第三章《直线与方程》测试卷
数学第三章《直线与方程》测试(1)(新人教A版必修2)

第三章 直线与方程 单元测试一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 3.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行B .垂直C .斜交D .与,,a b θ的值有关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B 21313C 51326 D 710207.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
高中数学必修2第三章《直线与方程》单元检测卷含解析

高中数学必修2第三章《直线与方程》单元检测卷含解析必修2第三章《直线与方程》单元检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.如果直线ax+2y+2=与直线3x-y-2=平行,则系数a为()A。
-3 B。
-6 C。
-2/3 D。
2/33.下列叙述中不正确的是()A。
若直线的斜率存在,则必有倾斜角与之对应。
B。
每一条直线都有唯一对应的倾斜角。
C。
与坐标轴垂直的直线的倾斜角为0°或90°。
D。
若直线的倾斜角为α,则直线的斜率为tanα。
4.在同一直角坐标系中,表示直线y=ax与直线y=x+a的图象(如图所示)正确的是(选项不清晰,无法判断)5.若三点A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b等于()A。
2 B。
3 C。
9 D。
-96.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是()A。
x+y+1=0 B。
4x-3y=0 C。
4x+3y=0 D。
4x+3y=0或x+y+1=07.已知点A(x,5)关于点(1,y)的对称点为(-2,-3),则点P(x,y)到原点的距离是()A。
4 B。
13 C。
15 D。
178.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB 相交,则l的斜率k的取值范围是()A。
k≥3/4或k≤-4/3 B。
-4/3≤k≤3/4 C。
-3≤k≤4 D。
以上都不对9.已知直线l1:ax+4y-2=与直线l2:2x-5y+b=互相垂直,垂足为(1,c),则a+b+c的值为()A。
-4 B。
20 C。
第三章(直线与方程)综合检测题

第三章综合检测题命题:付强 审题:龙在位一.选择题(本大题共12个小题,每小题5分)1.直线03=+-y x 的倾斜角是( ).A .︒30B .︒45C .︒60D .︒902.直线13kx y k -+=,当k 变动时,所有直线都通过定点( ).A .(0,0)B .(0,1)C .(3,1)D .(2,1) 3.下列说法的正确的是( ). A 经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示 B 经过定点()b A ,0的直线都可以用方程y kx b =+表示 C 不经过原点的直线都可以用方程x a y b +=1表示 D 经过任意两个不同的点),(),,(222111y x P y x P 的直线都可以用方程 ))(())((121121y y x x x x y y --=--表示4.若点)3,4(A ,),5(a B ,)5,6(C 三点共线,则a 的值为( ). A 4 B 4- C 2 D 2-5.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ). x y O x y O x y O xyOA . B. C. D.6.过点),4(a A 和),5(b B 的直线与直线m x y +=平行,则AB 的值为( ).A .6B .2C .2D .不能确定7.直线过点)2,3(--且在两坐标轴上的截距相等,则这条直线方程为( ).A .032=-y xB .05=++y xC .032=-y x 或05=++y xD .05=++y x 或05=+-y x8.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( ).A 5B 4C 10D 89.入射光线沿直线032=+-y x 射向直线x y l =:,被直线l 反射后的光线所在直线的方程是( ).A .032=++y xB .032=-+y xC .032=+-y xD .032=--y x10.过点)3,1(且与原点的距离为1的直线共有( ). A 3条 B 2条 C 1条 D 0条11.若点),(b a ab A +在第一象限内,则直线0=-+ab ay bx 不经过( ). A 第一象限 B 第二象限 C 第三象限 D 第四象限12.已知两条直线x y l =:1,)(0:2R a y ax l ∈=-,当两直线夹角在()︒︒15,0内变动时,实数a 的取值范围为( ). A.)3,1(1,33 ⎪⎪⎭⎫ ⎝⎛ B. ⎪⎪⎭⎫ ⎝⎛3,33 C.)1,0( D. )3,1( 二.