linux、内核源码、内核编译与配置、内核模块开发、内核启动流程
Linux下的软件开发和编译环境配置

Linux下的软件开发和编译环境配置在Linux操作系统中,配置适合软件开发和编译的环境是非常重要的。
正确地设置开发环境,可以提高开发效率,同时确保软件的质量和稳定性。
本文将介绍如何在Linux下配置软件开发和编译环境,以帮助开发人员顺利进行开发工作。
一、安装必要的开发工具在开始配置软件开发环境之前,您需要安装一些必要的开发工具。
在Linux中,常用的开发工具包括GCC编译器、Make工具、调试器(如GDB)、版本控制工具(如Git)等。
您可以通过包管理器(如APT、YUM等)来安装这些工具。
以下是安装这些工具的示例命令(以基于Debian的系统为例):```sudo apt-get updatesudo apt-get install build-essentialsudo apt-get install gdbsudo apt-get install git```通过执行这些命令,您可以安装所需的开发工具,以便后续的配置步骤。
二、配置开发环境要配置软件开发环境,您需要设置一些环境变量和配置文件。
以下是一些常见的配置步骤:1. 配置PATH环境变量在Linux中,PATH环境变量用于指定可执行程序的搜索路径。
为了方便地访问开发工具和编译器,您应该将它们所在的目录添加到PATH环境变量中。
您可以通过编辑`.bashrc`文件来实现这一点。
打开终端,输入以下命令编辑文件:```vi ~/.bashrc```在文件末尾添加以下行(假设开发工具的路径为`/usr/local/bin`):```export PATH=$PATH:/usr/local/bin```保存并退出文件。
然后,使用以下命令使更改生效:```source ~/.bashrc```现在,您可以在任何目录下直接运行开发工具和编译器。
2. 配置编辑器选择一个适合您的编辑器来编写代码是很重要的。
在Linux中有多种编辑器可供选择,如Vim、Emacs、Sublime Text等。
linux 编译ko的方式

linux 编译ko的方式
在Linux中,编译ko(内核对象)的方式通常涉及以下步骤:
1. 准备开发环境,确保已经安装了适当的编译工具链、内核源代码和开发包。
可以使用包管理器(如apt、yum等)来安装这些组件。
2. 进入内核源代码目录,使用终端进入内核源代码目录,通常位于`/usr/src/linux`或者`/usr/src/linux-<kernel_version>`。
3. 准备配置文件,可以选择使用现有的内核配置文件或生成新的配置文件。
使用`make oldconfig`命令可以生成一个新的配置文件,并根据提示进行必要的配置选择。
4. 编译内核,运行`make`命令开始编译内核。
这个过程可能需要一些时间,具体时间取决于你的硬件和内核源代码的大小。
5. 编译ko模块,进入你的ko模块所在的目录,运行`make`命令来编译ko模块。
如果你的模块有依赖关系,可能需要提前解决这些依赖关系。
6. 安装ko模块,编译完成后,你可以使用`insmod`命令将ko 模块加载到内核中。
例如,`insmod your_module.ko`。
7. 卸载ko模块,如果需要卸载已加载的ko模块,使用
`rmmod`命令。
例如,`rmmod your_module`。
需要注意的是,上述步骤只是一般的编译ko模块的方式,具体步骤可能会因为不同的内核版本和模块的特定要求而有所差异。
在实际操作中,你可能需要查阅相关文档或参考特定模块的编译指南以获得更准确的步骤和命令。
嵌入式linux系统的启动流程

嵌入式linux系统的启动流程
嵌入式Linux系统的启动流程一般包括以下几个步骤:
1.硬件初始化:首先会对硬件进行初始化,例如设置时钟、中
断控制等。
这一步骤通常是由硬件自身进行初始化,也受到系统的BIOS或Bootloader的控制。
2.Bootloader引导:接下来,系统会从存储介质(如闪存、SD
卡等)的Bootloader区域读取引导程序。
Bootloader是一段程序,可以从存储介质中加载内核镜像和根文件系统,它负责进行硬件初始化、进行引导选项的选择,以及加载内核到内存中。
3.Linux内核加载:Bootloader会将内核镜像从存储介质中加载到系统内存中。
内核镜像是包含操作系统核心的一个二进制文件,它由开发者编译并与设备硬件特定的驱动程序进行连接。
4.内核初始化:一旦内核被加载到内存中,系统会进入内核初
始化阶段。
在这个阶段,内核会初始化设备驱动程序、文件系统、网络协议栈等系统核心。
5.启动用户空间:在内核初始化完毕后,系统将启动第一个用
户空间进程(init进程)。
init进程会读取并解析配置文件(如
/etc/inittab)来决定如何启动其他系统服务和应用程序。
6.启动其他系统服务和应用程序:在用户空间启动后,init进
程会根据配置文件启动其他系统服务和应用程序。
这些服务和应用程序通常运行在用户空间,提供各种功能和服务。
以上是嵌入式Linux系统的基本启动流程,不同的嵌入式系统可能会有一些差异。
同时,一些特定的系统也可以添加其他的启动流程步骤,如初始化设备树、加载设备固件文件等。
Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
riscv linux内核编译过程

riscv linux内核编译过程全文共四篇示例,供读者参考第一篇示例:RISC-V(Reduced Instruction Set Computing-V)是一种基于精简指令集(RISC)的开源指令集架构,旨在提供更灵活、更适用于现代计算需求的处理器设计。
在RISC-V架构中,Linux内核是最受欢迎的操作系统之一,为RISC-V平台提供强大的支持和功能。
本文将介绍RISC-V Linux内核的编译过程,帮助您了解如何在RISC-V架构下编译和定制Linux内核。
一、准备编译环境无论您是在本地计算机还是远程服务器上编译RISC-V Linux内核,首先需要安装必要的工具和软件包。
一般来说,您需要安装以下软件:1. GCC:GNU Compiler Collection是一个功能强大的编译器套件,用于编译C、C++和其他编程语言的程序。
在RISC-V架构下编译Linux内核时,可以使用最新版本的GCC版本。
2. Make:Make是一个构建自动化工具,可以大大简化编译和安装过程。
在编译Linux内核时,Make是必不可少的工具。
3. Git:Git是一个版本控制系统,可以帮助您获取和管理源代码。
在编译RISC-V Linux内核时,您需要从GitHub上克隆Linux内核源代码。
4. 软件包:除了以上基本软件外,您还可能需要安装其他依赖软件包,如Flex、Bison等。
二、获取Linux内核源代码```git clone https:///torvalds/linux.git```通过上述命令,您将在当前目录下创建一个名为“linux”的文件夹,其中包含了Linux内核的源代码。
您可以根据需要切换到不同的分支,如稳定的分支或特定版本的分支。
三、配置内核选项在编译RISC-V Linux内核之前,您需要配置内核选项以适应特定的硬件平台或应用需求。
您可以通过以下命令进入内核配置菜单:```make menuconfig```通过上述命令,将打开一个文本界面,您可以在其中选择不同的内核配置选项。
Linux内核编译过程详解

内核升级前的准备工作:Linux系统进行内核升级或定制内核时需要安装GCC编译工具、make编译器,同时变异内核需要root权限。
安装GCC编译环境参考:/rhelinux/248.html操作系统:RHEL 5.5开始安装:按照以下顺序安装所需要的包就可以完成GCC的安装了1. rpm -ivh kernel-headers-2.6.18-194.el5.i386.rpm2. rpm -ivh glibc-headers-2.5-49.i386.rpm3. rpm -ivh glibc-devel-2.5-49.i386.rpm4. rpm -ivh libgomp-4.4.0-6.el5.i386.rpm5. rpm -ivh gcc-4.1.2-48.el5.i386.rpm6. rpm -ivh libstdc++-devel-4.1.2-48.el5.i386.rpm7. rpm -ivh gcc-c++-4.1.2-48.el5.i386.rpm8. rpm -ivh ncurses-5.5-24.20060715.i386.rpm9. rpm -ivh ncurses-devel-5.5-24.20060715.i386.rpm注意:在升级编译完内核,重启后提示如下错误信息:RedHat nash Version 5.1.19.6 startingrver(2.6.33.3)mount: could not find filesystem …/dev/root‟setuproot: moving /dev failed: No such file or directorysetuproot: error mounting /proc: No such file or directorysetuproot: error mounting /sys: No such file or directoryswitchroot: mount failed: No such file or directoryKernel panic – not syncing: Attempted to kill init![Linux-initrd @ 0x1fc37000,0x228585 bytes]于是在网上找了很多,也尝试了很多加模块、重编译了N次、改fstab等方法,都不行。
vmlinux生成流程

vmlinux生成流程vmlinux是Linux内核的可执行文件,它是内核源代码经过编译、链接等一系列处理后生成的。
下面我们将详细介绍vmlinux生成的流程。
1. 内核源代码编译vmlinux的生成过程首先需要对Linux内核的源代码进行编译。
编译器将源代码翻译成机器可以执行的目标代码,生成一系列的中间文件。
在编译过程中,需要注意选择合适的编译选项,以及处理一些与平台相关的代码。
2. 汇编代码生成在编译过程中,还会生成一些汇编代码。
汇编代码是与机器硬件直接相关的代码,它负责处理底层的硬件操作。
