具体情况中的.3.在与其他同学的交流和讨论中,培养既合作又竞争的意识.【重点】1.通过实践总结规律,并使用字母表示规律.2.能够自觉地使用字母表示简单的数学关系.【难点】1.认识用字母表示数具有不唯一性.2.能根据实际情况列出合理的代数式.【教师准备】多媒体课件.【学生准备】预习教材P96~97.导入一:出示教材章前图情境问题:【课件】代数式在现实生活中的应用非常广泛.如存款问题:爷爷在银行按1年定期存了a元钱,存款时的1年定期存款年利率是3.50%.到期后,爷爷取出本息共为p元.怎样写出用a表示p的式子?[设计意图]教材中的章前图和内容具有生活情境性,可以帮助学生初步感知用字母表示数的必要.导入二:周末,小明帮妈妈打扫卫生,做完后心里美滋滋的,想着自己喜欢的玩具,忽然他计上心来……妈妈下班后看到桌上有一纸条,内容是拖地3元,叠被1元,抹窗5元,丢垃圾袋1元,共计10元.妈妈看了之后,一言不发,提笔在纸上加上了吃饭x元,穿衣y元,带去看病z元,关心a元,…,共计b元.写完后就去厨房做饭了,小明看后心里很不是滋味,心生惭愧,赶忙收起纸条.小明懂得了x与y等字母的含义,同学们,你们懂吗?[设计意图]用伟大的母爱,引出本节课的内容,让学生学会感恩.活动1运算律中的字母[过渡语]在我们身边有许多用字母来表示数的例子,今天我们就一起来探索下这个问题.师:科学家爱因斯坦上小学时,在一次数学课中,发现了下列等式:1+2=2+1,3.5+5.6=5.6+3.5,.大家能用示例再验证下这个规律吗?生随意举例.师:如果仅靠具体的示例,还不能把这个规律完整地表达出来.你能把这个规律用简明的方法表示出来吗?活动方式:师生对话、交流.[设计意图]利用教材情境,让学生明白字母能简明表示一些规律,与此同时培养学生善于观察和勤于积累的能力.[处理方式]展示学生的成果:爱因斯坦发现的这个规律就是加法交换律,用字母表示为a+b=b+a(a,b表示任意数).(过渡语)师:还有没有其他的已学过的运算律?预设生1:加法结合律:a+b+c=a+(b+c)=(a+b)+c.生2:乘法交换律:ab=ba.生3:乘法结合律:abc=a(bc)=(ab)c.(a,b,c分别为任意数)……(过渡语)师:同学们回答得太好了,那么除了用字母表示运算律之外,用字母还可以表示公式.【课件展示】1.长方形的面积计算公式S=ab,S表示面积,a,b分别表示长方形的长与宽.2.圆的面积计算公式S=πr2,S表示面积,r表示圆的半径.3.长方体的体积计算公式V=abc,V表示体积,a,b,c分别表示长方体的长、宽、高.4.圆柱的体积计算公式V=πr2h,V表示体积,r表示底面半径,h表示圆柱的高.[设计意图]过渡到用字母表示以前学过的运算律、公式、法则,不仅复习了旧知识,而且巩固了新知识,把已学知识重新规划,让学生有一个重新认识的过程.运算律的展示使学生进一步体会用字母表示数可以使数量关系简明和一般化,初步体验和确认了用字母可以表示任意数这一点.活动2用字母表示数量关系[过渡语]字母不仅能表示运算关系,也能表示数量关系.下面我们就来看一看,在100米短跑测试中,小帆、大林和小明谁跑得快.姓名小帆大林小明成绩/s 16 14.5 15.2速度/(m/s)(1)请你算出他们每人100米短跑的速度,并将计算结果填入表中.(2)写出计算速度时所用的公式.(3)这个公式能用来计算汽车、轮船、飞机在某段匀速行驶过程中的速度吗?若用s表示路程,t表示所用时间,v表示速度,则这个公式就是v=.思路一[处理方式]独立思考,写出结果,小组内交流.体会用字母表示数的优越性.展示交流结果:(1)100米表示路程,16秒表示时间,小帆的速度=100÷16=(m/s),同理,大林的速度=100÷14.5=(m/s),小明的速度=100÷15.2=(m/s).(算错的同学要订正错误)(2)v=.(其中v表示速度,s表示路程,t表示时间)(3)由于v表示速度,s表示路程,t表示时间,所以v=可以用来求汽车、轮船、飞机在某段匀速行驶过程中的速度.[设计意图]此过程可以使学生经历运用数学符号描述数量关系的过程,发展符号感和抽象思维.通过与同伴交流,学生将体验获得解决问题策略的方法,学会合理清晰地阐述自己的观点.学生必将获得良好的数学活动经验.思路二(1)速度、路程和时间三个量的关系是什么?请动手写一写:.并利用这个关系,分别求出小帆、大林和小明的速度.(2)如果用v表示速度,s表示路程,t表示时间,那么它们的关系可以用字母写成什么?