填空题(本大题共4个小题,每小题5分)13.过点)1,1(t t A +-和)2,3(t B 的直线的倾斜角为钝角,则实数t 的范围为______ ___ .14.与直线5247=+y x 平行,并且距离等于3的直线方程是____________15.经过点(3,5)M 的所有直线中距离原点最远的直线方程是 ______ .16.已知直线2l 与32:1+=x y l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是_______三.解答题(本大题共6个小题,共70分)17.求经过直线04=-+y x 和0=-y x 的交点,且与原点距离为5102的直线方程.18.一条光线经过点)3,2(-P 射到x 轴上,反射后经过点)1,1(Q ,求入射光线和反射光线所在的直线的方程.19.△ABC 的两顶点)7,3(A ,)5,2(-B ,若AC 的中点在y 轴上,BC 的中点在x 轴上.(1)求点C 的坐标;(2)求AC 边上的中线BD 的长及直线BD 的斜率.20.若直线01=++y ax 和直线024=++b y x 关于点)1,2(-对称,求b a ,的值.21.已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标.22.直线13y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值本章目标检测:答案:1.B 2.C 3.D 4.A 5.C 6.B 7.C 8.A 9.D 10.B 11.C 12.A13.)1,2(- 14.070247=++y x 或080247=-+y x 15.03453=-+y x 16.2- 17.解:由⎩⎨⎧=-=-+004y x y x ,解得⎩⎨⎧==22y x ,交点为)2,2(, 当斜率存在时,设所求直线方程为2)2(+-=x k y ,原点到其距离51021222=+-=k kd ,解得31=k 或3=k ; 当斜率不存在时,直线方程为2=x ,原点到其距离2=d ,不合题意; 故满足条件的直线的方程为2)2(31+-=x y 和2)2(3+-=x y ,即043=+-y x 或043=--y x .18.解:设入射光线与x 轴的交点为)0,(x A ,则反射光线也经过A 点,由题意,可知AQ AP k k -=,即x x ---=---101203,解得41=x ,即⎪⎭⎫ ⎝⎛0,41A , 由两点式,可知入射光线所在直线AP 的方程为41241030---=--x y ,即0134=-+y x 同理,反射光线所在直线AQ 的方程为0134=--y x .19.解:(1)设点C 的坐标为),(y x ,由题意得025,023=+=+y x ,解得5,3-=-=y x , 故C 的坐标为)5,3(--; (2)由中点坐标公式可知,D 点的坐标为)1,0(,∴52)15()02(22=-+--=BD ,20215-=---=BD k . 20.解:由024=++b y x ,即022=++b y x , 因为两直线关于点对称,说明两直线平行,所以2=a .在012=++y x 上取点)1,0(-,这点关于)1,2(-的对称点为)1,4(-,又因为)1,4(-满足022=++b y x , 得14-=b , 所以2=a , 14-=b . 21.解:设点⎪⎭⎫ ⎝⎛x x P 21,,则()222222221)2(1211⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛-+-=+x x x x PB PA 101959251092522+⎪⎭⎫ ⎝⎛-=+-=x x x , 当59=x 时,()1019min 22=+PB PA ,此时⎪⎭⎫ ⎝⎛109,59P . 22.解:由题意得,)0,3(A ,)1,0(B ,∴2=AB ,∵△ABC 是等边△,∴C 到直线AB 的距离为3,又∵ △ABP 和△ABC 的面积相等,∴点P 定在过C 与直线AB 平行的直线上,设为t x y +-=33, 则有31311=+-t ,解得3=t 或1-=t (舍),所以点P 定在直线333+-=x y 上, 把1(,)2P m 代入,33321+-=m ,解得=m。
数学第三章《直线与方程》测试

数学第三章《直线与方程》测试1.在直角坐标系中,直线y=2x+1与x轴交点的坐标为(-0.5,-1)。
正确(假设无误)2.直线y=3x+2与直线y=-2x+1相交于一点,这个点的坐标为(0,2)。
错误。
由两条直线的方程:3x+2=-2x+1,得出x=-1/2,代入第一条直线的方程可得y=5/2,故该点坐标为(-1/2,5/2)。
3.已知直线L:y=4/3x-2与坐标轴围成的三角形的面积为8个单位平方。
错误。
直线L与x轴、y轴分别交于点A(0,-2)和点B(3/2,0),可以计算得到三角形的面积为5个单位平方。
4.在直角坐标系中,直线y=-2x+3与x轴的交点的坐标为(-3/2,0)。
错误。
因为这是一个题目中,X是在y轴的左边,故交点的坐标为(1.5,0)。
值应该为(1.5,0)。
5.一直线通过点A(1,3),且垂直于直线L:x-2y+3=0,则该直线的方程为y=-2x+5错误。
