2019-2020学年福建省莆田市荔城区七年级(下)期末数学试卷 (解析版)

合集下载

福建省莆田市荔城区2019-2020学年七年级(下)期末考试数学试卷 解析版

福建省莆田市荔城区2019-2020学年七年级(下)期末考试数学试卷  解析版

2019-2020学年福建省莆田市荔城区七年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG 恰好经过点C,若∠AFE=55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x <1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x 轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P (2,3),S△OBE﹣S△EPQ=2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP 与∠MPP1,∠MOO1的数量关系.2019-2020学年福建省莆田市荔城区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG 恰好经过点C,若∠AFE=55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x <1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t 为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x 轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P (2,3),S△OBE﹣S△EPQ=2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP 与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

福建省2019-2020年七年级下学期期末测试数学试卷1

福建省2019-2020年七年级下学期期末测试数学试卷1

福建省2019-2020年七年级下学期期末测试数学试卷一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣62.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣26.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.47.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+=10.14.(3分)请写出一个二元一次方程组,使它的解是.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是边形.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是,旋转的角度是;(2)请求出∠E的度数和CD的长.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=°;x=°;x=°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=°.七年级下学期期末数学试卷参考答案与试题解析一、选择题:每小题2分,共24分.每小题只有一项是符合题目要求的.1.(2分)若代数式x+4的值是2,则x等于()A.2B.﹣2 C.6D.﹣6考点:解一元一次方程;代数式求值.专题:计算题.分析:根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.解答:解:依题意,得x+4=2移项,得x=﹣2故选:B.点评:题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.2.(2分)画△ABC的边AB上的高,下列画法中,正确的是()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(2分)下列图案既是中心对称,又是轴对称的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,也不是中心对称图形.故本选项错误.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2分)下列判断不正确的是()A.形状相同的图形是全等图形B.能够完全重合的两个三角形全等C.全等图形的形状和大小都相同D.全等三角形的对应角相等考点:全等三角形的判定与性质.专题:常规题型.分析:根据能够完全重合的两个图形叫做全等形,结合各项说法作出判断即可.解答:解:A、两个形状相同的图形大小不一定相等,故本项错误;根据能够完全重合的两个图形叫做全等形,可得:B、能够完全重合的两个三角形全等正确,故本项错误;C、全等图形的形状和大小都相同正确,故本项错误;D、根据全等三角形的性质可得:全等三角形的对应角相等,故本选项正确;故选:A.点评:本题考查了全等形的概念和三角形全等的性质:1、能够完全重合的两个图形叫做全等形,2、全等三角形的对应边相等;全等三角形的对应角相等;全等图形的形状和大小都相同,做题时要细心体会.5.(2分)如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣2 D.a<﹣2考点:不等式的性质;不等式的解集.分析:根据不等式的解法,两边都除以(a+2),不等号的方向改变,a+2<0计算即可得解.解答:解:∵(a+2)x>a+2两边都除以(a+2)得x<1,∴a+2<0,∴a<﹣2.故选D.点评:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.(2分)现有3cm、4cm、5cm、7cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成三角形的个数是()A.1B.2C.3D.4考点:三角形三边关系.分析:从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.解答:解:四条木棒的所有组合:3,4,5和3,4,7和3,5,7和4,5,7;只有3,4,7不能组成三角形.故选:C.点评:考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.7.(2分)在△ABC中,若2∠A=∠B=∠C,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.无法确定考点:三角形内角和定理.分析:运用三角形的内角和定理求出∠A=36°,进而求出∠B=∠C=72°,即可解决问题.解答:解:在△ABC中,∵2∠A=∠B=∠C,且∠A+∠B+∠C=180°,∴5∠A=180°,∠A=36°,∴∠B=∠C=72°,∴△ABC是锐角等腰三角形.故选B.点评:本题主要考查了等腰三角形的定义、三角形的内角和定理及其应用问题;灵活运用三角形的内角和定理来解题是关键.8.(2分)方程3x﹣4y=2的一组解是()A.B.C.D.考点:二元一次方程的解.专题:计算题.分析:把各项中x与y代入计算检验即可得到结果.解答:解:把x=2,y=1代入方程左边得:6﹣4=2,右边=2,∴左边=右边,则是方程3x﹣4y=2的一组解.故选D.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(2分)下列说法中不正确的是()A.线段有1条对称轴B.等边三角形有3条对称轴C.角只有1条对称轴D.底与腰不相等的等腰三角形只有一条对称轴考点:轴对称的性质.分析:根据轴对称图形的概念和具体图形确定各个选项中图形的对称轴,判断得到答案.解答:解:线段有本身所在的直线和垂直平分线2条对称轴,A错误;等边三角形有三条高所在的直线3条对称轴,B正确;角只有角平分线所在的直线1条对称轴,C正确;底与腰不相等的等腰三角形只有一条对称轴,D正确,故选:A.点评:本题考查的是轴对称图形的知识,掌握轴对称图形的概念、正确确定图形的对称轴的条数是解题的关键.10.(2分)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:求出不等式组的解集,表示在数轴上即可.解答:解:,由①得:x≥﹣1,由②得:x<1,则不等式组的解集为﹣1≤x<1,故选B点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.(2分)只用下列正多边形地砖中的一种,能够铺满地面的是()A.正十边形B.正八边形C.正六边形D.正五边形考点:平面镶嵌(密铺).分析:本题意在考查学生对平面镶嵌知识的掌握情况.解答:解:由平面镶嵌的知识可知,只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形,故选项A、B、D不能够铺满地面.故选C.点评:本题意在考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.有部分考生根据直觉认为是正八边形,其实由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.12.(2分)在一次数学阅读课中,小红碰到一个问题:今有鸡兔同笼,上有十七头,下有五十二足,问鸡兔各几何?设x为鸡数,y为兔数,聪明的你请帮她算出x,y的值分别是()A.B.C.D.考点:二元一次方程组的应用.分析:根据等量关系:上有十七头,下有五十二足,即可列出方程组.解答:解:设x为鸡数,y为兔数,由题意得,解得:.故选:C.点评:此题考查了二元一次方程方程组的实际运用,解答本题的关键是仔细审题,根据等量关系得出方程组.二、填空题:每小题3分,分值24分.13.(3分)如果5x=10﹣2x,那么5x+2x=10.考点:等式的性质.分析:根据等式的性质进行填空.解答:解:在等式5x=10﹣2x的两边同时加上2x,得5x+2x=10.故答案是:2x.点评:本题考查了等式的性质.1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.14.(3分)请写出一个二元一次方程组,使它的解是.考点:二元一次方程组的解.专题:开放型.分析:由x=﹣1,y=1为解列出方程组即可.解答:解:的解为.故答案为:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.15.(3分)如果一个正多边形的内角和等于1440°,那么这个正多边形的每一个外角的度数为36°.考点:多边形内角与外角.分析:首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.解答:解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个外角等于:360°÷10=36°.故答案为:36°.点评:此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.16.(3分)一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了5道题.考点:二元一次方程的应用.分析:设答对x道题,答错了y道题,根据对1题给5分,错1题扣2分,不答题不给分也不扣分,总分为65分和有20题选择题可分别列等式求解.解答:解:设答对x道题,答错了y道题,根据题意可得:,解得:,故他答错了5道题.故答案为:5.点评:此题主要考查了二元一次方程组的应用,根据题意利用所得分数以及有20题选择题分别得出等式是解题关键.17.(3分)定义新运算:对于任意实数a,b,都与a⊗b=a(a+b)﹣1,若3⊗x的值小于12,请列出不等式是3(3+x)﹣1<12.考点:由实际问题抽象出一元一次不等式.专题:新定义.分析:根据题目所给的运算法则列不等式.解答:解:由题意得,3(3+x)﹣1<12.故答案为:3(3+x)﹣1<12.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是解题的关键.18.(3分)小明从镜子里看到镜子对面电子钟的像如图所示:,实际时间是16:25:08.考点:轴对称图形.分析:利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.解答:解:根据镜面对称的性质,题中所显示的时刻与16:25:08成轴对称,所以此时实际时刻为:16:25:08.故答案为:16:25:08.点评:此题考查了镜面反射的原理与性质,得到相应的对称轴是解决本题的关键.19.(3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是十边形.考点:多边形的对角线.分析:可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.解答:解:多边形一条边上的一点M(不是顶点)出发,连接各个顶点得到9个三角形,则这个多边形的边数为9+1=10.故答案为:十.点评:考查了多边形的对角线,多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.20.(3分)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种考点:概率公式;轴对称图形.分析:根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.解答:解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.点评:本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.三、解答题:共7小题,满分52分.21.(10分)解方程或不等式.(1)2x+1=5x+7(2)求不等式:+2>x的非负整数解.考点:一元一次不等式的整数解;解一元一次方程.分析:(1)先移项、再合并同类项,然后系数化为1即可求解;(2)首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.解答:解:(1)2x+1=5x+7,移项得,2x﹣5x=7﹣1,合并同类项得﹣3x=6,系数化为1得x=﹣2;(2)x+6>3x,﹣2x>﹣6,x<3,故不等式:+2>x的非负整数解为0,1,2.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.同时考查了解一元一次方程.22.(6分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.考点:作图-旋转变换;作图-平移变换.分析:(1)将点A、B、C分别向左平移6个单位长度,得出对应点,即可得出△A1B1C1;(2)将点A、B、C分别绕点O按逆时针方向旋转180°,得出对应点,即可得出△A2B2C2.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.点评:此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.23.(6分)课外活动中一些学生分组参加活动,原来每组有8人,后来重新编组,每组6人,这样比原来增加2组,问这些学生共有几人?(用方程解)考点:一元一次方程的应用.分析:设这些学生共有x人,根据“原来每组有8人,后来重新编组,每组6人,这样比原来增加2组”建立方程,解方程即可.解答:解:设这些学生共有x人,根据题意得﹣=2,解得x=48.答:这些学生共有48人.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.(6分)二元一次方程组的解满足方程x﹣4y=5,求k的值.考点:二元一次方程组的解.专题:计算题.分析:把k看做已知数求出方程组的解表示出x与y,代入方程计算即可求出k的值.解答:解:,①+②得:6x=12k,即x=2k,①﹣②得:2y=﹣2k,即y=﹣k,把x=2k,y=﹣k代入方程得:k+4k=5,解得:k=1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程值域中两方程成立的未知数的值.25.(6分)如图,在△ABC中,∠CAB=95°,AB=3cm,BC=6.2cm,△ABC顺时针旋转一定角度得到△ADE,点D恰好落在BC边上,△ABD为等边三角形.(1)旋转中心是点A,旋转的角度是60°;(2)请求出∠E的度数和CD的长.考点:旋转的性质.分析:(1)根据旋转的定义进行解答;(2)先根据旋转的性质得到AD=AB,∠BAD的度数等于旋转角的度数,由于∠B=60°,则可判断△ADB为等边三角形,根据等边三角形的性质得∠BAD=60°,即旋转角的度数为60°,BD=AB=3cm所以CD=BC﹣BD.解答:解:(1)∵△ABC绕点A按顺时针旋转一定角度得到△ADE,∴旋转中心是点A,∠BAD的度数等于旋转角的度数,∵△ADB为等边三角形,∴∠BAD=60°,即旋转角的度数为60°.故答案是:点A;60°;(2)∵△ABD为等边三角形,∴AB=BD=3cm,∠B=60°,∴∠C=180°﹣∠CAB﹣∠B=180°﹣95°﹣65°=25°.∵△ABC顺时针旋转一定角度得到△ADE,∴∠E=∠C=25°,∴CD=BC﹣BD=6.2﹣3=3.2(cm).点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.26.(9分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号销售收入第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解.解答:解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.27.(9分)(1)如图①,你直到∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=180°;x=180°;x=180°;(3)如图③,一个六角星,其中∠BOD=70°,则:∠A+∠B+∠C+∠D+∠E+∠F=140°.考点:三角形内角和定理;三角形的外角性质.分析:(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.解答:解:(1)如图①,延长BO交AC于点D,∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)如图②,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图③,,根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,∵∠1+∠2+∠E=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和B C交于点G,,根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,∵∠GFC+∠FGC+∠C=180°,∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,,∵∠BOD=70°,∴∠A+∠C+∠E=70°,∴∠B+∠D+∠F=70°,∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.故答案为:180、180、180、140.点评:(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.。

