高中数学人教B版必修3教学案:第二章 2.1 2.1.1 简单随机抽样 含解析

合集下载

高中数学2.1.1简单随机抽样教案(4)(新人教B版必修3)

高中数学2.1.1简单随机抽样教案(4)(新人教B版必修3)
2.1.1 简单随机抽样 教学目的:1、理解简单随机抽样的概念。 2、会用简单随机抽样(抽签法、随机数表法)从总体中抽取样本 。 教学重点:简单随机抽样的概念.抽签法、随机数表法。 教学难点:进行简单随机抽样时, “每次抽取一个个体时任一个体 a 被抽到的概率”与 “在整个抽样过程中个体 a 被抽到的概率”的不同。 教学过程 一、复习引入 ⑴在一次考试中,考生有 2 万名,为了得到这些考生的数学平均成绩,将他们的 成绩全部相加再除以考生总数,那将是十分麻烦的,怎样才能了解到这些考生的数学 平均成绩呢? ⑵现有某灯泡厂生产的灯泡 10000 只,怎样才能了解到这批灯泡的使用寿命呢? 要解决这两个问题,就需要掌握一些统计学知识.在初中阶段,我们学习过一些 统计学初步知识,了解了统计学的一些基本概念.学习了总体、个体、样本、样本的 容量、总体平均数、样本平均数的意义:在统计学里,我们把所要考察对象的全体叫 做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的 一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平 均数,样本中所有个体的平均数叫做样本平均数. 统计学的基本思想方法是用样本估计总体,即通过从总体中抽取一个样本,根据样本 的情况去估计总体的相应情况.因此,样本的抽去是否得当,对于研究总体来说就十 分关键.究竟怎样从总体中抽取样本?怎样抽取的样本更能充分地反映总体的情况? 本节课开始,我们就来学习几种常用的抽样方法 二、新课 1、简单随机抽样:设一个总体的个体数为 N.如果通过逐个抽取的方法从中抽取 n 个个体作为样本(n≤N) ,且每次抽取时各个个体被抽到的概率相等,就称这样的抽 样为简单随机抽样。 用简单随机抽样从含有 6 个个体的总体中抽取一个容量为 2 的样本.问: ①总体中的某一个体 a 在第一次抽取时被抽到的概率是多少? ②个体 a 在第 1 次未被抽到,而第 2 次被抽到的概率是多少? ③在整个抽样过程中,个体 a 被抽到的概率是多少? 分析:①总体中的某一个体 a 在第一次抽取时被抽到的概率是 P

人教B版《高中数学》必修三第二章《简单随机抽样》教学设计

人教B版《高中数学》必修三第二章《简单随机抽样》教学设计

人教B版《高中数学》必修三第二章《简单随机抽样》教学设计一、教学背景分析本节课是人教B版《高中数学》必修三第二章的第一课时-----简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时它强化对概率性质的理解,加深了对概率公式的运用.因此它起到了承上启下的作用,在教材中占有重要地位.二、学生学情分析本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时.本节课通过结合具体的实际问题情景,使学生认识到随机抽样的必要性和重要性,进而分析得到简单随机抽样的定义、常用实施方法.这些活动的实施就是想引导学生从现实生活或其它学科中提出具有一定价值的统计问题,初步形成运用统计的思想和方法(用数据说话)来思考问题和解决问题的习惯.。

从知识的应用价值来看,重视数学知识的应用和关注人文内涵是新教材的显著特点.丰富的生活实例为学生用数学的眼光看待生活,体验生活即数学的理念,体验用算法思想解决模式化问题的作用,有助于学生对统计思想和方法的掌握,增加学生的感性认识.。

三、教学目标与目标解析【知识与技能】1.理解随机抽样的必要性和重要性2.理解简单随机抽样的概念3.掌握抽签法、随机数表法的一般步骤【过程与方法】在解决统计问题的过程中,学会用简单随机抽样中的抽签法和随机数表法从总体中抽取样本【情感、态度与价值观】1.让学生感受数学就在我们身边,体验做数学游戏的过程和乐趣,从而激发学生学数学的兴趣2.通过安排学生游戏试验、分组讨论、提升学生合作交流、互助提高的团队意识四、教学重点、难点重点:简单随机抽样的定义,抽样方法,各种方法适用情况,及对比难点:简单随机抽样中的等可能性及简单随机抽样的特点,随机数表法应用。