因为A(1,3)与直线L的斜率为-1/2,所以该直线的斜率应为2、通过点斜式可得到该直线的方程为y-3=2(x-1)。
6.直线L:6x-8y+5=0与直线L:3x-4y-1=0平行。
正确(假设无误)7.直线y=-2x+2在x轴上的截距是2正确(假设无误)8.直线y-1=x+3的斜率为1错误。
通过移项可得到y=x+4,即斜率为19.已知直线L1与x轴的交点为(1,0),直线L2与y轴的交点为(0,2),且L1与L2相交于一点,则相交点在第三象限。
正确(假设无误)10.两点A(-2,3)和B(1,1)确定的直线与x轴交于一点,这个点的坐标为(-2,0)。
错误。
两点确定的直线的斜率为(1-3)/(1-(-2))=-2/3,联立求解直线方程和x轴方程可得(-18,0)。
直线与方程测试题(含答案)汇编

第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分)1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( )A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13,则c +2a的值是( )A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 2 2,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。
《必修2》第三章“直线与方程”测试题(含答案)

《必修2》第三章“直线与方程”测试题(含答案)《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( )A .32-B .32C .23- D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=05 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22xy +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是15 已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________;23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等, 求m 的值19.已知三角形ABC的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是BC边上的中点。
第三章《直线与方程》测试题
第三章《直线与方程》测试题一、选择题1.若直线与直线3mx+(m-1)y+7=0平行,则的值为( ) A .7B .0或7C .0D .42.已知直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是( ) A .3210x y +-= B .3270x y ++= C .2350x y -+=D .2380x y -+=3.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或14.已知直线1:l y kx b =+,2:l y bx k =+,则它们的图象可能为( )A .B .C .D .5.已知点()2, 2,,3()1A B -,若直线 10kx y --=与线段AB 有交点,则实数k的取值范围是( )A .3(,4),2⎛⎫-∞-+∞ ⎪⎝⎭B .34,2⎛⎫- ⎪⎝⎭ C .3(,4],2⎡⎫-∞-+∞⎪⎢⎣⎭D .34,2⎡⎤-⎢⎥⎣⎦6.当点(3,2)P 到直线120mx y m -+-=的距离最大时,m 的值为( ) A .3B .0C .1-D .17.已知直线3230x y --=和610x my ++=互相平行,则它们之间的距离是( ) A .4B .1313C .1326D .13268.一条直线经过点(2,3)A -,并且它的倾斜角等于直线30x -=倾斜角的2倍,则这条直线的方程是( )C.30x y--=D.3330x y--=9.若三条直线2380x y++=,10x y--=与直线0x ky+=交于一点,则k=()A.-2 B.2 C.12-D.1210.如图,已知A(4,0)、B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( )A.25B.33C.6D.210 11.直线l过点(1,2)P,且(2,3)M、(4,5)N-到l的距离相等,则直线l的方程是( )A.460x y+-=B.460x y+-=C.3270x y+-=或460x y+-=D.2370x y+-=或460x y+-= 12.已知点A在直线210x y+-=上,点B在直线230x y++=上,线段AB的中点为00(,)P x y,且满足002y x>+,则0yx的取值范围为()A.11(,)25--B.1(,]5-∞-C.11(,]25--D.1(,0)2-二、填空题13.若三点共线则的值为________.14.