2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)

2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)

2019-2020学年七年级第二学期期末考试数学试卷(含答案解析)一、选择题:(每小题4分,共40分)1.下列调查中,适合采用全面调查方式的是()A.对沱江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对市场上某种雪糕质量情况的调查D.对本班45名学生身高情况的调查2.9的算术平方根是()A.±3 B.3 C.-3 D3.已知a>b,则下列不等式一定成立的是()A.-a<-b B.a-1<b-1 C.a+2<b+2 D.2a<2b4.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60° D.80°5.用代入法解方程组27345x yx y-⋯⋯-⋯⋯⎧⎨⎩=,①=.②代入后,化简比较容易的变形为()A.由①得x=7+2yB.由①得y=2x-7C.由②得x=5+43yD.由②得y=354x-6.不等式组43xx<⎧⎨⎩…的解集在数轴上表示为()A.B.C.D.7.下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④同角或等角的补角相等。

其中是真命题的有()个。

A.1 B.2 C.3 D.48.下列选项中,属于无理数的是()AB.πCD.09.在平面直角坐标系中,将点A(m-1,n+2)先向右平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是()A.m<0,n>0 B.m<1,n>-2 C.m<0,n<-2 D.m<-2,m>-410.一个两位的十位数字与个位数字的和是7,如果把两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是()A.34 B.25 C.16 D.61二、填空题:(每小题4分,共32分)11.如图,已知AB∥CD,∠A=70°,则∠1的度数是度。