2017-2018学年高中数学人教B版 必修3第2章 2-1-1 简单

2017-2018学年高中数学人教B版 必修3第2章 2-1-1 简单

2.1 随机抽样2.1.1 简单随机抽样1.理解并掌握简单随机抽样的定义、特点和适用范围.(重点)2.掌握两种简单随机抽样的步骤,并能用简单随机抽样方法抽取样本.(重点、难点))3.对样本随机性的理解.(难点[基础·初探]教材整理简单随机抽样阅读教材P49~P51,完成下列问题.1.基本概念1.判断(正确的打“√”,错误的打“×”)(1)简单随机抽样就是随便抽取样本.()(2)抽签时,先抽的比较幸运.()(3)3个人抓阄,每个人抓到的可能性都一样.()(4)使用随机数表时,开始的位置和方向可以任意选择.()【答案】(1)×(2)×(3)√(4)√2.采用简单随机抽样,从6个标有序号A,B,C,D,E,F的球中抽取1个球,则每个球被抽到的可能性是_______________________________.【解析】每个个体抽到的可能性是一样的.【答案】1 6[小组合作型](1)①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②B.③④C.①②③D.①②③④(2)下面的抽样方法是简单随机抽样的是________________.①从无数张高考试卷中抽取50张试卷作为样本;②从80台笔记本电脑中一次性抽取6台电脑进行质量检查;③一福彩彩民买30选7彩票时,从装有30个大小、形状都相同的乒乓球的盒子(不透明)中逐个无放回地摸出7个有标号的乒乓球,作为购买彩票的号码;④用抽签法从10件产品中选取3件进行质量检验.【精彩点拨】根据简单随机抽样的概念及特征去判断.【尝试解答】(1)由随机抽样的特征可知.(2)①中样本总体数目不确定,不是简单随机抽样;②中样本不是从总体中逐个抽取,不是简单随机抽样;③④符合简单随机抽样的特点,是简单随机抽样.【答案】(1)D(2)③④判断一个抽样是否是简单随机抽样,一定要看它是否满足简单随机抽样的特点,这是判断的唯一标准.(1)简单随机抽样的总体个数有限;(2)简单随机抽样的样本是从总体中逐个抽取;(3)简单随机抽样是一种不放回抽样;(4)简单随机抽样的每个个体入样机会均等.[再练一题]1.下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样操作过程中,从中任取一种玩具检验后再放回;(3)国家跳水队挑出最优秀的10名跳水队员,备战2016年里约热内卢奥运会;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签.【解】(1)不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取样本.(3)不是简单随机抽样,因为这10名跳水队员是挑选出来的最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.请选择合适的抽样方法,并写出抽样过程.【导学号:00732039】【精彩点拨】已知N=30,n=3,抽签法抽样时编号1,2,…,30,抽取3个编号,对应的汽车组成样本.【尝试解答】应使用抽签法,步骤如下:①将30辆汽车编号,号码是1,2,3, (30)②将1~30这30个编号写在大小、形状都相同的号签上;③将写好的号签放入一个不透明的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.1.一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.2.应用抽签法时应注意以下几点:(1)编号时,如果已有编号可不必重新编号;(2)号签要求大小、形状完全相同;(3)号签要均匀搅拌;(4)要逐一不放回的抽取.[再练一题]2.下列抽样试验中,用抽签法方便的是()A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【解析】A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.【答案】 B【精彩点拨】已知N=120,n=10,用随机数表法抽样时编号000,001,002,...,119,抽取10个编号(都是三位数),对应的机器组成样本.【尝试解答】第一步,先将120台机器编号,可以编为000,001, 002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数6,向右读;第三步,从选定的数6开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到040,047,054,077, 090,060,087,056,033,072.第四步,以上这10个号码040,047,054,077,090,060,087,056,033,072所对应的10台机器就是要抽取的对象.1.在利用随机数表法抽样的过程中应注意:(1)编号要求位数相同;(2)第一个数字的抽取是随机的;(3)读数的方向是任意的,且要事先定好.2.随机数表法的特点:优点:简单易行.它很好地解决了当总体中的个体数较多时用抽签法制签难的问题.缺点:当总体中的个体数很多,需要的样本容量也很大时,用随机数表法抽取样本容易重号.[再练一题]3.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )【解析】由随机数表法的随机抽样的过程可知,选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.【答案】 D[探究共研型]探究1 从20名学生吗?【提示】 不是.样本指的是抽取的20名学生的100米测试成绩,而不是这些学生.因为抽取的是考察对象的某一数值指标,而不是考察的对象.探究2 什么样的总体适合用简单随机抽样?【提示】 (1)总体中的个体性质相似,无明显层次;(2)总体中的个体数目较小,尤其是样本容量较小.