表示为:.(3)能否利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度?[处理方式]独立思考,写在练习本上,同桌交流,展示成果.(1)路程=速度×时间,速度=路程÷时间,时间=路程÷速度.(2)s=vt,v=,t=.(其中v表示速度,s表示路程,t表示时间)(3)可以利用上面的公式求汽车、轮船、飞机在某段匀速行驶过程中的速度.师总结:用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.活动3按照要求和条件表示数[过渡语]字母在表示数的时候神通广大,我们再接着看下面的内容.出示教材第97页的内容:观察自然数0,1,2,3,4,5,6,7,8,9,10,11,12,….(1)请用字母表示偶数和奇数.(2)两个偶数之和是什么数?提出猜想,并用字母表示数的方法说明这个猜想是正确的.[处理方式]同桌互相提问,复习已有知识,交流体会方法.提出引导问题:偶数、奇数的概念是什么?它们有什么特征?(1)能被2整除的数是偶数,不能被2整除的数是奇数.偶数用字母表示为2m(m为自然数),奇数用字母表示为2m+1(m为自然数).(2)提出猜想:两个偶数的和是偶数.验证1:2+4=6,102+134=236……验证2:(相邻两个偶数)一个偶数为2m(m为自然数),另一个为2m+2,其和为2m+2m+2=2(2m+1).验证3:一个偶数为2m(m为自然数),另一个为2n(n为自然数),两个偶数的和为2(m+n).活动4做一做——能力提升用字母表示数,说明:(1)任意两个奇数之和是偶数.(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数.问题引导:(1)一个奇数怎么表示?(2)两个相邻的奇数怎么表示?(3)任意两个奇数怎么表示?(4)与m相邻的两个自然数怎么表示?问题提示:(1)2m+1.(2)2m+1和2m - 1.(3)2m+1和2n+1.(4)m+1和m - 1.(m,n为自然数)问题说明:(1)任意两个奇数之和是偶数:2m+1+2n+1=2(m+n+1).(2)如果m为自然数,那么与m相邻的两个自然数之和是偶数:m+1+m - 1=2m.[知识拓展]用字母表示数,同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示.用字母表示实际问题中的某一数量时,字母的取值需使这个问题有意义,并且符合实际.用字母表示数可简明表达问题中的数量关系、公式、法则、规律等.用字母表示数、数量关系以及数学事实,不仅形式简单,而且具有一般性,还便于交流.1.填空.(1) - 6 ℃下降2 ℃后是℃;温度由t℃下降2 ℃后是℃;(2)今年李华m岁,去年李华岁,五年后李华岁;(3)三个连续偶数中间一个为2n,则其余两个为,;(4)某商店上月收入a元,本月收入比上月的2倍多10元,本月收入元;(5)城市市区人口a万人,市区绿化面积m万m2,则平均每个人拥有绿地m2;(6)某城市5年前人均年收入为n元,预计今年人均年收入是5年前的2倍多500元,那么今年人均年收入将达元.答案:(1) - 8(t - 2)(2)(m - 1)(m+5)(3)2n - 22n+2(4)(2a+10)(5)(6)(2n+500)2.选择.(1)用字母表示乘法对加法的分配律是()A.a(b+c)B.ab+acC.a(b+c)=ab+acD.ab=ba(2)昨天的最高气温是27 ℃,今天的最高气温比昨天的下降t℃,今天的最高气温是()A.27+tB.27 - tC.(27+t)℃D.(27 - t)℃(3)(2015·吉林中考)购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元解析:(1)乘法分配律是一个数乘两个数的和,等于这个数分别乘这两个加数,然后把乘得的积相加,据此写成字母表达式为a(b+c)=ab+ac;(2)用昨天的最高气温减去下降的气温即为今天的最高气温.今天的最高气温是(27 - t)℃;(3)购买1个单价为a元的面包所需费用为a元,3瓶单价为b元的饮料所需费用为3b元,则共需费用为(a+3b)元.答案:(1)C(2)D(3)D3.填空.(1)长方形窗户上的装饰物如图所示,它是由半径均为b的两个四分之一圆组成的,则能射进阳光部分的面积是;(2)(2015·安顺中考)如图所示的是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中的基础图形的个数为(用含n 的式子表示).