汇编代码一般保存在以".S"为后缀的文件中。
3. 链接过程编译完源代码和汇编代码后,需要进行链接操作。
链接器将各个模块的目标代码组合在一起,解析符号引用,生成最终的可执行文件。
在链接过程中,还需要处理一些与库相关的操作,如动态链接库和静态链接库的链接。
4. 符号表生成在链接过程中,还会生成符号表。
符号表是一个记录了各个符号(函数、变量等)地址和大小的表格,它有助于调试和动态加载等操作。
符号表一般保存在可执行文件的调试信息中。
5. 优化处理在生成vmlinux的过程中,还需要进行一些优化处理。
优化处理旨在提高代码的执行效率,减少资源占用。
优化处理涉及到很多技术,如代码折叠、循环展开、指令调度等。
6. 生成vmlinux经过以上的编译、汇编、链接和优化处理,最终可以生成vmlinux文件。
vmlinux是一个可执行的二进制文件,它包含了Linux内核的所有代码和数据。
vmlinux可以被直接加载到内存中执行,成为一个运行的操作系统。
总结:vmlinux的生成过程经历了源代码编译、汇编代码生成、链接过程、符号表生成、优化处理等多个阶段。
通过这些处理,我们可以得到一个完整的可执行的Linux内核文件。
vmlinux的生成过程是复杂而严谨的,需要编译器、链接器等工具的支持,同时也需要开发人员对内核源代码和底层硬件有深入的理解。
内核和文件系统编译

内核和文件系统编译【实用版】目录1.编译内核2.编译文件系统3.编译过程中的注意事项正文在内核和文件系统的编译过程中,我们需要遵循一定的步骤和技巧,以确保编译的顺利进行。
下面,我们将详细介绍如何编译内核和文件系统,以及在编译过程中需要注意的事项。
一、编译内核1.获取内核源代码:首先,你需要从内核官方网站上下载最新的内核源代码。
通常情况下,我们使用的是 Linux 内核。
2.配置内核:下载源代码后,需要对其进行配置,以满足你的需求。
这个过程可以通过 make menuconfig 或者 make xconfig 等命令完成。
3.编译内核:配置完成后,就可以使用 make 命令编译内核了。
编译完成后,会生成一个新的内核文件。
4.更新内核:将新的内核文件安装到系统中,替换原有的内核。
这一步通常需要重启系统,以使新内核生效。
二、编译文件系统1.选择文件系统:根据你的需求,选择合适的文件系统。
常见的文件系统有 ext3、ext4、xfs 等。
2.配置文件系统:与编译内核类似,需要对文件系统进行配置。
根据文件系统的不同,配置方法也会有所区别。
3.编译文件系统:配置完成后,使用 make 命令编译文件系统。
编译完成后,会生成一个新的文件系统驱动文件。
4.加载文件系统:将新的文件系统驱动文件加载到系统中,使其生效。
这一步同样需要重启系统。
三、编译过程中的注意事项1.环境准备:在编译之前,确保你的系统环境、编译器和相关工具都处于最新版本。
2.编译选项:根据你的需求和硬件环境,选择合适的编译选项。
例如,你可以选择启用或禁用某些硬件支持、优化编译速度等。
3.错误处理:编译过程中可能会遇到错误,需要仔细阅读错误信息,找出问题所在,并进行解决。
4.编译时间:编译内核和文件系统是一个相对耗时的过程,需要耐心等待。
通过以上步骤,你可以顺利地完成内核和文件系统的编译工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
linux、内核源码、内核编译与配置、内核模块开发、内核启动流程(转)linux是如何组成的?答:linux是由用户空间和内核空间组成的为什么要划分用户空间和内核空间?答:有关CPU体系结构,各处理器可以有多种模式,而LInux这样的划分是考虑到系统的安全性,比如X86可以有4种模式RING0~RING3 RING0特权模式给LINUX内核空间RING3给用户空间linux内核是如何组成的?答:linux内核由SCI(System Call Interface)系统调用接口、PM(Process Management)进程管理、MM(Memory Management)内存管理、Arch、VFS(Virtual File Systerm)虚拟文件系统、NS(Network Stack)网络协议栈、DD(Device Drivers)设备驱动linux 内核源代码linux内核源代码是如何组成或目录结构?答:arc目录存放一些与CPU体系结构相关的代码其中第个CPU子目录以分解boot,mm,kerner等子目录block目录部分块设备驱动代码crypto目录加密、压缩、CRC校验算法documentation 内核文档drivers 设备驱动fs 存放各种文件系统的实现代码include 内核所需要的头文件。