探究3 现有甲、乙两位同学对同一个总体用简单随机抽样的方法抽样,那么他们抽取的样本一定一样吗?【提示】 这两位同学抽出来的样本不一定一样.因为对于一次简单随机抽样来说,抽出来的样本是确定的,而这两位同学分别抽取时,各个个体是否入样带有随机性,且个体间无固定间距.探究4n 次后得到号签上的号码对应的个体,这些个体组成样本,这种抽样方法是抽签法吗?【提示】不是.因为抽签法是逐个不放回抽取,目的是保证抽取的号签不会重复,而这里记录编号后又放回容器中,所以不是抽签法.探究5利用随机数表法抽样时,如何对各个个体编号?【提示】利用随机数表法抽样时,对各个个体编号要视总体中的个数情况而定,但必须保证所编号码的位数一致,不允许出现不同位数的号码.另外,对于两位数的编号,一般是将起始号编为00,而不是01,它的好处在于可使100个个体都可用两位数字号码表示,否则将会出现三位数字号码100,这样确定的起始号便于我们使用随机数表.探究6抽签法和随机数表法有什么异同点?【提示】相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体的个体数有限;(2)都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)在总体容量较小的情况下,抽签法比随机数表法简单;(2)抽签法适用于总体中的个体数相对较少的情况,而随机数表法更适用于总体中的个体数较多的情况,这样可以节约大量的人力和制作号签的成本.某单位积极支援西部开发,现从报名的20名志愿者中随机选取5名组成志愿小组到新疆工作,请用抽签法设计抽样方案.【精彩点拨】 1.明确简单随机抽样的特点,特别是不放回抽样与等可能抽样的特点.2.掌握抽签法的操作步骤.【尝试解答】①将20名志愿者编号,号码是01,02, (20)②将号码分别写在一张纸条上,揉成团,制成号签;③将得到的号签放入一个不透明的袋子中,并搅拌均匀;④从袋子中依次抽取5个号签,并记录上面的编号;⑤所得号码对应的5名志愿者就是志愿小组的成员.1.一个抽样试验能否用抽签法,关键看两点:一是制作号签是否方便,二是号签是否容易被搅拌均匀.一般地,当总体容量和样本容量都较少时可用抽签法.2.利用随机数表法抽取个体时,关键是先确定以表中的哪个数(哪行哪列)作为起点,以哪个方向作为读数的方向.需注意读数时结合编号特点进行读取,编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.[再练一题]4.某学校高二年级有500名学生,考试后为详细分析教学中存在的问题,计划抽取一个容量为20的样本,使用随机数表法进行抽取,要取三位数,写出你抽得的样本,并写出抽取过程.(起点在第几行、第几列,具体方法) 【解】第一步:给500名学生编号:001,002,003, (500)第二步:从随机数表的第13行第7列的1(任意选取的)开始向右连续读取数字,以3个数为一组,碰到右边线时向下错一行向左继续读取.在读取时,遇到大于500或重复前数时,将它舍弃,再继续向下取,所取得的样本号码是:146,241,123,208,267,276,290,336,199,449,220,234,443,337,080,108,328,175,217,00 8;第三步:以上这20个号码所对应的20名学生就是要抽取的对象.1.抽签法中确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回【解析】逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保代表性的关键,一次抽取与有放回抽取也不影响样本的代表性,制签也一样,故选B.【答案】 B2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是()A.总体是240名学生B.个体是每一个学生C.样本是40名学生D.样本容量是40【解析】在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是40名学生的身高,样本容量是40,因此选D.【答案】 D3.某班50名学生中有30名男生,20名女生,用简单随机抽样抽取1名学生参加某项活动,则抽到女生的可能性为()A.0.4 B.0.5C.0.6 D.2 3【解析】在简单随机抽样中每个个体被抽到的机会相等,故可能性为20 50=0.4.【答案】 A4.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是________.95 33 95 22 0018 74 72 00 1838 79 58 69 3281 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 3882 07 53 89 3596 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 3216 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 7080 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 4982 96 59 26 94 66 39 67 98 60【解析】所取的号码要在00~59之间且重复出现的号码仅取一次.【答案】18,00,38,58,32,26,25,395.从30个灯泡中抽取10个进行质量检测,试说明利用随机数表法抽取这个样本的步骤.【导学号:00732040】【解】第一步,将30个灯泡编号:00,01,02,03, (29)第二步,在随机数表中任取一个数作为开始,如从第9行第4列的1开始(见课本随机数表);第三步,从1开始向右读,每次读取两位,凡不在00~29中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到13,16,23,06,01,04,19,12,24,02.这10个编号,则这10个编号所对应的灯泡就是要抽取的对象.。