解析:(1)能射进阳光部分的面积=长方形的面积 - 半径为b的半圆的面积.即能射进阳光部分的面积=2ab - πb2;(2)认真观察图形,确定图形变化规律:第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,以后每个图案都比前一个图案多3个基础图形,所以第n(n是正整数)个图案中的基础图形的个数为3n+1.答案:(1)2ab - πb2(2)3n+13.1用字母表示数活动1运算律中的字母活动2用字母表示数量关系活动3按照要求和条件表示数活动4做一做——能力提升一、教材作业【必做题】教材第98页习题A组第1,2题.【选做题】教材第98页习题B组第1,2题.二、课后作业【基础巩固】1.如果甲数是x,甲数是乙数的2倍,那么乙数是()A.xB.2xC.x+2D.x+2.n为整数,则2n - 1一定是()A.偶数B.奇数C.2的倍数D.正整数3.一个长方形的周长为28,其中长为x,则此长方形的面积为()A.14xB.x(x - 14)C.x(14+x)D.x(14 - x)4.若一个正方形的边长为a,则这个正方形的周长是.5.若每箱有36个苹果,则n箱共有个苹果.6.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的式子表示)7.某商品的进价为x元,售价为120元,则该商品的利润率可表示为.8.一棵树刚栽时高2 m,以后每年长高0.2 m,n年后的树高为多少米?9.一桶油,连桶重x kg,桶本身重1 kg,用去油的后,桶内还有多少油?【能力提升】10.x是两位数,y是一位数,如果把x置于y的左边,那么所成的三位数应表示为()A.xyB.x+yC.100x+yD.10x+y11.(2015·海南中考)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1 - 10%)(1+15%)x万元B.(1 - 10%+15%)x万元C.(x - 10%)(x+15%)万元D.(1+10% - 15%)x万元12.有一块长为x m,宽为y m的长方形草坪,在草坪中间有一条宽为z m的人行道,形状如图所示,请你计算这块草坪的实际绿化面积.【拓展探究】13.怎样的两个数,它们的和等于它们的积呢?观察下面几个式子:2+2=2×2;3+=3×;4+=4×;5+=5×……(1)你还能发现一些这样的两个数吗?(2)你能从中发现什么规律吗?把这个规律用字母n表示出来.【答案与解析】1.A(解析:甲数是乙数的2倍,那么乙数就是甲数的.)2.B(解析:因为n为整数,所以代数式2n - 1一定是奇数.故选B.)3.D(解析:长方形的宽为×28 - x=14 - x,面积为x(14 - x).)4.4a(解析:正方形的边长为a,正方形的周长为4×正方形的边长,所以正方形的周长为4a.)5.36n(解析:每箱苹果数与箱数的积即为所求.)6.(3200 - 5a)(解析:学生捐款数=捐款总数 - 教师捐款总数.所以学生捐款数为(3200 - 5a)元.)7.(解析:利润为(120 - x)元,所以该商品的利润率可表示为.)8.解:原来树高为2 m,n年增长0.2n m,所以n年后的树高为2+0.2n(m).9.解:桶中有油(x - 1)kg,用去油的后,还剩油的1 - ,所以桶内还有油(x - 1)kg.10.D(解析:根据题意可知把x置于y的左边,相当于把x扩大为原来的10倍,y不变.即所得的数是10x+y.故选D.)11.A(解析:1月份的产值是x万元,则2月份的产值是(1 - 10%)x万元,3月份的产值是(1+15%)(1 - 10%)x万元.)12.解:草坪的实际绿化面积应是长方形面积与平行四边形面积之差,长方形的面积为xy m2,平行四边形的面积为yz m2.所以实际绿化面积为(xy - yz)m2.13.解:(1)答案不唯一,如6+=6×等. (2)(n+1)+=(n+1)×.本节课运用贴近学生生活实际的材料,再次引导学生经历由具体的数到“抽象的数”,由具体的算式到含有字母的式子的学习过程,让学生经历从具体的情境中抽象出数量关系和变化规律的过程,从而体会用字母表示数的意义,形成初步的符号感,初步体会“特殊—一般—特殊”“数形结合”等数学思想方法.