与平台无关的头文件入在include/linux子目录下,与平台相关的头文件则放在相应的子目录中init 内核初始化代码ipc 进程间通信的实现代码kernel Linux大多数关键的核心功能者是在这个目录实现(程序调度,进程控制,模块化)lib 库文件代码mm 与平台无关的内存管理,与平台相关的放在相应的arch/CPU目录net 各种网络协议的实现代码,注意而不是驱动samples 内核编程的范例scripts 配置内核的脚本security SElinux的模块sound 音频设备的驱动程序usr cpip命令实现程序virt 内核虚拟机内核配置与编译一、清除make clean 删除编译文件但保留配置文件make mrproper 删除所有编译文件和配置文件make distclean 删除编译文件、配置文件包括backup备份和patch补丁二、内核配置方式make config 基于文本模式的交互式配置make menuconfig 基于文本模式的菜单配置make oldconfig 使用已有的配置文件(.config),但配置时会询问新增的配置选项make xconfig 图形化配置三、make menuconfig一些说明或技巧在括号中按“y”表示编译进内核,按“m”编译为模块,按“n”不选择,也可以按空格键进行选择注意:内核编译时,编译进内核的“y”,和编译成模块的“m”是分步编译的四、快速配置相应体系结构的内核配置我们可以到arch/$cpu/configs目录下copy相应的处理器型号的配置文件到内核源目录下替换.config文件五、编译内核1.————————————————————————————make zImage 注:zImage只能编译小于512k的内核make bzImage同样我们也可以编译时获取编译信息,可使用make zImage V=1make bzImage V=1编译好的内核位于arch/$cpu/boot/目录下————————————————————————————以上是编译内核make menuconfig时先“m”选项的编译接下来到编译“y”模块,也就是编译模块2.make modules 编译内核模块make modules_install 安装内核模块------>这个选项作用是将编译好的内核模块从内核源代码目录copy至/lib/modules下六、制作init ramdiskmkinitrd initrd-$version $version/**** mkinitrd initrd-$(可改)version $version(不可改,因为这version是寻找/lib/modules/下相应的目录来制作) ****/七、内核安装复制内核到相关目录下再作grub引导也就可以了1.cp arch/$cpu/boot/bzImage /boot/vmlinux-$version2.cp $initrd /boot/3.修改引导器/etc/grub.conf(lio.conf)正确引导即可#incldue <linux/init.h>#include <linux/module.h>static int hello_init(void){printk(KERN_WARNING"Hello,world!\n");return 0;}static void hello_exit(void){printk(KERN_INFO"Good,world!\n");}module_init(hello_init);module_exit(hello_exit);___________hello,world!范例___________________一、必需模块函数1.加载函数module_init(hello_init); 通过module_init宏来指定2.卸载函数module_exit(hello_exit); 通过module_exit宏来指定编译模块多使用makefile二、可选模块函数1.MODULE_LICENSE("*******"); 许可证申明2.MODULE_AUTHOR("********"); 作者申明3.MODELE_DESCRIPTION("***"); 模块描述4.MODULE_VERSION("V1.0"); 模块版本5.MODULE_ALIAS("*********"); 模块别名三、模块参数通过宏module_param指定模块参数,模块参数用于在加载模块时传递参数模块module_param(neme,type,perm);name是模块参数名称type是参数类型type常见值:boot、int、charp(字符串型)perm是参数访问权限perm常见值:S_IRUGO、S_IWUSRS_IRUGO:任何用户都对sys/module中出现的参数具有读权限S_IWUSR:允许root用户修改/sys/module中出现的参数/*****——————范例————————*******/int a = 3;char *st;module_param(a,int,S_IRUGO);module_param(st,charp,S_IRUGO);/*********————结束——————**********//**********----makefile范例----*************/ifneq ($(KERNELRELFASE),)obj-m := hello.o //这里m值多用obj-(CONFIG_**)代替elseKDIR := /lib/modules/$version/buildall:make -C $(KDIR) M=$(PWD) modulesclean:rm -f *.ko *.o *.mod.o *.mod.c *.symyersendif/*****这里可以扩展多文件makefile 多个obj-m***********end***************//******模块参数*****/#include <linux/init.h>#include <linux/module.h>MODULE_LICENSE("GPL");static char *name = "Junroc Jinx";static int age = 30;module_param(arg,int,S_IRUGO);module_param(name,charp,S_IRUGO);static int hello init(void){printk(KERN_EMERG"Name:%s\n",name);printk(KERN_EMERG"Age:%d\n",age);return 0;}static void hello_exit(void){printk(KERN_INFA"Module Exit\n");}moduleJ_init(hello_init);module_exit(hello_exit);/****************/----------------------------------------------------------------------------/proc/kallsyms 文档记录了内核中所有导出的符号的名字与地址什么是导出?答:导出就是把模块依赖的符号导进内核,以便供给其它模块调用为什么导出?答:不导出依赖关系就解决不了,导入就失败符号导出使用说明:EXPORT_SYMBOL(符号名)EXPORT_SYMBOL_GPL(符号名)其中EXPORT_SYMBOL_GPL只能用于包含GPL许可证的模块模块版本不匹配问题的解决:1、使用modprobe --force-modversion 强行插入2、确保编译内核模块时,所依赖的内核代码版本等同于当前正在运行的内核uname -r ----------------------------------------------------------------------printk内核打印:printk允许根据严重程度,通过附加不同的“优先级”来对消息分类在<linux/kernel.h>定义了8种记录级别。
按照优先级递减分别是:KERN_EMERG "<0>" 用于紧急消息,常常崩溃前的消息KERN_ALERT "<1>" 需要立刻行动的消息KERN_CRIT "<2>" 严重情况KERN_ERR "<3>" 错误情况KERN_WARNING "<4>" 有问题的警告KERN_NOTICE "<5>" 正常情况,但是仍然值得注意KERN_INFO "<6>" 信息型消息KERN_DEBUG "<7>" 用于调试消息没有指定优先级的printk默认使用DEFAULT_MESSAGE_LOGLEVEL优先级它是一个在kernel/printk.c中定义的整数控制优先级的配置:/proc/sys/kernel/printk(可以查看或修改)/*******符号symbol各模块依赖范例*****/--------/********hello.c*********/----#include <linux/module.h>#include <linux/init.h>MODULE_LICENSE("GPL");MODULE_AUTHOR("Junroc Jinx");MODULE_DESCRIPTION("hello,world module! "); MODULE_ALIAS("A simple modle test");extern int add_integar(int a,int b);extern int sub_integar(int a,int b);static int __init hello_init(){int res = add_integar(1,2);return 0;}static void __exit hello_exit(){int res = sub_integar(2,1);}module_init(hello_init);module_exit(hello_exit);/******hello.c****end**********//********start*****calculate.c******/#include <linux/init.h>#include <linux/module.h>MODULE_LICENSE("GPL");int add_integar(int a,int b){return a+b;}int sub_integar(int a,int b){return a-b;}static int __init sym_init(){return 0;}static void __exit sym_exit(){}module_init(sym_init);module_exit(sym_exit);//EXPORT_SYMBOL(add_integar);//EXPORT_SYMBOL(sub_integar);/***********end*****calculte.c****/。