高中数学人教B版必修3教学案第二章 2.1 2.1.1 简单随机抽样

高中数学人教B版必修3教学案第二章 2.1 2.1.1 简单随机抽样

.简单随机抽样预习课本~,思考并完成以下问题()什么是简单随机抽样?简单随机抽样有什么特点?()什么是抽签法?在抽取样本时用抽签法有哪些优点和缺点?()什么是随机数表法?在抽取样本时用随机数表法有哪些优点和缺点?()用随机数表法抽取样本的步骤有什么?.统计的相关概念全体()总体:统计中所考察对象的某一数值指标的构成的集合全体叫做总体.()个体:总体中的叫做个体.每一个元素()样本:从总体中抽出的若干个个体组成的集合叫做样本.()样本容量:样本的个体的数目叫做样本容量.且被抽到的机会是()随机抽样:满足每一个个体都可能被抽到均等的抽样..简单随机抽样()定义:从元素个数为的总体中地抽取容量为的样本,如果每一次抽取时总体不放回中的各个个体有被抽到,这种抽样方法叫做简单随机抽样.相同的可能性()常用方法:抽签法、随机数表法.()抽签法的优缺点:①简单易行.优点:②时,费时、费力又不方便缺点:当总体的容量非常大;如果标号的纸片或小球搅拌得不均匀,可能导致抽样的不公平.()随机数表法(\\(随机数表,计算器或计算机产生的随机数)).在简单随机抽样中,某一个个体被抽到的可能性( ).与第几次抽样有关,第一次抽到的可能性最大.与第几次抽样有关,第一次抽到的可能性最小.与第几次抽样无关,每一次抽到的可能性相等.与第几次抽样无关,与样本容量也无关解析:选由简单随机抽样的定义知正确..为了了解全校名高一学生的身高情况,从中抽取名学生进行测量.下列说法正确的是( ).个体是每一个学生.总体是名学生.样本是名学生.样本容量是解析:选在这个问题中,总体是名学生的身高,个体是每个学生的身高,样本是被抽取的名学生的身高,样本容量是.因此选..下列抽样试验中,适合用抽签法的有( ).从某厂生产的件产品中抽取件进行质量检验.从某厂生产的两箱(每箱件)产品中抽取件进行质量检验.从甲、乙两厂生产的两箱(每箱件)产品中抽取件进行质量检验.从某厂生产的件产品中抽取件进行质量检验解析:选、中总体的个数较大,不适于用抽签法;中甲,乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均匀了,故选..用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为.答案:④①③②⑤[典例].从平面直角坐标系中抽取个点作为样本.可口可乐公司从仓库中的瓶可乐中一次性抽取瓶进行质量检查.某连队从名战士中,挑选出名最优秀的战士去参加抢险救灾活动.从个手机中不放回地随机抽取个进行质量检验(假设个手机已编好号,对编号随机抽取)[解析]中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;。

人教版高中数学必修3 第二章211简单随机抽样教学设计

人教版高中数学必修3 第二章211简单随机抽样教学设计
教学目标
1.知识与技能:理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.过程与方法:学会利用简单随机抽样的方法从总体中抽取样本,进而解决现实生活中的统计问题。
3.情感态度与价值观:通过对现实生活问题的提出,体会数学知识与现实生活之间的联系,感受数学的重要性。
教学重点
正确理解简单随机抽样概念及运用简单随机抽样方法从总体中抽取样本
学生总结
加深知识印象
6.课后作业
P51.练习A2 P52.练习B2
认真完成作业
巩固练习
7.板书设计
2.1.1简单随机抽样
定义:抽样方法:1.抽签法课
特点:2.随机数表法
2.随机数表法:利用随机数生成器生成一张随机数表如下:
48 62 85 00 89 38 85 56 98 82 27 76 17 39 03 69 27 49 87 20 41 57 17 94 13 53 66 60 89 12 48 39 53 26 16 34 90 56 36 40 57 93 17 23 28 49 19 51 76 99 00 62 07 96 13 29 90 19 23 64 38 65 96 45 26
定义:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样。这样抽取的样本,叫做简单随机样本。
简单随机抽样的实施方法:
1.抽签法:用小字条把每个同学的学号写下来放到盒子里,均匀搅拌,然后随机从中逐个抽出5个学号,被抽到学号的同学即为取可乐人抽签法一般步骤:(1)编号(2)制签(3)搅匀(4)抽签(5)取出个体
教学设计
教学题目
必修三第二章2.1.1简单随机抽样

人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案

人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案

2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.。

人教B版高中数学必修三新课标教案简单随机抽样

人教B版高中数学必修三新课标教案简单随机抽样

凡事豫(预)则立,不豫(预)则废。

2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本教学过程:1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体. 把总体中个体的总数叫做总体容量. 为了研究总体的有关性质,一般从总体中随机抽取一部分:, , , 研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

课堂练习:第52页,练习A,练习B小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本课后作业:第58页,习题2-1A 第1、2、3题,。