对课堂节奏的把握不够紧凑,最后学生完成练习的时间不够充分.在用字母表示数的过程中对学生的探究发现没有进行方法指导.课堂创设要丰富多彩,供学生观察、猜想、讨论和验证,要充分调动学生的积极性,让每个学生都有发言的机会,教学面向全体学生.在猜想和说明问题时,提醒学生采取提出问题、特例验证、一般推理的方式进行思考.练习(教材第97页)(1)15a (2)4a+2 a (3)(a+b)习题(教材第98页)A组1.(1)( - 6+t)(2)8a (3)10a+b (4)25 - a (5)(29+a)(26+a)2.解:ab - cd.3.解:ab+ac或a(b+c).B组1.解:设原来四位数的后三位数为a,则原来四位数为7000+a,新四位数为10a+7.2.解:设连续两个奇数为2n+1和2n - 1(n为整数),则(2n+1)+(2n - 1)=4n,所以任意两个连续奇数之和都是4的倍数.清朝末年,文学家俞曲园写了一首咏杭州风景点“九溪十八涧”的诗: 重重叠叠山,曲曲环环路,丁丁东东泉,高高下下树.当代数学家淡祥柏把每句诗都表示成算式:以上共有4个算式,每个汉字表示一个数字,在每一个算式中,重叠的汉字代表相同的数字,不同的汉字代表不同的数字,你能写出这4个算式的数字形式吗?解:3.2代数式1.进一步理解用字母表示数的意义.2.掌握书写代数式的注意事项并会正确书写代数式.1.会把代数式反映的数量关系用文字语言表述出来,会把文字语言表述的数量关系用代数式表示出来.2.能分析简单问题中的数量关系,并用代数式表示出来.通过将实际问题中的数量关系用代数式表示,提高数学应用意识.【重点】列代数式;用代数式表示实际问题中的数量关系;代数式表示的实际意义.【难点】代数式的意义;用代数式表示实际问题中的数量关系;规律探索.第课时1.在具体情境中,进一步理解用字母表示数的意义.2.能解释一些简单代数式的几何意义.3.在具体情境中,能列出代数式,并解释其实际意义.1.经历应用数学符号的过程,进一步提高学生的符号感.2.初步学会从数学的角度提出问题和理解问题,充分体会解决问题的策略的多样性.培养学生热爱数学,会用数学思想解决生活中的问题的能力.【重点】列代数式.【难点】用数学语言表达代数式的意义.【教师准备】多媒体课件.【学生准备】搜集以前学过的数学公式.导入一:填空.1.m的3倍与5的和可以表示为.2.小华用a元买了b本练习本,每本练习本元.3.边长为x cm的正方形的周长是cm;面积是cm2.教师活动:(1)组织学生交流;(2)引导学生观察所列代数式,给出代数式的概念;(3)交流所列代数式的意义.学生活动:(1)独立思考完成填空;(2)交流结果;(3)说说代数式在此问题中所代表的实际意义.[设计意图]用填空的方式来列简单的代数式,学生能够独立完成.为下面代数式概念的引出作铺垫.导入二:[过渡语]请同学们举出已经学过的用含字母的式子来表示数量之间的关系的例子来.师板书:三角形的面积公式S=ah,路程问题中的s=vt,5>b等等.[过渡语]同学们说得特别棒.用等号表示的式子是等式,用不等号表示的式子就是不等式.那么它们都是代数式吗?教师活动:(1)板书;(2)讲解.学生活动:(1)回答问题;(2)讨论交流.[设计意图]引导学生找出代数式与等式、不等式的不同.[过渡语]用字母表示数后,现实世界中的数量和数量之间的关系可以用含字母的式子来表示,于是产生了代数式.活动1代数式的概念1.代数式的概念.思路一教师活动:(1)组织学生阅读教材第99页;(2)引导学生举出代数式的例子.学生活动:(1)阅读课文;(2)举例交流,畅所欲言.[设计意图]让学生先直观感受什么叫代数式,只要学生知道什么是代数式即可,要求学生能举出一些实际例子.追问:单独的一个字母或一个数是代数式吗?(是.)[设计意图]这个问题的价值在于强调单独的一个数或一个字母也是代数式,强化易错点,使学生知道字母可以表示具体的数,也可以表示具体的数量关系,同一字母或表达式在不同的场合有不同的意义,强化学生的符号感;其次,通过交流,拓宽学生的思维,发展学生的联想、类比等思维能力.思路二请同学们观察并思考:a+b,m - n,25m,,6a2,a3……这些式子有哪些共同点?预设生:都含有数字或字母.师:除了数字和字母外,还有什么?预设生:还有运算符号(+、 - 、×、÷、乘方).师:运算符号在数字和字母之间起到了什么样的作用?预设生:把数或字母连接起来了.师:回答得很好!同学们,这就是代数式!现在你能用自己的语言叙述一下什么是代数式吗?