福建省2019-2020学年七年级下学期期末考试数学试卷4

福建省2019-2020学年七年级下学期期末考试数学试卷4

福建省2019-2020学年七年级下学期期末考试数学试卷(时间:120分钟;满分:150分) 成绩_______ 一、选择题: (本大题共10小题,共40分) 1、下列调查中,适宜采用普查的是( )A 、了解全国中学生心理健康状况B 、了解我市火锅底料的合格情况C 、了解一批新型远程导弹的杀伤半径D 、了解某班学生对马航失联事件的关注情况 2、将点(1,2)A -向右平移2个单位,再向上平移3个单位得B 点,则B 的坐标为( ) A 、(-1,1) B 、(-1,-5) C 、(3,1) D 、(3,-5) 3、以下列各组线段长为边能组成三角形的是( )A 、1,2,4B 、8,6,4C 、12,5,6D 、2,3,64、⎩⎨⎧==21y x 是方程ax -y =3的解,则a 的值是( )A 、5B 、-5C 、2D 、15、如图,直线PQ ⊥MN ,垂足为O ,AB 是过点O 的直线,∠1=50°,则∠2的度数为( )A 、50°B 、40°C 、60°D 、65°第5题 第8题 第10题 6、若b a >,则下列式子正确的是( )A 、b a 44->-B 、b a 2121< C 、b a ->-44 D 、44->-b a 7、在实数,,0.101001,,14.3-π中,无理数的个数是( )A 、2个B 、3个C 、4个D 、5个8、如图,已知:D ,E 分别是△ABC 的边BC 和边AC 的中点,连接DE ,AD ,若S △ABC =24cm 2,则△DEC 的面积的面积为( ) A 、4 cm 2B 、6 cm 2C 、8cm 2D 、12cm 29、某车间56名工人,每人每天能生产螺栓16个或螺母24个,设有x 名工人生产螺栓,有y 名工人生产螺母,每天生产的螺栓和螺母按1:2配套,所列方程组正确的是( ) A 、⎩⎨⎧=⨯=+y x y x 2416256 B 、⎩⎨⎧=⨯=+y x y x 1624256C 、⎩⎨⎧⨯==+y x y x 2421656 D 、⎩⎨⎧⨯==+yx y x 162245610、实数a 、b 在数轴上的位置如图所示,且a b >,则化简b a b a ++-的结果为( )A 、2aB 、2bC 、-2aD 、-2bba O O二、填空题: (本大题共9小题,共32分) 11、25=12、如图,直线a ∥b ,则∠A 的度数是 °13、已知一个正多边形的一个内角是120°,则这个多边形的边数是14、若1+-b a 与42++b a 互为相反数,则2015)(b a -=15、如图,点O 是△ABC 的∠ABC 与∠ACB 两个角的角平分线的交点,若∠BOC=118°,则∠A 的角度是 °16、如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是第1个图形 第2个图形 第3个图形 第4个图形 …三、解答题:(本大题共9小题,共86分)17、(本小题满分8分) 计算: 3--431-92+⎪⎭⎫⎝⎛⨯18、(本小题满分8分) 解方程组:⎩⎨⎧-=+=-1373y x y x19、(本小题满分8分) 解不等式组⎪⎩⎪⎨⎧≤-+>+32152)2(3x x x x20、(本小题满分8分)在如图所示的平面直角坐标系中表示下面各点: A (4,2);B (﹣3,﹣2);C (2,﹣2) (1)(2分)画出点A ,B ,C ,并将各点依次用线段连接起来。

2019-2020学年莆田市荔城区七年级下学期期末数学试卷(含答案解析)

2019-2020学年莆田市荔城区七年级下学期期末数学试卷(含答案解析)