高中数学2_1_1简单随机抽样教案新人教B版必修3

高中数学2_1_1简单随机抽样教案新人教B版必修3

高中数学 2.1.1 简单随机抽样教案新人教B版必修3教学分析本小节的序言中通过具体的例子给学生介绍了样本、随机抽样的概念,并说明了抽样方法在统计学中所占的重要地位.实施简单随机抽样,主要有两种方法:抽签法和随机数表法.抽签法比较简单,学生比较熟练,重点讲解有关随机数表法的某些问题.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数表法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题.2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数表法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数表法抽取样本.教学难点:抽签法和随机数表法的实施步骤.课时安排1课时导入新课思路1.古往今来,人们把月饼当作吉祥、团圆的象征.每逢中秋佳节,阖家团聚,吃月饼赏明月是中华民族的传统文化.目前我国月饼产品总体质量状况较好,产品质量稳步提高,特别是占据月饼主流市场的均为大中型企业和名牌企业,其产品质量很好.你知道怎样抽查其产品质量吗?教师点出课题.思路2.抽样的方法很多,每个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.下面我们学习简单随机抽样,教师点出课题.推进新课1.某灯管厂生产了一批灯管,现在要了解这批灯管的寿命(使用时间),能使用普查吗?2.什么样的调查不适用普查?那么这时采用什么调查方式?3.抽样调查与普查相比具有什么样的优点?讨论结果:1.由于调查灯管的使用寿命具有破坏性,即调查后的灯管不能再使用了,因此不能使用普查.2.调查具有破坏性或调查的对象太多时不适用普查,这时使用抽样调查.通常情况下,从调查对象中按一定的方法抽取一部分进行调查或观测,获取数据,并以此对调查对象的某项指标作出推断,这种调查方式称为抽样调查.其中,调查对象的全体称为总体,被抽取的一部分称为样本.3.最突出的有两点:一是迅速、及时;二是节约人力、物力和财力.1.在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意:在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?2.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?3.请总结简单随机抽样的定义.4.生产实践中,往往是从一大批袋装牛奶中抽样,也就是说总体中的个体数是很大的.你能从这个例子出发说明一下抽样的必要性吗?讨论结果:1.预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.2.要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地抽取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.3.一般的,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.常用的简单随机抽样方法有抽签法和随机数表法.4.如果普查,那么费时费力,等检查完了,牛奶的保质期可能就到了,况且检查牛奶具有破坏性,每袋牛奶检查时必须拆开,这样检查就会得不偿失,没有什么意义了.1.抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义,总结抽签法的步骤.2.你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?3.随机数表法是利用随机数表进行抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.(1)先将800袋牛奶编号,可以编为000,001, (799)(2)在随机数表中任选一个数.例如,从下面随机数表中选出第3行第7列的数7.16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28(3)从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.4.当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?5.请归纳随机数表法的优点和缺点.讨论结果:1.一般的,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:(1)将总体中所有个体从1~N编号.(2)将所有编号1~N写在形状、大小相同的号签上.(3)将号签放在一个不透明的容器中,搅拌均匀.(4)从容器中每次抽取一个号签,并记录其编号,连续抽取n次.(5)从总体中将与抽取到的签的编号相一致的个体取出.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便,这时用随机数表法.3.随机数表法的步骤:(1)将总体中个体编号.(2)在随机数表中任选一个数作为开始.(3)规定从选定的数读取数字的方向.(4)开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止.(5)根据选定的号码抽取样本.4.从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.5.综上所述,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.思路11要从某厂生产的30台机器中随机抽取3台进行测试.请选择合适的抽样方法,写出抽样过程.分析:本题总体容量较小,样本容量也较小,可用抽签法.解:(1)将30台机器编号,号码是01,02, (30)(2)将号码分别写在一张纸条上,揉成团,制成号签.(3)将得到的号签放入一个不透明的袋子中,并充分搅匀.(4)从袋子中依次抽取3个号签,并记录上面的编号.(5)所得号码对应的3台机器就是要抽取的对象.点评:一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否容例2要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行试验.