设直线l的倾斜角是直线31y x=-+的倾斜角的12,且与y轴的交点到x 轴的距离是3,则直线l的方程是____________.15.在平面直角坐标系xOy中,设定点A(a,a),P是函数y=1x(x>0)图象上一动点.若点P ,A 之间的最短距离为22,则满足条件的实数a 的所有值为________.16.过点()16,作直线l ,若直线l 经过点()(),0,0,a b ,且,a N b N **∈∈,则可作直线l 的条数为__________.三、解答题17.已知直线1:60l x my ++=,2:(2)320l m x y m -++=. (1)若12l l ⊥,求m 的值; (2)若12l l //,求m 的值.18.过点(1,2)M 的直线l ,(1)当l 在两个坐标轴上的截距的绝对值相等时,求直线l 的方程; (2)若l 与坐标轴交于A 、B 两点,原点O 到l 的距离为1时,求直线l 的方程以及AOB ∆的面积.19.如图,已知三角形的顶点为A (2,4),B (0,-2),C (-2,3),求: (1)直线AB 的方程;(2)AB 边上的高所在直线的方程; (3)AB 的中位线所在的直线方程.20.已知一组动直线方程为()()11530k x k y k ++---=.(1) 求证:直线恒过定点,并求出定点P 的坐标;(2) 若直线与x 轴正半轴,y 轴正半分别交于点,A B 两点,求AOB ∆面积的最小值.21.在ABC ∆中,BC 边上的高所在直线的方程为210x y -+=,A ∠的平分线所在直线方程为0y =,若点B 的坐标为(1,2). (1)求点A 和点C 的坐标;(2)求AC 边上的高所在的直线l 的方程.22.已知直线l 经过点(6,4)P ,斜率为k(Ⅰ)若l 的纵截距是横截距的两倍,求直线l 的方程;(Ⅱ)若1k =-,一条光线从点(6,0)M 出发,遇到直线l 反射,反射光线遇到y 轴再次反射回点M ,求光线所经过的路程。
高一数学第三章直线与方程测试题及答案解析
第三章 直线与方程A 组一、选择题1.若直线x =1的倾斜角为 α;则 α( ). A .等于0B .等于πC .等于2π D .不存在2.图中的直线l 1;l 2;l 3的斜率分别为k 1;k 2;k 3;则( ). A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 23.已知直线l 1经过两点(-1;-2)、(-1;4);直线l 2经过两点(2;1)、(x ;6);且l 1∥l 2;则x =( ).A .2B .-2C .4D .14.已知直线l 与过点M (-3;2);N (2;-3)的直线垂直;则直线l 的倾斜角是( ).A .3π B .32π C .4π D .43π 5.如果AC <0;且BC <0;那么直线Ax +By +C =0不通过( ). A .第一象限B .第二象限C .第三象限D .第四象限6.设A ;B 是x 轴上的两点;点P 的横坐标为2;且|P A |=|PB |;若直线P A 的方程为x -y +1=0;则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=07.过两直线l 1:x -3y +4=0和l 2:2x +y +5=0的交点和原点的直线方程为( ). A .19x -9y =0B .9x +19y =0C .19x -3y = 0D .3x +19y =08.直线l 1:x +a 2y +6=0和直线l 2 : (a -2)x +3ay +2a =0没有公共点;则a 的值 是( ).(第2题)A .3B .-3C .1D .-19.将直线l 沿y 轴的负方向平移a (a >0)个单位;再沿x 轴正方向平移a +1个单位得直线l';此时直线l' 与l 重合;则直线l' 的斜率为( ).A .1+a a B .1+-a aC .aa 1+ D .aa 1+-10.点(4;0)关于直线5x +4y +21=0的对称点是( ). A .(-6;8) B .(-8;-6)C .(6;8)D .(-6;-8)二、填空题11.已知直线l 1的倾斜角 1=15°;直线l 1与l 2的交点为A ;把直线l 2绕着点A 按逆时针方向旋转到和直线l 1重合时所转的最小正角为60°;则直线l 2的斜率k 2的值为 .12.若三点A (-2;3);B (3;-2);C (21;m )共线;则m 的值为 . 13.已知长方形ABCD 的三个顶点的坐标分别为A (0;1);B (1;0);C (3;2);求第四个顶点D 的坐标为 .14.求直线3x +ay =1的斜率 .15.已知点A (-2;1);B (1;-2);直线y =2上一点P ;使|AP |=|BP |;则P 点坐标为 .16.与直线2x +3y +5=0平行;且在两坐标轴上截距的和为6的直线方程是 .17.若一束光线沿着直线x -2y +5=0射到x 轴上一点;经x 轴反射后其反射线所在直线的方程是 .三、解答题18.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6(m ∈R ;m ≠-1);根据下列条件分别求m 的值:①l 在x 轴上的截距是-3;②斜率为1.19.已知△ABC 的三顶点是A (-1;-1);B (3;1);C (1;6).