学生交流2分钟后,找不同学生语言叙述,互相补充,教师加以引导.然后用多媒体课件展示代数式的定义.概括:用运算符号连接数和字母组成的式子,都叫做代数式.单独的一个数或字母也是代数式.2.例题讲解.指出下列各代数式的意义:(1)2a+5;(2)2(a+5);(3)a2+b2; (4)(a+b)2.〔解析〕根据代数式的意义,必须把代数式作为一个整体去看待.运算符号和字母、数字的组合,是代数式的重要特点.解:(1)2a+5表示是a的2倍与5的和.(2)2(a+5)表示a与5的和的2倍.(3)a2+b2表示a的平方与b的平方的和.(4)(a+b)2表示a与b的和的平方.活动2用代数式表示数量关系[过渡语]给你一段文字语言,能不能写出表示它的代数式?用代数式表示“a,8两数之和与b,c两数之差的积”.可按下面的步骤列代数式:[处理方式]四人为一小组,把“做一做”试着做下来.做完之后,小组长把自己组做的答案呈现出来.[设计意图]让学生仿照图示的方法列代数式,体会数量之间的和、差、倍、分的关系与加、减、乘、除的运算的对应.用代数式表示:(1)a与b的差与c的平方的和.(2)百位数字是a,十位数字是b,个位数字是c的三位数.(3)三个连续的整数(用同一个字母表示),以及它们的和.〔解析〕(1)a与b的差也就是a - b,所求即为(a - b)与c的平方的和.列代数式的关键是一定要注意运算顺序;(2)用不同的字母表示一个整数各数位上的数字,记为abc=100a+10b+c;(3)中间的这个数是m,则连续的三个整数就是m - 1,m,m+1.解:(1)(a - b)+c2.(2)100a+10b+c(其中,a,b,c是0到9之间的整数,且a≠0).(3)设m是整数,三个连续整数可表示为m - 1,m,m+1.它们的和为(m - 1)+m+(m+1).强调:在代数式中,字母与数或字母与字母相乘时,通常把乘号写作“·”或省略不写,如2×a写作2·a或2a,a×b写作a·b或ab.除法运算一般以分数的形式表示.如s÷t写作(t≠0).[设计意图]本部分内容是学生学习了代数式之后紧跟的练习,目的是强化学生对代数式概念的理解与掌握,会根据具体要求列代数式,训练学生思维的严密性.[知识拓展](1)对于一个代数式,它的意义没有统一的规定,以简明而不致引起误解为出发点,同一个代数式可用不同形式的文字语言表述它的意义.(2)如果式子中含有“=”“<”“>”“≤”“≥”等符号,它们不是运算符号,那么这样的式子不是代数式.(3)数与字母、字母与字母相乘,乘号可以省略,也可写成“·”;数字与数字相乘,乘号不能省略;数字要写在字母前面.(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.(5)带分数一定要写成假分数.1.用运算符号把数和字母连接起来的式子叫做代数式.2.单独的一个数或字母也是代数式.1.下列式子是代数式的是.①,②a2b,③x=1,④a2+ab - 1,⑤3>2,⑥o,⑦y=x - 1.解析:等式与不等式都不是代数式,排除③⑤⑦.故填①②④⑥.2.写出代数式a2 - b2表示的意义.解:a的平方与b的平方的差.3.用代数式表示.(1)x的2倍与y的差;(2)m与5的差的3倍;(3)a的11倍再加上2;(4)x,y两个数和的平方;(5)甲数为a,比甲数的平方大3的数.解:(1)2x - y. (2)3(m - 5). (3)11a+2. (4)(x+y)2. (5)a2+3.第1课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 代数式第2课时用代数式表示实际问题中的数量关系学习目标:1.能用代数式表示实际问题中的数量关系的方法;(重点、难点)2.进一步培养学生观察、分析、抽象、概括等思维能力和应用意识.(难点)学习重点:用代数式表示实际问题中的数量关系.学习难点:培养学生观察、分析、抽象、概括等思维能力和应用意识.自主学习一、知识链接1.代数式的概念2.代数式的书写规则3.列代数式表示下列数量关系:(1)a的平方与b的2倍的差;(2)m与n的和的平方与m与n的积的和;(3)x的2倍的三分之一与y的一半的差;(4)比a除以b的商的2倍小4的数.二、新知预习做一做1.火车平均每小时运行v km,用代数式表示:(1)经过2h,火车运行了________km;(2)如果火车行驶400 km,那么需要__________h.2.