用随机数表法抽取样本,写出抽样过程.解:(1)对850颗种子进行编号,可编为001,002, (850)(2)给出的随机数表中是5个数一组,使用各个5位数组的前3位,从各组数中任选一个前3位小于或等于850的数作为起始号码.例如从教材“表21随机数表”的第1行第7组数开始,取出530作为抽取的50颗种子中的第1个的代号.(3)继续向右读,由于987大于850,跳过这组数不取,继续向右读,得到415作为第2个的代号.数组的前3位数不大于850且不与前面取出的数重复,就把它取出,否则就跳过不取,取到一行末尾时转到下一行从左到右继续读数.如此下去直到得出在001~850之间的50个三位数.点评:上面我们是从左到右读数,也可以用从上到下读数或其他有规则的读数方法.目前,计算器和许多计算机数学软件都能很方便地生成随机数序列,大家可使用它们抽思路2例1某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):(1)将100件轴编号为1,2, (100)(2)做好大小、形状相同的号签,分别写上这100个号码.(3)将这些号签放在一个不透明的容器内,搅拌均匀.(4)逐个抽取10个号签.(5)然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):(1)将100件轴编号为00,01, (99)(2)在随机数表(教材附录随机数表)中选定一个起始位置,如取第22行第1个数1开始.(3)规定读数的方向,如向右读.(4)依次选取10个为16,63,97,14,96,82,98,66,68,59,则这10个号相对应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.例2人们打桥牌时,从洗好的扑克牌中随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每1.为了了解全校2 000名学生的体重情况,从中抽取280名学生进行测量,下列说法正确的是( )A.总体是2 000 B.个体是每一个学生C.样本是280名学生 D.样本容量是280解析:总体是2 000名学生的体重,所以A不正确;个体是每一个学生的体重,所以B 不正确;样本是280名学生的体重,所以C不正确;很明显样本容量是280.答案:D2.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是________.解析:任意个体被抽到的可能性为20200=110.答案:1 103.为了准确调查我国某一时期的人口总量、人口分布、民族人口、城乡人口、受教育的程度、迁移流动、就业状况、人口住房等多方面情况,需要什么样的统计方法呢?解:要获得系统、全面、准确的信息,在对总体没有破坏性的前提下,如果想获得第一手的统计数据及资料,普查无疑是一个非常好的方法.要求全面、准确调查我国的人口状况,因此应当用普查的方法进行调查.4.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):(1)将这40件产品编号为1,2, (40)(2)做好大小、形状相同的号签,分别写上这40个号码.(3)将这些号签放在一个不透明的容器内,搅拌均匀.(4)连续抽取10个号签.(5)然后对这10个号签对应的产品检验.方法二(随机数表法):(1)将40件产品编号,可以编为00,01,02,…,38,39.(2)在教材随机数表中任选一个数作为开始,例如从第8行第5列的数1开始.(3)从选定的数1开始向右读.(4)依次选取10个为18,34,21,06,26,20,36,15,33,03,则这10个号相应的个体为所要抽取的样本.5.某工厂要检查一个批次(10万个)螺钉的质量,请你给检验员提供一些检验方法上的建议,并说明你的理由.解:由于这批螺钉数目很大,建议进行抽样调查.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:(1)将元件的编号调整为010,011,012,...,099,100, (600)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.(3)依次读取6个号码.(4)所读取6个号码相应的元件就是抽取的样本.方法二:(1)将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.(3)依次读取6个号码.(4)所读取6个号码相应的元件就是抽取的样本.1.简单随机抽样是一种最简单、最基本的抽样方法,抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数表法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为nN,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.课本本节练习B 1、2.本节教学设计以课程标准的要求为指导,重视引导学生参与到教学中,体现了学生的主体地位.同时,根据高考的要求,适当拓展了教材,做到了用教材,而不是教教材.统计小议我们在一生之中,不是很喜欢询问吗:这是什么东西?对我有什么用呢?我们现在也不妨来问一问,统计是什么东西,能帮助我们什么呢?统计可以说是数学的一支,用来研究数据现象的.我们在这里可能面对两个问题,第一个问题是这堆数据从哪里来的?就是说,这个现象是真的现象吗?怎样找出“数据”呢?第二个问题是这堆数据在说什么?它对我们的生活有什么特别意义呢?这些无疑都是统计的问题,研究数据也是为了解决这类问题,所以,我们学统计的时候,难免要同时照顾两方面的困难:一方面是本质问题,统计能告诉我们那是什么社会现象;另一方面是技巧问题,怎样才能把社会现象的本质弄清楚,整理好,使人明白.要解决这两个困难,于是建立了统计学,学习统计学的主要目标也在研究这两种困难.我们这篇文字的论点更在尝试,从这两个困难的解决过程中,了解统计的结构关系.或者可以说,统计的整个结构就是在考虑这两种困难的解答途径中建立的.也许在进一步提出观点时,我们不妨先指出高深的统计,虽然是从这种困难的研究中出发,但高等统计还有别的难题,例如作统计推论、下判断和预测的时候,我们还牵涉应用一些信仰,一些原则,甚至一些经济理论等问题,这里姑且不先说明,机会到了我们再提出来检讨和分辨清楚.我们回到最原始的开始,假如我们要明白一个社会现况,或者是社会存在着一种迫人的现象,一定得要了解它的含义,那么该怎么办呢?