直线l 平行于AB ;交AC ;BC 分别于E ;F ;△CEF 的面积是△CAB 面积的41.求直线l 的方程.20.一直线被两直线l 1:4x +y +6=0;l 2:3x -5y -6=0截得的线段的中点恰好是坐标原点;求该直线方程..21.直线l 过点(1;2)和第一、二、四象限;若直线l 的横截距与纵截距之和为6;求直线l 的方程.第三章 直线与方程(第19题)参考答案A 组 一、选择题 1.C解析:直线x =1垂直于x 轴;其倾斜角为90°. 2.D解析:直线l 1的倾斜角 α1是钝角;故k 1<0;直线l 2与l 3的倾斜角 α2;α3 均为锐角且α2>α3;所以k 2>k 3>0;因此k 2>k 3>k 1;故应选D .3.A解析:因为直线l 1经过两点(-1;-2)、(-1;4);所以直线l 1的倾斜角为2π;而l 1∥l 2;所以;直线l 2的倾斜角也为2π;又直线l 2经过两点(2;1)、(x ;6);所以;x =2. 4.C解析:因为直线MN 的斜率为1-=2-3-3+2;而已知直线l 与直线MN 垂直;所以直线l 的斜率为1;故直线l 的倾斜角是4π. 5.C解析:直线Ax +By +C =0的斜率k =B A-<0;在y 轴上的截距BC D =->0;所以;直线不通过第三象限.6.A解析:由已知得点A (-1;0);P (2;3);B (5;0);可得直线PB 的方程是x +y -5=0. 7.D 8.D 9.B解析: 结合图形;若直线l 先沿y 轴的负方向平移;再沿x 轴正方向平移后;所得直线与l 重合;这说明直线 l 和l ’ 的斜率均为负;倾斜角是钝角.设l ’ 的倾斜角为 θ;则tan θ=1+-a a. 10.D解析:这是考察两点关于直线的对称点问题.直线5x +4y +21=0是点A (4;0)与所求点A'(x ;y )连线的中垂线;列出关于x ;y 的两个方程求解.二、填空题 11.-1.解析:设直线l 2的倾斜角为 α2;则由题意知: 180°-α2+15°=60°;α2=135°;∴k 2=tan α2=tan (180°-45°)=-tan45°=-1. 12.21. 解:∵A ;B ;C 三点共线; ∴k AB =k AC ;2+213-=2+33-2-m .解得m =21. 13.(2;3).解析:设第四个顶点D 的坐标为(x ;y ); ∵AD ⊥CD ;AD ∥BC ; ∴k AD ·k CD =-1;且k AD =k BC . ∴0-1-x y ·3-2-x y =-1;0-1-x y =1. 解得⎩⎨⎧1=0=y x (舍去)⎩⎨⎧3=2=y x所以;第四个顶点D 的坐标为(2;3). 14.-a3或不存在. 解析:若a =0时;倾角90°;无斜率. 若a ≠0时;y =-a 3x +a 1 ∴直线的斜率为-a3. 15.P (2;2).解析:设所求点P (x ;2);依题意:22)12()2(-++x =22)22()1(++-x ;解得x =2;故所求P 点的坐标为(2;2).16.10x +15y -36=0.(第11题)解析:设所求的直线的方程为2x +3y +c =0;横截距为-2c ;纵截距为-3c;进而得 c = -536. 17.x +2y +5=0.解析:反射线所在直线与入射线所在的直线关于x 轴对称;故将直线方程中的y 换成 -y .三、解答题 18.①m =-35;②m =34. 解析:①由题意;得32622---m m m =-3;且m 2-2m -3≠0. 解得 m =-35. ②由题意;得123222-+--m m m m =-1;且2m 2+m -1≠0. 解得 m =34. 19.x -2y +5=0.解析:由已知;直线AB 的斜率 k =1311++=21. 因为EF ∥AB ;所以直线EF 的斜率为21. 因为△CEF 的面积是△CAB 面积的41;所以E 是CA 的中点.点E 的坐标是(0;25). 直线EF 的方程是 y -25=21x ;即x -2y +5=0. 20.x +6y =0.解析:设所求直线与l 1;l 2的交点分别是A ;B ;设A (x 0;y 0);则B 点坐标为 (-x 0;-y 0).因为A ;B 分别在l 1;l 2上;所以⎪⎩⎪⎨⎧0=6-5+3-0=6++40000y x y x①+②得:x 0+6y 0=0;即点A 在直线x +6y =0上;又直线x +6y =0过原点;所以直线l 的方程为x +6y =0.21.2x +y -4=0和x +y -3=0.①②解析:设直线l 的横截距为a ;由题意可得纵截距为6-a .∴直线l 的方程为1=-6+aya x .∵点(1;2)在直线l 上;∴1=-62+1a a ;a 2-5a +6=0;解得a 1=2;a 2=3.当a =2时;直线的方程为142=+y x ;直线经过第一、二、四象限.当a =3时;直线的方程为133=+yx ;直线经过第一、二、四象限.综上所述;所求直线方程为2x +y -4=0和x +y -3=0.。
2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析
2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。
(完整版)直线与方程测试题(含答案)