2019-2020学年莆田市荔城区七年级下学期期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 下列调查方式,适合的是( )A. 要了解一批灯泡的使用寿命,采用普查的方式B. 要了解某校六年级学生的身高情况,采用普查的方式C. 了解中央电视台“诗词大会”栏目的收视率,采用普查方式D. 为保证发射成功,发射之前对飞船零部件的检测,采用抽样调查的方式2. 在π+3,√6,√9,47,3.121231234…,√−53中,无理数的个数是( )个. A. 2B. 3C. 4D. 5 3. 如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行从内到外,它们的边长依次为2,4,6,8,”,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 102的坐标是( )A. (25,25)B. (−25,25)C. (26,26)D. (−26,26) 4. 4.已知直线a // b // c ,直线m 、n 与直线a 、b 、c 分别交于点A. B. C. B 、D 、F ,AC =4,CE =6,BD =3,则BF =( )A. 7B. 7.5C. 8D. 8.55. 不等式x <3的解集在数轴上表示为( )A.B. C. D.6. 如图,昌平十三陵中的部分皇陵在地图上的位置,若庆陵的位置坐标(−1,4),长陵的位置坐标(2,0),则定陵的位置坐标为( )A. (5,2)B. (−5,2)C. (2,5)D. (−5,−2) 7. 如图所示,点A 、B 、C 对应的刻度分别为0、2、4、将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A 1,则此时线段CA 扫过的图形的面积为( )A. 4πB. 6C. 4√3D. 83π8. 若x 、y 满足方程组{x +2y =52x +y =3,则x −y 的值等于( ) A. −1B. 1C. −2D. 2 9. 已知样本容量为30,样本频数分布直方图中各小长方形的高的比依次是2:4:3:1,则第二小组的频数是( )A. 14B. 12C. 9D. 810. 下列命题中,错误的是( )A. 顺次连接矩形四边的中点所得到的四边形是菱形B. 反比例函数的图象是轴对称图形C. 线段AB 的长度是2,点C 是线段AB 的黄金分割点且AC <BC ,则AC =√5−1D. 对于任意的实数b ,方程x 2−bx −3=0有两个不相等的实数根二、填空题(本大题共6小题,共24.0分)11. 比较大小(填“>“或“<”)7√6______6√7,√5−12______58. 12. 10−2的算术平方根是______;√16的平方根是______;(−8)2立方根是______.13. 如图,OB 平分∠AOC ,OD 平分∠COE ,∠AOD =120°,∠BOD =70°,则∠COE的度数为______.14. 若x ,y 满足方程组{x +4y =4,2x −2y =13,则3x +2y 的值为______. 15. 《算法统宗》是中国古代数学名著,作者是明代数学家程大位.其中有一个“绳索量竿”问题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,问索长几尺”. 译文:现有一根杆和一条绳索,用绳索去量杆,绳索比杆子长5尺;如果将绳索对折后再去量竿,就比竿子短5尺,问绳索长几尺?注:一托=5尺.设绳索长x 尺,竿子长y 尺,依题意,可列方程组为______.16. 如图,矩形ABCD 的对角线相交于O ,AB =2,∠AOB =60°,则对角线AC 的长为______ .三、解答题(本大题共9小题,共86.0分)17. 计算18. (1)解方程:2x 2−5x +3=0;(2)解不等式组:{3x −4<52x−13>x−22.19.已知∠EDC=∠GFB,CD⊥AB于D,FG⊥AB于G,试说明CB//ED的理由.解:∵CD⊥AB,FG⊥AB(已知),∴FG//CD(______)∴∠______=∠GFB(______)又∵∠EDC=∠GFB(已知)∴∠______=∠______∴CB//ED(______)20.在方格纸中建立适当的平面直角坐标系.(1)在所建坐标系中描出坐标是A(2,3),B(−2,3),C(3,−2),D(5,1),E(0,−4),F(−3,0)的各点;(2)计算图中线段EF的长和四边形ABCD的面积;(3)将线段AB向下平移6个单位,所得图形上任意一点的坐标可表示为______ (用字母x表示图形上点的横坐标).21.某中学七年级(8)班同学全部参加课外体育活动情况统计如图:(1)请你根据以上统计图中的信息,填写下表:该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数(2)请你将该条形统计图补充完整.22. a分别取什么值时,代数式4a+2的值满足下列要求?(1)大于1;(2)等于1;(3)小于1.23. 生命在于运动,越来越多的人已经意识到“健步走”对于健康的重要性,合身的运动装已成为时尚.某知名品牌运动服专营店抓住商机,利用专营店20周年庆对其A,B两款运动服进行促销.促销活动第一个月,销售了15套A款和10套B款运动服,从中获得销售利润l400元;促销活动第二个月,销售了20套A款和12套B款运动服,从中获得销售利润1800元.已知每套A款运动服进价240元,每套B款运动服进价200元,促销第一、二个月每种运动服的销售价保持不变.(1)求促销活动第一、二个月每套A款运动服和B款运动服的销售价格;(2)为吸引更多的顾客,增加销售量,该专营店决定从促销活动第三个月开始,对A,B两款运动服都打折销售,其中A款运动服在第一、二月的销售价的基础上降价a%(a>0),B款运动服在第一、二月的销售价的基础上降价2a%,第三个月销售结束后,发现A,B两款运动服的销量都比第二个月的销量提升了10a%,当月销售A,B两款运动服共计获利与第二个月一致.求a的值.24. 已知关于x ,y 的方程组{x −y =a +32x +y =5a .(1)求方程组的解(用含a 的代数式表示);(2)若方程组的解满足xy <0,求a 的取值范围.25. 如图,长方形ABCD 的顶点A ,D 在x 轴上,OA =OD =2,AB =6.点P从原点出发,沿O −A −B −C −D −O 的路径,以每秒2个单位的速度移动.(1)写出长方形4个顶点的坐标.(2)经过3s ,指出点P 的坐标.(3)经过多长时间,△POA 的面积为5平方单位.(4)经过多长时间,△POA 的面积最大.【答案与解析】1.答案:B解析:解:A 、要了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故A 不符合题意; B 、要了解某校六年级学生的身高情况,采用普查的方式,故B 符合题意;C 、了解中央电视台“诗词大会”栏目的收视率,调查范围广适合抽样调查,故C 不符合题意;D 、为保证发射成功,发射之前对飞船零部件的检测,事关重大的调查,适合普查,故D 不符合题意;故选:B .由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.答案:C解析:解:在π+3,√6,√9=3,47,3.121231234…,√−53中,无理数有π+3,√6,3.121231234…,√−53,无理数的个数是4个.故选:C .无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.答案:D解析:解:∵102=4×25+2,∴A 102与A 2在同一象限,即都在第二象限,根据题中图形中的规律可得:2=4×0+2,A 2的坐标为(−1,1),6=4×1+2,A 6(−2,2),10=4×2+2,A 10(−3,3);…102=4×25+2,A102(−26,26),故选:D.根据点的坐标变化每4个点循环一次,发现A102与A2在同一象限,即都在第二象限,先写出前几个点的坐标,进而发现点的变化规律即可得出顶点A102的坐标.本题考查了规律型:点的坐标,解决本题的关键是观察图形中点的坐标变化寻找规律.4.答案:B解析:∵a//b//c,∴,∵AC=4,CE=6,BD=3,∴解得:DF=9/2∴BF=BD+DF=3+9/2=7.5.故选B.5.答案:B解析:解:由于x<3,所以表示3的点应该是空心点,折线的方向应该是向左.故选B.不等式x<3表示所有<3的数组成的集合,即数轴上3左边的点的集合.本题考查不等式解集的表示方法,将不等式的解集在数轴上表示出来,体现了数形结合的思想,是我们必须要掌握的知识,也是中考的常考点.不等式x<3的解集用数轴表示时,3应为空心点,且解集向左,本题考查用数轴表示不等式的解集.6.答案:D解析:根据庆陵的位置坐标(−1,4),长陵的位置坐标(2,0),建立直角坐标系,然后直接写出定陵的位置坐标.本题考查了坐标确定位置,正确建立直角坐标系是解题的关键.解:根据庆陵的位置坐标(−1,4),长陵的位置坐标(2,0),建立直角坐标系,如图所以定陵的位置坐标为(−5,−2),故选D .7.答案:D解析:解:由题意,知AC =4,BC =4−2=2,∠A 1BC =90°.由旋转的性质,得A 1C =AC =4.在Rt △A 1BC 中,cos∠ACA 1=BC A1C =12. ∴∠ACA 1=60°.∴扇形ACA 1的面积为60×π×42360=83π.即线段CA 扫过的图形的面积为83π.故选:D .求线段CA 扫过的图形的面积,即求扇形ACA 1的面积.此题考查了扇形面积的计算和解直角三角形,熟练掌握扇形面积公式是解本题的关键8.答案:C解析:解:{x +2y =5 ①2x +y =3 ②, ②−①得:x −y =−2,故选:C .方程组的两个方程相减,即可求出答案.本题考查了解二元一次方程组,能选择适当的方法求解是解此题的关键.9.