汽车厂去年生产汽车a台,今年比去年增产p%,那么今年生产了汽车 __________台.3.一台洗衣机的原价是x元,先按原价的9.5折出售.这台洗衣机现在售价是________;4.底面半径为r,高为h的圆锥的体积是___________________.【自主归纳】用代数式表示实际问题中的数量关系,需掌握实际问题中一些基本的数量关系:(1)路程=__________×____________;(2)增长后的量=___________×___________;(3)售价=_________×___________,利润=______×___________;(4)利息=________×______×_______,本息和=______+___________=______×___________;(5)工作量=______×___________;(6)总价=_______×_______,总产量=_______×_______;(7)各种特殊图形的周长、面积、体积公式.三、自学自测1.A、B两地相距s千米,某人计划a小时到达,每小时需多走____________千米.2.一个长方形的周长是45cm,一边长a cm,这个长方形的面积为______________2cm.3.班会活动中,买苹果m kg,单价x元,买桔子n kg,单价y元,则共需____________元.4.某钢铁厂每天生产钢铁a吨,现在每天比原来增加10%,现在每天钢铁的产量是______吨.5.一项工程,甲队单独完成要天,那么三天后,甲完成的工作量为____________.6.小明将a元存入银行,年利率为p%,那么两年后小明一共能拿到_____________元.四、我的疑惑___________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ __一、要点探究探究点1:用代数式表示多位数例1:一个两位数,个位上的数字是a ,十位上的数字是b ,把十位上的数字与个位上的数字对调后,得到一个新数.用式子分别表示这两个数及它们的和.【归纳总结】用字母表示多位数,可以先画出数位图,再将这个多位数用字母表示.如本题中,可画出如图所示的数位图帮助解答.【针对训练】1.一个两位数,个位数字比十位数字大5,如果个位数字是x ,那么这个两位数是( )A .10(x +5)+xB .10(x -5)+xC .10x +5D .10x +(x +5)2.一个三位数,个位数字与十位数字的和是9,百位数字是十位数字的2倍,如果十位数字是m ,那么这个三位数是________________.探究点2:用代数式表示图形的面积或周长 例2:图中的六边形ABCDEF 的周长是__________.例3:如图,圆中挖掉一个正方形,试用r 表示阴影部分面积.合作探究【归纳总结】用代数式表示一个几何图形的周长或面积,要能正确地运用几何图形的周长或面积公式.解题时,可根据图形的特征,采取平移或等量代换的方法,使解答过程更简捷.【针对训练】1.如图,在边长分别为a,b的长方形的四个角分别截去一个半径为18a的四分之一圆形,则剩下的图形的周长是__________.2.如图,用a来表示阴影部分的面积.探究点3:用代数式表示较为复杂的实际问题例4:从A地乘火车到北京,普通票价格为40元/人,学生票价格为20元/人.星期日,A地育才学校组织部分师生到天安门广场观看升旗仪式.(1)如果有教师14名,学生180人,那么买单程火车票共需多少元?(2)如果有教师x人,学生y人,那么买单程火车票共需多少元?(3)如果教师人数恰好是学生人数的112,将教师的人数或学生的人数用字母表示,那么买单程火车票共需多少元?【归纳总结】列代数式表示较为复杂的实际问题时,需认真审题,弄清问题中各数量之间的关系和运算顺序,即必须把实际情境中数量关系分析清楚,然后按照代数式书写格式的规范进行书写.【针对训练】1.如果某船行驶第1千米的运费是25元,以后每增加1千米,运费增加5元,现在某人租船要行驶s千米(s为整数,s≥1),所需运费表示为_______________.2.一台电视机成本a元,销售价比成本价增加25﹪,因库存积压,所以就按销售价的70﹪出售,那么每台实际售价为___________________.