前者例如想知道目前社会的财富分配的情形如何?后者如世界连年干旱,粮食歉收的现象所惹起的饥荒情形.这些切身而重要的问题,应用统计技巧无疑是一个很好的途径.我们提出一个“统计测度”的观念.一方面希望用它来答复上面的两个困难,另一方面也可以用来作整个统计结构的支柱.因此,所谓“统计测度”,就是在面对着一堆原始累积的资料、数据、现象……我们要用一两个简单的统计量表达它的本质特性,这些统计量便是统计测度.统计学要做的事,便是把这些测度找出来,用它解释原来母体的现象的意义.不过,我们也得知道,这些测度也有它的极限,它并不能表达的多过它本身所含的统计意义,尤其得注意它的样本里面的代表性和随机性的困难条件.在近代人乱用、妄用、误用和滥用的方式下,统计测度大部分时间都是被人利用,来读出不真实的结果,这是应极为小心注意的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1 简单随机抽样预习课本P49~51,思考并完成以下问题(1)什么是简单随机抽样?简单随机抽样有什么特点?(2)什么是抽签法?在抽取样本时用抽签法有哪些优点和缺点?(3)什么是随机数表法?在抽取样本时用随机数表法有哪些优点和缺点?(4)用随机数表法抽取样本的步骤有什么?[新知初探]1.统计的相关概念(1)总体:统计中所考察对象的某一数值指标的全体构成的集合全体叫做总体.(2)个体:总体中的每一个元素叫做个体.(3)样本:从总体中抽出的若干个个体组成的集合叫做样本.(4)样本容量:样本的个体的数目叫做样本容量.(5)随机抽样:满足每一个个体都可能被抽到且被抽到的机会是均等的抽样.2.简单随机抽样(1)定义:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.(2)常用方法:抽签法、随机数表法.(3)抽签法的优缺点:①优点:简单易行.②缺点:当总体的容量非常大时,费时、费力又不方便;如果标号的纸片或小球搅拌得不均匀,可能导致抽样的不公平.(4)随机数表法⎩⎪⎨⎪⎧随机数表计算器或计算机产生的随机数 [小试身手]1.在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量也无关解析:选C由简单随机抽样的定义知C正确.2.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量.下列说法正确的是()A.总体是240名学生B.个体是每一个学生C.样本是40名学生D.样本容量是40解析:选D在这个问题中,总体是240名学生的身高,个体是每个学生的身高,样本是被抽取的40名学生的身高,样本容量是40.因此选D.3.下列抽样试验中,适合用抽签法的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验解析:选B A、D中总体的个数较大,不适于用抽签法;C中甲,乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均匀了,故选B.4.用抽签法进行抽样有以下几个步骤:①制签;②抽签;③将签摇匀;④编号;⑤将抽取的号码对应的个体取出,组成样本.这些步骤的正确顺序为________.答案:④①③②⑤简单随机抽样的概念[典例]A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1 000瓶可乐中一次性抽取20瓶进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)[解析]A中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.[答案]D简单随机抽样的判断策略判断一个抽样能否用简单随机抽样,关键是看它是否满足四个特点:①总体的个体数目有限;②从总体中逐个进行抽取;③是不放回抽样;④是等可能抽样.同时还要注意以下几点:①总体的个体性质相似,无明显的层次;②总体的个体数目较少,尤其是样本容量较小;③用简单随机抽样法抽出的样本带有随机性,个体间无固定的距离.[活学活用]下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量解析:选B A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.抽签法的应用[典例]者.现从符合报名条件的18名志愿者中,选取6人组成志愿小组,请用抽签法设计抽样方案.[解]第一步,将18名志愿者编号,号码为1,2,3, (18)第二步,将号码分别写在18张大小、形状都相同的纸条上,揉成团,制成号签.第三步,将制好的号签放入一个不透明的袋子中,并搅拌均匀.第四步,从袋子中依次抽取6个号签,并记录上面的编号.第五步,所得号码对应的志愿者就是志愿小组的成员.抽签法的5个步骤[活学活用]学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目.某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.解:第一步,将32名男生从0到31进行编号;第二步,用相同的纸条做成32个号签,在每个号签上写上这些编号;第三步,将写好的号签放在一个容器内摇匀,不放回地逐个从中抽出10个号签;第四步,相应编号的男生参加合唱;第五步,用相同的办法从28名女生中选出8名参加合唱.随机数表法的应用[典例]抽取60名学生进行身体素质测试,请设计抽样方法.[解](1)将800名同学进行编号,可以编为000,001,002,003, (799)(2)在教材的随机数表中任选一个数,例如选出第3行第4列数5.(3)从选定的数开始向右读(读数的方向也可以是向左、向上、向下等,每次读3个数),得到一个号码593,由于593<799,将它取出,继续向右读,得到907,由于907>799,将它去掉,继续向右读,得到379,242,203,722,…,依次下去,直到取出60个号码,取出这60个号码对应的学生,就得到一个容量为60的样本.随机数表法抽样的3个步骤(1)编号:这里的所谓编号,实际上是新编数字号码.(2)确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.[活学活用]现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数表法设计抽样方案?解:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数3.