答案:B解析:解:第二小组的频数是:30×42+4+3+1=12.故选B.利用样本容量30乘以第二组长方形的高所占的比例即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.答案:C解析:解:A、顺次连接矩形四边的中点所得到的四边形是菱形,本选项说法正确,不符合题意;B、反比例函数的图象是轴对称图形,本选项说法正确,不符合题意;C、线段AB的长度是2,点C是线段AB的黄金分割点且AC<BC,则BC=√5−1,AC=3−√5,本选项说法错误,符合题意;D、对于任意的实数b,方程x2−bx−3=0的判别式=b2+12>0,所以有两个不相等的实数根,本选项说法正确,不符合题意;故选:C.根据菱形的判定定理、双曲线是轴对称图形、黄金分割的概念、一元二次方程根的判别式判断.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.答案:><解析:解:∵7>6,∴7×7×6>6×7×6,∴7√6>6√7;∵80<81,∴,4√5<9,∴4√5−4<5,∴√5−12<58故答案为:>;<.根据算术平方根的性质即可求解.本题考查了算术平方根的性质及实数的比较,比较容易作出判断.12.答案:110 ±2 4解析:解:10−2的算术平方根是110;√16的平方根是±2; (−8)2立方根是4,故答案为110,±2,4.根据平方根、算术平方根和立方根的定义分别求解.本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.记作:√a.也考查了平方根与算术平方根. 13.答案:40°解析:解:∵∠AOD =120°,∠BOD =70°,∴∠AOB =∠AOD −∠BOD =50°,∵OB 平分∠AOC ,∴∠BOC =∠AOB =50°,∴∠COD =∠BOD −∠BOC =20°,∵OD 平分∠COE ,∴∠COE =2∠COD =40°.故答案为40°.根据角平分线的定义即可求解.本题考查了角的计算、角平分线的定义,解决本题的关键是利用角平分线定义.14.答案:17解析:解:两式相加得3x +2y =17,故答案为17.将两式相加即可求解.本题主要考查解二元一次方程组,利用加减消元法求解是解题的关键.15.答案:{x =y +512x =y −5解析:解:设索长为x 尺,竿子长为y 尺,根据题意得:{x =y +512x =y −5. 故答案为:{x =y +512x =y −5.设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.16.答案:4解析:本题主要考查了矩形的性质与等边三角形的判定与性质,利用矩形对角线互相平分且相等的性质解答即可.根据矩形的性质,已知AB=2,∠AOB=60°,易证△AOB为等边三角形,故AB=OA=OB=2,AC=2OA.解:∵四边形ABCD是矩形,AC,∴OA=OB=12又∵∠AOB=60°,∴△AOB为等边三角形,∴AB=OA=OB,∵AB=2,∴OA=2,∴AC=2OA=2×2=4,故答案为:4.17.答案:解:(1)原式=3−9×+=3−3+6=9−3;(2)原式=4−4+5=9−4;(3)原式=28−27−4=−3.解析:试题分析:(1)原式利用平方根及立方根定义化简,计算即可得到结果;(2)原式利用完全平方公式展开,计算即可得到结果;(3)原式第一项利用平方差公式化简,合并即可得到结果.18.答案:解:(1)2x2−5x+3=0,(2x−3)(x−1)=0,∴2x−3=0或x−1=0,,x2=1;解得:x1=32(2){3x −4<5①2x −13>x −22② 解不等式①,得x <3.解不等式②,得x >−4.则原不等式的解集为:−4<x <3.解析:(1)方程利用因式分解法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元二次方程−因式分解法,熟练掌握因式分解的方法是解本题的关键;也考查了解一元一次不等式组,以及在数轴上表示不等式的解集.19.答案:垂直于同一条直线的两条直线平行 DCB 两直线平行,同位角相等 DCB EDC 内错角相等,两直线平行解析:解:∵CD ⊥AB ,FG ⊥AB(已知),∴FG//CD(垂直于同一条直线的两条直线平行)∴∠DCB =∠GFB(两直线平行,同位角相等)又∵∠EDC =∠GFB(已知)∴∠DCB =∠EDC∴CB//ED(内错角相等,两直线平行)故答案为:垂直于同一条直线的两条直线平行;DCB ;两直线平行,同位角相等;DCB ,EDC ;内错角相等,两直线平行.证出FG//CD ,由平行线的性质得出∠DCB =∠GFB ,由已知得出∠DCB =∠EDC ,即可得出结论. 本题考查了平行线的判定与性质;熟练掌握平行线的判定方法是解题的关键.20.答案:(x,−3)(−2≤x ≤2)解析:解:(1)如图;(2)EF =√32+42=5;S 四边形ABCD =5×7−12×5×5−12×2×3−12×2×3=332;(3)∵A(2,3),B(−2,3),∴AB//x 轴,∴将线段AB向下平移6个单位,所得图形上任意一点的坐标可表示为(x,−3)(−2≤x≤2).故答案为(x,−3)(−2≤x≤2).(1)根据点的坐标意义描出各点;(2)利用两点间的距离公式计算EF;利用面积的和差计算四边形ABCD的面积,即由一个矩形的面积减去三个三角形的面积;(3)根据平移前后点的变换规律求解.本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.也考查了坐标与图形变化−平移.21.答案:解:(1)该班人数:16÷32%=50人;排球人数:50−9−16−7−4=14人;五个数据从小到大排列,即4,7,9,14,16,则中位数为9;平均数=50÷5=10;该班人数这五个活动项目人数的中位数这五个活动项目人数的平均数50 9 10(2)解析:(1)根据足球16人占总体的32%,可以求得该班人数,结合条形统计图进一步求得排球人数,从而根据中位数的概念和平均数的计算方法进行求解;(2)根据(1)中求得的数据进一步补全即可.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.22.答案:解:(1)根据题意,得:4a +2>1,解得a >−14,即a >−14时,4a +2的值大于1;(2)根据题意,得:4a +2=1,解得a =−14,即a =−14时,4a +2的值等于1;(3)根据题意,得:4a +2<1,解得a <−14,即a <−14时,4a +2的值小于1.解析:根据题意分别列出关于a 的不等式或方程,再进一步求解可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 23.答案:解:(1)设促销活动第一、二个月每套A 款运动服的销售价格是每套x 元、B 款运动服的销售价格是每套y 元,由题意,得{20(x −240)+12(y −200)=180015(x −240)+10(y −200)=1400. 解得{x =300y =250. 答:促销活动第一、二个月每套A 款运动服的销售价格是每套300元、B 款运动服的销售价格是每套250元;(2)依题意得:(300−240)(1−a%)×20×(1+10a%)+(250−200)(1−2a%)×12×(1+10a%)=1800.整理,得30(a%)2−17a%+1=0.解得a =50(舍去),或a =203.综上所述,a 的值是203.解析:(1)设促销活动第一、二个月每套A 款运动服的销售价格是每套x 元、B 款运动服的销售价格是每套y 元,根据“利润=销售价格−进价”和关键描述语“促销活动第一个月,销售了15套A 款和10套B 款运动服,从中获得销售利润l 400元;促销活动第二个月,销售了20套A 款和12套B款运动服,从中获得销售利润1800元.已知每套A 款运动服进价240元,每套B 款运动服进价200元”列队方程组并解答;(2)根据总利润=销售数量×单件销售利润解答.考查了一元二次方程的应用,二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.答案:解:(1)两个方程相加,得:3x =6a +3,解得x =2a +1,将x =2a +1代入2x +y =5a ,得:4a +2+y =5a ,解得y =a −2,∴方程组的解为{x =2a +1y =a −2; (2)根据题意,得:{2a +1>0a −2<0或{2a +1<0a −2>0, 解得−12<a <2.解析:(1)利用加减消元法解之可得;(2)根据xy <0得出关于a 的不等式组,解之可得.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 25.答案:解:(1)由题意:A(2,0),B(2,6),C(−2,6),D(−2,0);(2)经过3s 运动的路程为6,6−2=4,∴点P 在线段AB 上,P(2,4);(3)∵OA =2,△POA 的面积为5平方单位.∴点P 到OA 的距离为5,∴t =2+52=3.5s 或2+6+4+12=6.5s ,∴经过3.5s 或6.5s 时间,△POA 的面积为5平方单位.(4)当点P 在线段BC 上时,△POA 的面积最大,当P 与B 重合时,需要经过6+22=4s ;当P 与C 重合时,2+6+42=6s ,∴当4≤t ≤6s 时,△POA 的面积最大.解析:(1)根据A 、B 、C 、D 的位置,以及已知条件写出坐标即可;(2)求出经过3s 的路程,判断点P 的位置即可解决问题;(3)求出△POA的边OA上的高,即可解决问题;(4)当点P在线段BC上时,△POA的面积最大,求出这个时间段即可;本题考查矩形的性质、坐标与图形性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.。