第三章 直线与方程测试题一.选择题(每小题5分,共12小题,共60分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y =33x +4 C . y =33x -4 D. y =33x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -93. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 54. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。
A.2 B. 3 C. -3 D. -25.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关*6.到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=07直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞⋃-∞-,22, C.[)(]2,00,2⋃- D.()+∞∞-,*8.若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是( )A .-23B .23C .-32D .329.两平行线3x -2y -1=0,6x +ay +c =0之间的距离为213 13 ,则c +2a的值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0**11.点P 到点A ′(1,0)和直线x =-1的距离相等,且P 到直线y =x 的距离等于 22,这样的点P 共有 ( )A .1个B .2个C .3个D .4个 *12.若y =a |x |的图象与直线y =x +a (a >0) 有两个不同交点,则a 的取值范围是 ( ) A .0<a <1 B .a >1 C .a >0且a ≠1 D .a =1二.填空题(每小题5分,共4小题,共20分)13. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 或 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章《直线与方程》测试卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若直线x =2 016的倾斜角为α,则α( ) A .等于0° B .等于180° C .等于90° D .不存在答案 C2.经过点M (-2,m 2)、N (m,4)的直线的斜率等于2,则m 的值为( ) A .0 B .0或-2 C .-2 D .0或2 答案 A解析 由题意得4-m 2m +2=2.化简得m 2+2m =0,解得m =0或m =-2.检验:当m =0时,符合题意;当m =-2时,直线的斜率不存在,不符合题意,舍去. 3.已知直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( ) A .m =-3,n =-2 B .m =3,n =2 C .m =3,n =-2 D .m =-3,n =2 答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0,变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan 120°=-3,又由l 在y 轴上的截距是-1,则其方程为y =-3x -1;又由其一般式方程为mx +n 2y -1=0,分析可得:m =-3,n =-2.故选A.4.经过两直线x +3y -10=0和3x -y =0的交点,且和原点相距为1的直线的条数为( ) A .0 B .1 C .2 D .3答案 C解析 设所求直线l 的方程为x +3y -10+λ(3x -y )=0,即(1+3λ)x +(3-λ)y -10=0,∵原点到直线的距离d =|-10|(1+3λ)2+(3-λ)2=1,∴λ=±3,即直线方程为x =1或4x -3y +5=0.5.若直线l 经过点A (1,2),在y 轴上的截距的取值范围是(-2,3),则其斜率的取值范围是( ) A .(-1,14)B .(-1,12)∪(1,+∞)C .(-∞,-1)∪(4,+∞)D .(-1,4) 答案 D解析 设直线方程为y -2=k (x -1), 令x =0,可得y =2-k ,∵直线l 在y 轴上的截距的取值范围是(-2,3), ∴-2<2-k <3,∴-1<k <4.故选D.6.已知两条平行直线l 1:3x +4y +5=0,l 2:6x +by +c =0间的距离为3,则b +c 等于( ) A .-12 B .48 C .36 D .-12或48 答案 D解析 将l 1:3x +4y +5=0改写为6x +8y +10=0, 因为两条直线平行,所以b =8, 由|10-c |62+82=3, 解得c =-20或c =40, 所以b +c =-12或48,故选D.7.