第三步,从数3开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到321,273,279,600,552,254.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.(答案不唯一)[层级一学业水平达标]1.为抽查汽车排放尾气的合格率,其环保局在一路口随机抽查,这种抽查是() A.简单随机抽样B.抽签法抽样C.随机数法抽样D.有放回抽样解析:选D这是有放回抽样,而不是简单随机抽样.故选D.2.某次考试有70 000名学生参加,为了了解这70 000名考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,下列说法正确的是()A.1 000名考生是总体的一个样本B.70 000名考生是总体C.样本容量是1 000D.以上说法都不对解析:选C由于考察的对象是考生的数学成绩,因此A、B错误,抽取的样本数为样本容量,因此C正确.故选C.3.已知下列抽取样本的方式:①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.其中,不是简单随机抽样的是________(填序号).解析:①不是简单随机抽样,因为被抽取的总体的个体数是无限的,而不是有限的;②不是简单随机抽样,因为它是放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.答案:①②③④4.某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性为20%,用随机数法在该中学抽取容量为n 的样本,则n 等于________.解析:由n 400+320+280=20%,解得n =200. 答案:200[层级二 应试能力达标]1.下列抽样方法是简单随机抽样的是( )A .从50个零件中一次性抽取5个做质量检验B .从50个零件中有放回地抽取5个做质量检验C .从实数集中随机抽取10个分析奇偶性D .运动员从8个跑道中随机选取一个跑道解析:选D A 不是,因为“一次性”抽取与“逐个”抽取含义不同;B 不是,因为是有放回抽样;C 不是,因为实数集是无限集.2.抽签法中确保样本代表性的关键是( )A .抽签B .搅拌均匀C .逐一抽取D .抽取不放回解析:选B 逐一抽取,抽取不放回是简单随机抽样的特点,但不是确保样本代表性的关键,一次抽取与有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,抽签也一样.3.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件检查,对100件产品采用下面的编号方法①1,2,3,…,100;②001,002,…,100;③00,01,02,…,99;④01,02,03,…,100. 其中正确的序号是( )A .②③④B .③④C .②③D .①②解析:选C 根据随机数表法的步骤可知,①④编号位数不统一,②③正确.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性和“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310解析:选A 简单随机抽样中每个个体被抽取的机会均等,都为110. 5.高一(1)班有60名学生,学号从01到60,数学老师在上统计课时,利用随机数表法选5名学生提问,老师首先选定从随机数表的倒数第5行(下表为随机数表的最后5行)第6列的“4”开始,向右读依次选学号提问,则被提问的5个学生的学号为________.33021447097926233116809077768969696484207771332822646799409595735845357470382890258533096376729876136553868978131577883464145715161171658309895015971756086374596858522783226215426341128126638236261855解析:依据选号规则,选取的5名学生的学号依次为:44,33,11,09,07,48.答案:44,33,11,09,07,486.某校有50个班,每班50人,现抽查250名同学进行摸底考试,则每位同学被抽到的可能性为________.解析:根据简单随机抽样的特征,总量为50×50=2 500人.∴每位同学被抽到的可能性为2502 500=110.答案:1 107.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2 000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥采用随机数法抽样时,每个运动员被抽到的机会相等.解析:①2 000名运动员不是总体,2 000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.答案:④⑤⑥8.上海某中学从40名学生中选1人作为上海男篮拉拉队的成员,采用下面两种选法:选法一将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;选法二将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为拉拉队成员.试问这两种选法是否都是抽签法?为什么?解:选法一满足抽签法的特征是抽签法,选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.9.某合资企业有150名职工,要从中随机抽出15人去参观学习.请用抽签法和随机数表法进行抽取,并写出过程.解:(抽签法)先把150名职工编号:1,2,3,…,150,把编号分别写在相同的小纸片上,揉成小球,放入一个不透明的袋子中,充分搅拌均匀后,从中逐个不放回地抽取15个小球,这样就抽出了去参观学习的15名职工.(随机数表法)第一步,先把150名职工编号:001,002,003, (150)第二步,从随机数表中任选一个数,如第10行第4列数0.第三步,从选定的数字开始向右读,每次读3个数字,组成一个三位数,把小于或等于150的三位数依次取出(凡不在001~150的数跳过不读,前面已读过也跳过去),直到取完15个号码,与这15个号码相应的职工去参观学习.。

相关文档
最新文档