福建省莆田市七年级下学期数学期末考试试卷

福建省莆田市七年级下学期数学期末考试试卷

福建省莆田市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共20分) (共10题;共20分)1. (2分) (2019八上·南山期中) 在函数中,自变量x的取值范围是()A . x>2B . x≤2且x≠0C . x<2D . x>2且x≠0【考点】2. (2分)(2016·苏州) 肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A . 0.7×10﹣3B . 7×10﹣3C . 7×10﹣4D . 7×10﹣5【考点】3. (2分)下列运算正确的是()A . 2a3•a4=2a7B . a3+a4=a7C . (2a4)3=8a7D . a3÷a4=a【考点】4. (2分)若,则=()A .B .C .D .【考点】5. (2分) (2020七下·江阴期中) 把图形(1)进行平移,得到的图形是()A .B .C .D .【考点】6. (2分)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A . 4:00气温最低B . 6:00气温为24℃C . 14:00气温最高D . 气温是30℃的时刻为16:00【考点】7. (2分)若m,n为正整数,则下列各式中错误的是()A . am÷an=am·a-nB . (a-m)-n=amnC . ()n=anb-nD . am-n=【考点】8. (2分) (2019八上·西安期中) 如果关于、的方程组无解,那么直线不经过的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【考点】9. (2分) (2020九上·深圳月考) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD 交AF于点G ,连接DG .给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=GF×AF;④当AG=6,EG=2 时,BE的长为,其中正确的编号组合是()A . ①②③B . ①②④C . ①③④D . ①②③④【考点】10. (2分) (2019七下·嵊州期末) 郑奶奶提着篮子去农贸市场买鸡蛋,摊主按郑奶奶的要求,用电子秤称了5千克鸡蛋,郑奶奶怀疑重量不对,把鸡蛋放入自带的质量为0.6千克的篮子中(篮子质量准确),要求放在电子秤上再称一遍,称得为5.75千克,老板客气地说:“除去篮子后为5.15千克,老顾客啦,多0.15千克就算了”,郑奶奶高兴地付了钱,满意地回家了.以下说法正确的是()A . 郑奶奶赚了,鸡蛋的实际质量为5.15千克B . 郑奶奶亏了,鸡蛋的实际质量为4千克C . 郑奶奶亏了,鸡蛋的实际质量为4.85千克D . 郑奶奶不亏也不赚,鸡蛋的实际质量为5千克【考点】二、填空题(每小题3分,共30分) (共10题;共30分)11. (3分) (2019八上·昭通期末) 计算:(﹣2ab2)3÷4a2b2=________.【考点】12. (3分) (2019七下·长兴期末) 某校701班数学期终考试全班所有学生成绩的频数分布直方图如图所示,满分100分,学生成绩取整数,则成绩在90.5~95.5这一分数段的频率是________。

2019-2020学年福建省莆田市七年级第二学期期末考试数学试题含解析

2019-2020学年福建省莆田市七年级第二学期期末考试数学试题含解析

2019-2020学年福建省莆田市七年级第二学期期末考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题只有一个答案正确)1.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44【答案】A【解析】根据题意可以列出相应的方程,从而可以解答本题.解:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故选A.2.空气的密度是,将用科学计数法表示为()A.B.C.D.【答案】A【解析】【分析】科学计数法是把一个数表示成n为整数,据此即可表示.【详解】解:故答案为:A【点睛】本题考查了科学计数法,熟练掌握用科学计数法表示实数是解题的关键.3.不等式x-2≤0的解集在数轴上表示正确的是( )A.B.C.D.【答案】B【解析】【分析】利用一元一次不等式的解法,先求解题干给出的不等式,然后在数抽表示出来的时候,注意空心点和实心点去取舍.【详解】解不等式x-2≤0得,x≤2则在数抽上找到2,并且用实心点表示,小于等于往2的左边画.故答案应为B【点睛】本题解题关键,正确解答出一元一次不等式的解集,并且需要注意的是,在数轴上表示时因为包含了等于的情况,所以要用实心的点表示,而且点的左边表示小于,右边表示大于.4.已知关于x的方程3x+m=x+3的解为非负数,且m为正整数,则m的取值为()A.1 B.1、2 C.1、2、3 D.0、1、2、3【答案】C【解析】【分析】根据题意可以先求出方程的解,然后根据关于x的方程3x+m=x+3的解是非负数,即x≥0,得到关于m的不等式,解不等式即可求得正整数m的值.【详解】∵3x+m=x+3,移项,得3x-x=3-m,合并同类项,得2x=3-m,∴x=32m -,∵关于x的方程3x+m=x+3的解是非负数,∴32m-≥0,解得m≤3,∵m是正整数,∴m=1、2、3,故选C.【点睛】本题考查了解一元一次方程,解一元一次不等式,正确理解题意,得到关于m的不等式是解题的关键. 5.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【解析】【分析】【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.6.下列语句不正确的是()A.能够完全重合的两个图形全等B.两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和D.全等三角形对应边相等【答案】B【解析】解:两边和一夹角对应相等的两个三角形全等,必须强调是夹角,故选B。