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0 D .x -y +1=0答案 D解析 由已知得直线l 是线段AB 的垂直平分线,所以直线l 的斜率为1,且过AB 中点(52,72),由点斜式得方程为y -72=x -52,化简得x -y +1=0.8.如图所示,直线l 1:ax -y +b =0与直线l 2:bx +y -a =0(ab ≠0)的图象应该是( )答案 B解析 ∵ab ≠0,∴可把l 1与l 2的方程都化成斜截式, 得l 1:y =ax +b ,l 2:y =-bx +a , ∴l 1的斜率等于l 2在y 轴上的截距.∵C 中l 1的斜率小于0,l 2在y 轴上的截距大于0;D 中l 1的斜率大于0,l 2在y 轴上的截距小于0,∴可排除C 、D 两选项.又∵l 1在y 轴上的截距等于l 2的斜率的相反数,∴可排除A.9.已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,则m 的值为( ) A .2 B .-3 C .-3或2 D .-2或-3答案 C解析 方法一 当m =0时,l 1与l 2不平行; 当m ≠0时,若l 1∥l 2,只需2m =m +13≠4-2,即m 2+m -6=0,解得m =-3或2. 方法二 若l 1∥l 2,2×3-m (m +1)=0, 解得m =-3或2.当m =-3或2时,A 1C 2-A 2C 1=2×(-2)-m ·4=-4-4m ≠0,∴m =-3或2.10.点P (-2,-1)到直线l :(1+3λ)x +(1+2λ)y =2+5λ的距离为d ,则d 的取值范围是( ) A .0≤d <13 B .d ≥0 C .d >13 D .d ≥13答案 A解析 直线l :(1+3λ)x +(1+2λ)y =2+5λ可化为 (x +y -2)+λ(3x +2y -5)=0,∴⎩⎪⎨⎪⎧ x +y -2=0,3x +2y -5=0,∴⎩⎪⎨⎪⎧x =1,y =1.∴直线l 恒过定点A (1,1)(不包括直线3x +2y -5=0), ∴|P A |=(-2-1)2+(-1-1)2=13.∵当P A 与直线3x +2y -5=0垂直时,点P (-2,-1)到直线的距离为13, ∴点P (-2,-1)到直线l :(1+3λ)x +(1+2λ)y =2+5λ的距离为0≤d <13,故选A. 11.已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是( ) A .[12,+∞)B .(-∞,-2]C .(-∞,-2]∪[12,+∞)D .[-2,12]答案 D解析 ∵直线l :y =k (x -2)+1过点P (2,1),连接P 与线段AB 上的点A (1,3)时直线l 的斜率最小,为k P A =1-32-1=-2, 连接P 与线段AB 上的点B (-2,-1)时直线l 的斜率最大,为k PB =-1-1-2-2=12, ∴k 的取值范围是[-2,12].故选D.12.已知△ABC 的三个顶点分别是A (0,3),B (3,3),C (2,0),若直线l :x =a 将△ABC 分割成面积相等的两部分,则a 的值是( ) A. 3 B .1+22C .1+33D. 2答案 A解析 只有当直线x =a 与线段AC 相交时,x =a 才可将△ABC 分成面积相等的两部分.S △ABC =12×3×3=92,设x =a 与AB ,AC 分别相交于D ,E ,则S △ADE =12×a ×32a =12×92,解得a =3(负值舍去).二、填空题(本大题共4小题,每小题5分,共20分)13.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为(12,32),显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k (x -12),化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.14.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 答案 -23解析 设P (x,1),则Q (2-x ,-3),将Q 坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1), ∴k l =-23.15.点M 到x 轴和到点N (-4,2)的距离都等于10,则点M 的坐标为______________. 答案 (2,10)或(-10,10)解析 设M (x ,y ),则|y |=(x +4)2+(y -2)2=10.解得⎩⎪⎨⎪⎧ x =2,y =10或⎩⎪⎨⎪⎧x =-10,y =10.16.已知点A (1,-1),点B (3,5),点P 是直线y =x 上的动点,当|P A |+|PB |的值最小时,点P 的坐标是________. 答案 (2,2)解析 易知当点P 为直线AB 与直线y =x 的交点时,|P A |+|PB |的值最小,直线AB 的方程为y -5=5-(-1)3-1(x -3),即3x -y -4=0.解方程组⎩⎪⎨⎪⎧ 3x -y -4=0y =x ,得⎩⎪⎨⎪⎧x =2,y =2.所以当|P A |+|PB |的值最小时,点P 的坐标为(2,2). 