二、课堂小结内容一些基本的数量关系(1)路程=__________×____________; (2)增长后的量=___________×___________;(3)售价=_________×___________,利润=______×___________;(4)利息=________×______×_______,本息和=________+___________; (5)工作量=______×___________; (6)总价=_______×_______, 总产量=_______×_______;(7)各种特殊图形的周长、面积、体积公式. 用代数式表示实际问题中的数量关系的步骤:(1) 认真审题,分析实际情境中的已知量和未知量之间的数量关系;(2) 弄清语句的层次,明确运算顺序; (3) 按照代数式书写格式的规范进行书写.1.百货大楼进了一批花布,出售时要在进价的基础上加上一定的利润,其数量x 与售价y 之间的关系如下表: 数量x (米) 1 2 3 4 … 售价y (元) 8+0.316+0.624+0.932+1.2…表示与售价y 的公式中,正确的是( )A.80.3y x =+B.(80.3)y x =+C.80.3y x =+D.80.3y x =++2.一台电视机成本a 元,销售价比成本价增加0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为( ) A.0000(125)(170)a ++ B.000070(125)a + C.0000(125)(170)a +- D.0000(125)70a ++3.一个两位数,个位是a ,十位比个位大1,这个两位数是( ) A.a (a +1) B.(a +1)a C.10(a +1)a D.10(a +1)+a当堂检测4.某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P千米的路程(P>7)所需费用是()A.5+1.5PB.5+1.5C.5-1.5PD.5+1.5(P-7)5.南平乡有水稻田m亩,计划每亩施肥a千克;有玉米田n亩,计划每亩施肥b千克,共施肥_____千克.6.梯形的上底是m,下底是上底的2倍,高比上底小1,则这个梯形的面积为.7.一个两位数,个位上的数是a,十位上的数字比个位上的数小3,这个两位数为.8.一同学在斜坡上骑自行车,上坡速度为m km/h,下坡速度为n km/h,则上下坡的平均速度为.9.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x(x>10)本,付款金额为y元,请用一次购书数量x的代数式来表示y=_________________________.10.如图所示:用代数式表示阴影部分的面积为_________________________.11.做两个纸盒,尺规如下:(单位:cm)长宽高小纸盒 a b c大纸盒3a2b2c(1)做这两个纸盒共用料多少平方厘米?(结果用含a、b、c的代数式表示)(2)作成的大纸盒比小纸盒的容积大了多少立方厘米?(结果用含a、b、c的代数式表示)12.某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.(1)如果参观的学生人数36人,至少应付多少元? (2)如果参观的学生人数为58人,至少应付多少元?(3)如果参观的人数为一个两位数___ab (a 表示十位上的数字,b 表示个位上的数字)用含a ,b 的代数式表示至少应付给科技馆的总金额.当堂检测参考答案: 1.B 2.B 3.D 4.D 5.(am +bn )6.12)(1)2m m m +-( 7.10(a -3)+a 8.2mnm n+km/h 9.80+6.4(x -10)10.212ab b π-11.解:(1)小纸盒的用料为:2(222)ab ac bc cm ++, 大纸盒的用料为:2(12128)ab ac bc cm ++,合计用料为:2[(12128)(222)]ab ac bc ab ac bc cm +++++.(2)小纸盒的容积为:abc3cm,大纸盒的容积为:12abc3cm,大纸盒比小纸盒的容积大(12abc-abc)3cm.12.解:(1)若参观的学生人数36人,这应付费用:3×45+6×6=171(元).(2)参观的学生人数为48人,分两种情况进行计算,买5张团体票应付225元,买4张团体票,8张个人票应付228元,故至少应付225元.(3)当0≤b≤7,至少应付(45a+6b)元;当b=8或b=9时,至少应付(45a+45)元.。