福建省2019-2020年七年级下学期期末测试数学试卷

福建省2019-2020年七年级下学期期末测试数学试卷

福建省2019-2020年七年级下学期期末测试数学试卷一、选择题:(每小题2分,共14分)1.(2分)下列方程的根是x=0的是()A.=0 B.=1 C.﹣5x=0 D.2(x﹣1)=0 2.(2分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.3.(2分)下列学习用具中,不是轴对称图形的是()A.B.C.D.4.(2分)如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度5.(2分)如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°6.(2分)已知,则a﹣b等于()A.2B.C.3D.17.(2分)若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C二、填空题:(每小题3分,共30分)8.(3分)一元一次方程2x﹣4=0的解是x=.9.(3分)若﹣2x+y=5,则y=(用含x的式子表示).10.(3分)不等式组的解集是.11.(3分)如图所示,该图形是对称图形.12.(3分)正六边形的每个外角是度.13.(3分)用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是.(写出一种即可)14.(3分)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=度.15.(3分)三元一次方程组的解是.16.(3分)若等腰三角形的一个外角是40°,则该等腰三角形的顶角是度.17.(3分)如图,点P是∠AOB内部的一定点.(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连结OP1、OP2,则∠P1OP2=°;(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=度(用含α的代数式表示).三、解答题:(共56分)18.(6分)解方程:7﹣3(x+1)=2(4﹣x)19.(6分)解方程组:.20.(6分)解不等式5(8﹣x)﹣2(3x+4)>10.21.(6分)解不等式组.22.(6分)如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.23.(6分)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC和△DEF 的三个顶点都在格点上.(1)画出△ABC沿水平方向向左平移1个单位长度得到的△A1B1C1;(2)画出△A1B1C1绕点O逆时针旋转180°后得到的△A2B2C2;(3)判断△DEF与△A2B2C2属于哪种对称?若是中心对称,试画出对称中心点Q;若是轴对称,试画出对称轴l(用加粗线表示)24.(6分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长AB是小刀长CD(小刀不打开时的最大长度)的倍,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2cm,铅笔盒内部的长AD为20cm,设小刀的长为xcm,求x的值.25.(7分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.26.(7分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨18吨及以下 a 0.80超过18吨不超过30吨的部分 b 0.80超过30吨的部分 2.40 0.80已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费)(1)求a、b的值;(2)随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?七年级下学期期末数学试卷参考答案与试题解析一、选择题:(每小题2分,共14分)1.(2分)下列方程的根是x=0的是()A.=0 B.=1 C.﹣5x=0 D.2(x﹣1)=0考点:方程的解.分析:根据方程的解满足方程,把方程的解代入,可得答案.解答:解;A、=≠0,故A错误;B、0不能作除数,故B错误;C、﹣5x=﹣5×0=0,故C正确;D、2(x﹣1)=2(0﹣1)≠0,故D错误;故选:C.点评:本题考查了方程的解,利用了方程的解满足方程.2.(2分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的解集,大于﹣1小于等于2,可得答案.解答:解:数轴上表示的解集:﹣1<x≤2,B不等式组的解集是大于﹣,小于等于2,故选:B.点评:本题考查了在数轴上表示不等式组的解集,观察数轴上的表示的解集是解题关键.3.(2分)下列学习用具中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.解答:解:A、是轴对称图形,不合题意,故本选项错误;B、是轴对称图形,不合题意,故本选项错误;C、不是轴对称图形,符合题意,故本选项正确;D、是轴对称图形,不合题意,故本选项错误;故选:C.点评:本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.4.(2分)如图,若△DEF是由△ABC经过平移后得到的,则平移的距离是()A.线段BC的长度B.线段BE的长度C.线段EC的长度D.线段EF的长度考点:平移的性质.分析:根据平移的性质,结合图形可直接求解.解答:解:观察图形可知:△DEF是由△ABC沿BC向右移动BE的长度后得到的,∴平移距离就是线段BE的长度.故选B.点评:本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(2分)如图,在正方形网格中,将△ABC绕点A旋转后得到△ADE,则下列旋转方式中,符合题意的是()A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°考点:旋转的性质.分析:此题根据给出的图形先确定出旋转中心,再确定出旋转的方向和度数即可求出答案.解答:解:根据图形可知:将△ABC绕点A逆时针旋转90°可得到△ADE.故选B.点评:本题主要考查旋转的性质,在解题时,一定要明确三个要素:旋转中心、旋转方向、旋转角度.6.(2分)已知,则a﹣b等于()A.2B.C.3D.1考点:解二元一次方程组.专题:计算题.分析:方程利用加减消元法求出解确定出a与b的值,即可求出a﹣b的值.解答:解:,②×3﹣①得:14b=4,即b=,把b=代入①得:a=,则a﹣b=2.故选A.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.(2分)若△ABC满足下列某个条件,则它不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.∠A:∠B:∠C=1:4:3 D.∠A=2∠B=3∠C考点:三角形内角和定理.分析:根据三角形内角和定理得出∠A+∠B+∠C=180°,根据选项中的条件求出三角形的最大角的度数,再判断即可.解答:解:A、∵∠A+∠B+∠C=180°,∠C=∠A+∠B,∴∠C=90°,即三角形是直角三角形,故本选项错误;B、∵∠A+∠B+∠C=180°,∠C=∠A﹣∠B,∴∠A=90°,即三角形是直角三角形,故本选项错误;C、∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:4:3∴∠B=90°,即三角形是直角三角形,故本选项错误;D、∵∠A+∠B+∠C=180°,∠A=2∠B=3∠C,∴∠A≈98°,即三角形不是直角三角形,故本选项正确;故选D.点评:本题考查了直角三角形的判定,三角形内角和定理的应用,注意:三角形的内角和等于180°.二、填空题:(每小题3分,共30分)8.(3分)一元一次方程2x﹣4=0的解是x=2.考点:解一元一次方程.专题:计算题.分析:方程移项后,x系数化为1,即可求出解.解答:解:方程2x﹣4=0,移项得:2x=4,解得:x=2.故答案为:2.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)若﹣2x+y=5,则y=2x+5(用含x的式子表示).考点:解二元一次方程.专题:计算题.分析:将x看做已知数求出y即可.解答:解:方程﹣2x+y=5,解得:y=2x+5.故答案为:2x+5.点评:此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.10.(3分)不等式组的解集是x≤3.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再求出不等式组的解集即可.解答:解:∵解不等式①得:x<4,解不等式②得:x≤3,∴不等式组的解集为x≤3,故答案为:x≤3.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.11.(3分)如图所示,该图形是中心对称图形.考点:中心对称图形;旋转对称图形.分析:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此求解.解答:解:由图形可得,该图形是中心对称图形.故答案为:中心.点评:本题考查了中心对称图形概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(3分)正六边形的每个外角是60度.考点:多边形内角与外角.分析:正多边形的外角和是360度,且每个外角都相等,据此即可求解.解答:解:正六边形的一个外角度数是:360÷6=60°.故答案为:60.点评:本题考查了正多边形的外角的计算,理解外角和是360度,且每个外角都相等是关键.13.(3分)用同一种规格的正多边形地砖铺满地面,这种地砖的形状可能是正三角形(答案不唯一).(写出一种即可)考点:平面镶嵌(密铺).专题:开放型.分析:利用正三角形的每个内角是60°,能整除360度.正方形的每个内角是90°,4个能密铺.正六边形的每个内角是120°,能整除360°,能密铺,即可得出答案.解答:解:用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是如:正三角形(答案不唯一);故答案为:正三角形(答案不唯一).点评:本题考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.14.(3分)把一块含60°的三角板与一把直尺按如图方式放置,则∠α=120度.考点:多边形内角与外角.分析:三角板中∠B=90°,三角板与直尺垂直,再用四边形的内角和减去∠A、∠B、∠ACD 即得∠α的度数.解答:解:如图:∵在四边形ABCD中,∠A=60°,∠B=90°,∠ACD=90°,∴∠α=360°﹣∠A﹣∠B﹣∠ACD=360°﹣60°﹣90°﹣90°=120°,故答案为:120.点评:本题主要考查了多边形的内角和.关键是得出用四边形的内角和减去∠A、∠B、∠ACD即得∠α的度数.15.(3分)三元一次方程组的解是.考点:解三元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,②+③得:x+y=5④,①+④得:2x=6,即x=3,将x=3代入①得:y=2,将y=2代入②得:z=1,则方程组的解为.