三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程.解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°.若直线l 绕点M 逆时针方向旋转30°,则直线l ′的倾斜角为60°+30°=90°,此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 解 由题意,可设直线l 2的方程为y =k (x -a ),即kx -y -ak =0, ∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,① 又∵直线l 1的方程为y =-k (x -a ),且直线l 1过点P (-3,3),∴ak =3-3k .②由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.19.(12分)已知直线l 平行于直线x +y -4=0,且实数x ,y 满足直线l 的方程,又知(x -1)2+(y -1)2的最小值为2,求直线l 的方程. 解 依题意,设l 的方程为x +y +m =0(m ≠-4), 因为x ,y 满足该方程,所以y =-x -m .则(x -1)2+(y -1)2=(x -1)2+(-x -m -1)2=2x 2+2mx +2m +2+m 2=2(x +m 2)2+12m 2+2m +2,当x =-m 2时,上式取得最小值12m 2+2m +2,由题意知,12m 2+2m +2=2,解得m =0或m =-4(舍),所以直线l 的方程为x +y =0.20.(12分)已知△ABC 中,A 点坐标为(0,1),AB 边上的高线方程为x -2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.解 由已知易得直线AB 的斜率为2,∵A 点坐标为(0,1),∴AB 边所在的直线方程为2x -y +1=0.联立⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0,解得⎩⎪⎨⎪⎧x =12,y =2,故直线AB 与AC 边上的中线的交点为B (12,2).设AC 边中点D (x 1,3-2x 1),C (4-2y 1,y 1),由中点坐标公式得⎩⎪⎨⎪⎧2x 1=4-2y 1,2(3-2x 1)=1+y 1,解得⎩⎪⎨⎪⎧x 1=1,y 1=1,∴C (2,1),∴BC 边所在的直线方程为2x +3y -7=0, AC 边所在的直线方程为y =1.21.(12分)光线从点A (2,3)射出,若镜面的位置在直线l :x +y +1=0上,反射光线经过B (1,1),求入射光线和反射光线所在直线的方程,并求光线从A 到B 所经过的路线长. 解 设点A 关于直线l 的对称点为A ′(x 0,y 0), ∵线段AA ′被l 垂直平分, ∴⎩⎪⎨⎪⎧x 0+22+y 0+32+1=0,y 0-3x 0-2=1,解得⎩⎪⎨⎪⎧x 0=-4,y 0=-3.∵点A ′(-4,-3),B (1,1)在反射光线所在直线上, ∴反射光线所在直线的方程为y +31+3=x +41+4,即4x -5y +1=0.解方程组⎩⎪⎨⎪⎧4x -5y +1=0,x +y +1=0得入射点的坐标为(-23,-13).由入射点及点A 的坐标得入射光线所在直线的方程为y +133+13=x +232+23,即5x -4y +2=0.光线从A 到B 所经过的路线长为 |A ′B |=(-4-1)2+(-3-1)2=41.22.(12分)已知直线l 1:2x -y +a =0(a >0),直线l 2:-4x +2y +1=0和直线l 3:x +y -1=0,且l 1与l 2的距离是7510.(1)求a 的值;(2)能否找到一点P ,使得P 点同时满足下列三个条件:①P 是第一象限的点;②P 点到l 1的距离是P 点到l 2的距离的12;③P 点到l 1的距离与P 点到l 3的距离之比是2∶ 5.若能,求出P 点坐标;若不能,说明理由. 解 (1)l 2可化为2x -y -12=0,∴l 1与l 2的距离为d =|a -(-12)|22+12=7510.∵a >0,∴a =3.(2)设点P (x 0,y 0)满足②,则P 点在与l 1、l 2平行的直线l ′:2x -y +c =0上且|c -3|5=12·|c +12|5,即c =132或c =116,∴有2x 0-y 0+132=0或2x 0-y 0+116=0.若点P 满足条件③,由点到直线的距离公式有:|2x 0-y 0+3|5=25·|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|, ∴x 0-2y 0+4=0或3x 0+2=0.∵P 点在第一象限,∴3x 0+2=0不满足题意. 联立方程⎩⎪⎨⎪⎧ 2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12.(舍去) 由⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎨⎧x 0=19,y 0=3718.∴P (19,3718)即为同时满足条件的点.。