故答案为:.点评:此题考查了解三元一次方程组,熟练掌握运算法则是解本题的关键.16.(3分)若等腰三角形的一个外角是40°,则该等腰三角形的顶角是140度.考点:等腰三角形的性质.分析:根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质解答.解答:解:∵等腰三角形的一个外角是40°,∴与这个外角相邻的内角为180°﹣40°=140°,∴该等腰三角形的顶角是140度.故答案为:140.点评:本题考查了等腰三角形的性质,邻补角的定义,是基础题,等腰三角形的钝角只能是顶角.17.(3分)如图,点P是∠AOB内部的一定点.(1)若∠AOB=50°,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连结OP1、OP2,则∠P1OP2=100°;(2)若∠AOB=α,点C、D分别在射线OA、OB上移动,当△PCD的周长最小时,则∠CPD=180°﹣2α度(用含α的代数式表示).考点:轴对称-最短路线问题;轴对称的性质.分析:(1)连接OP,根据轴对称的性质可得∠AOP=∠AOP1,∠BOP=∠BOP2,然后求出∠P1OP2=2∠AOB,再代入数据进行计算即可得解;(2)根据轴对称的性质可得∠OP1C=∠OPC,∠OP2D=∠OPD,然后求出∠CPD=∠OP1C+∠OP2D,再根据三角形的内角和定理列式计算即可得解.解答:解:(1)连接OP,∵点P关于OA的对称点P1,点P关于OB的对称点P2,∴∠AOP=∠AOP1,∠BOP=∠BOP2,∴∠P1OP2=∠AOP1+∠AOP+∠BOP+∠BOP2=2(∠AOP+∠BOP)=2∠AOB,∵∠AOB=50°,∴∠P1OP2=2×50°=100°;(2)∵∠AOB=α,∴∠P1OP2=2α,由轴对称的性质得,∠OP1C=∠OPC,∠OP2D=∠OPD,∵∠CPD=∠OPC+∠OPD,∴∠CPD=∠OP1C+∠OP2D,在△OP1P2中,∠OP1C+∠OP2D=180°﹣∠P1OP2=180°﹣2α.故答案为:100;180°﹣2α.点评:本题考查了轴对称确定最短路线问题,轴对称的性质,熟练掌握轴对称的性质是解题的关键.三、解答题:(共56分)18.(6分)解方程:7﹣3(x+1)=2(4﹣x)考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,将x系数化为1,即可求出解.解答:解:去括号得:7﹣3x﹣3=8﹣2x,移项合并得:﹣x=4,解得:x=﹣4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.(6分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:6x=24,即x=4,将x=4代入②得:y=﹣3,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.(6分)解不等式5(8﹣x)﹣2(3x+4)>10.考点:解一元一次不等式.专题:计算题.分析:不等式去括号,移项合并,将x系数化为1,即可求出解集.解答:解:去括号得:40﹣5x﹣6x﹣8>10,移项合并得:﹣11x>﹣22,解得:x<2.点评:此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.(6分)解不等式组.考点:解一元一次不等式组.分析:先求出每个不等式的解集,再求出不等式组的解集即可.解答:解:∵由①得:x>﹣2,由②得:x≤3,∴原不等式组的解集为﹣2<x≤3.点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.22.(6分)如图,点D是△ABC的边BC上的一点,∠B=∠BAD=∠C,∠ADC=72°.试求∠DAC的度数.考点:三角形的外角性质;三角形内角和定理.分析:先根据三角形外角的性质得出∠ADC=∠B+∠BAD,再由∠B=∠BAD可知∠B=∠BAD=36°,在△ADC中,根据三角形内角和定理即可得出结论.解答:解:∵∠ADC是△ABD的外角,∠ADC=72°,∴∠ADC=∠B+∠BAD.又∵∠B=∠BAD,∴∠B=∠BAD=36°.∵∠B=∠BAD=∠C,∴∠C=36°.在△ADC中,∵∠DAC+∠ADC+∠C=180°∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣72°﹣36°=72°.点评:本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.23.(6分)如图,在正方形网格中,每个小正方形的边长都是1个单位长度,△ABC和△DEF 的三个顶点都在格点上(1)画出△ABC沿水平方向向左平移1个单位长度得到的△A1B1C1;(2)画出△A1B1C1绕点O逆时针旋转180°后得到的△A2B2C2;(3)判断△DEF与△A2B2C2属于哪种对称?若是中心对称,试画出对称中心点Q;若是轴对称,试画出对称轴l(用加粗线表示)考点:作图-旋转变换;作图-轴对称变换;作图-平移变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1绕点O逆时针旋转180°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的性质解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△DEF与△A2B2C2属于轴对称,对称轴为y轴,如图所示.点评:本题考查了利用旋转变换作图,利用平移变换作图,轴对称的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(6分)如图,在铅笔盒中有一支圆珠笔和一把小刀,已知圆珠笔的长AB是小刀长CD (小刀不打开时的最大长度)的倍,若把圆珠笔与小刀按平行于铅笔盒长的方向放置,则其重叠部分BC的长是2cm,铅笔盒内部的长AD为20cm,设小刀的长为xcm,求x的值.考点:一元一次方程的应用.分析:小刀的长为xcm.等量关系:AC+CD﹣2=20.解答:解:依题意,得:x+x﹣2=20解得x=7,经检验,符合题意.答:x的值是7cm.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(7分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,将△ABC沿AB方向向右平移得到△DEF,若AE=8cm,DB=2cm.(1)求△ABC向右平移的距离AD的长;(2)求四边形AEFC的周长.考点:平移的性质.分析:(1)根据平移的性质可得AD=BE=CF,BC=EF=3cm,然后根据AE、BD的长度求解即可;(2)根据平移的性质可得EF=BC,CF=AD,然后根据四边形的周长的定义列式计算即可得解.解答:解:(1)∵△ABC沿AB方向向右平移得到△DEF,∴AD=BE=CF,BC=EF=3cm,∵AE=8cm,DB=2cm,∴AD=BE=CF==3cm;(2)四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18cm.点评:本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.26.(7分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨18吨及以下 a 0.80超过18吨不超过30吨的部分 b 0.80超过30吨的部分 2.40 0.80已知小张家2012年4月份用水20吨,交水费41元;5月份用水25吨,交水费53.5元.(水费=自来水费+污水处理费)(1)求a、b的值;(2)随着夏天的到来用水量将增加,为了节约开支,小张计划把6月份水费控制在家庭月收入的1%,若小张家月收入为9800元,则小张家6月份最多能用水多少吨?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)根据表格收费标准,及小张4、5两月用水量、水费,可得出方程组,解出即可;(2)先判断用水量超过30吨,继而再由水费不超过98,可得出不等式,解出即可.解答:解:(1)由题意,得,解得:,(2)当用水量为30吨时,水费为:18×2+12×2.5=66元,9800×1%=98元,∵66<98,∴小张家六月份的用水量超过30吨,设小张家6月份用水量为x吨,由题意得:18×1.2+12×1.7+2.4(x﹣30)+0.8x≤98,解得:x≤40,∴小张家六月份最多用水40吨.点评:本题考查了二元一次方程组及一元一次不等式的知识,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年福建莆田市荔城区七年级第二学期期末数学试卷一、选择题(共10小题).1.下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题(共6小题).11.比较大小:2(填“<”、“=”、“>”).12.9的平方根是.13.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为.14.若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE=55°,则∠CEB'=.三、解答题17.计算:++|1﹣|18.解不等式组并将解集在数轴上表示出来.19.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P (2,3),S△OBE﹣S△EPQ=2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案一、选择题(共10小题).1.下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.解:由图示得A>1,A<2,故选:A.6.如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.比较大小:2>(填“<”、“=”、“>”).解:∵1<<2,∴2>.故答案为:>.12.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为80°.解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.解:由题意可得,,故答案为:.16.把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE=55°,则∠CEB'=70°.解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.计算:++|1﹣|解:原式=﹣++﹣1=﹣1.18.解不等式组并将解集在数轴上表示出来.解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t 为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P (2,3),S△OBE﹣S△EPQ=2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,PA=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

相关文档
最新文档