光学基础学习报告

合集下载

光学基础技术实验报告

光学基础技术实验报告

一、实验目的1. 了解光学基本原理,掌握光学实验的基本方法。

2. 熟悉光学仪器和器件,提高实验操作技能。

3. 分析实验数据,培养科学思维和实验能力。

二、实验原理光学实验是研究光学现象和光学器件的基本方法。

本实验主要涉及以下光学基本原理:1. 光的直线传播:光在同一均匀介质中沿直线传播。

2. 光的反射与折射:光从一种介质射入另一种介质时,会发生反射和折射现象。

3. 光的干涉与衍射:当两束或多束相干光相遇时,会发生干涉和衍射现象。

4. 光的偏振:光波的电场振动方向和磁场振动方向垂直,称为光的偏振。

三、实验仪器与材料1. 光学仪器:激光器、分束器、透镜、狭缝、光栅、偏振片等。

2. 实验材料:干板、光栅、偏振片、滤光片等。

四、实验内容与步骤1. 光的直线传播实验(1)调整激光器,使其发出一束平行光。

(2)在激光器前方放置一个狭缝,观察光束通过狭缝后的传播情况。

(3)在狭缝后放置一个屏幕,观察光束在屏幕上的分布。

2. 光的反射与折射实验(1)调整激光器,使其发出一束光束。

(2)在光束前方放置一个透明介质(如水或玻璃),观察光束在介质中的传播情况。

(3)在透明介质前后分别放置两个屏幕,观察光束在介质中的反射和折射现象。

3. 光的干涉实验(1)调整激光器,使其发出一束光束。

(2)在光束前方放置一个分束器,将光束分成两束。

(3)调整两束光束的夹角,观察光束在屏幕上的干涉条纹。

4. 光的衍射实验(1)调整激光器,使其发出一束光束。

(2)在光束前方放置一个狭缝,观察光束通过狭缝后的衍射现象。

(3)调整狭缝宽度,观察衍射条纹的变化。

5. 光的偏振实验(1)调整激光器,使其发出一束光束。

(2)在光束前方放置一个偏振片,观察光束通过偏振片后的偏振现象。

(3)调整偏振片的角度,观察光束的透射和反射情况。

五、实验结果与分析1. 光的直线传播实验:观察到光束在狭缝后沿直线传播,并在屏幕上形成光斑。

2. 光的反射与折射实验:观察到光束在透明介质中发生反射和折射,光束在介质中的传播速度减慢。

工程光学基础实验报告

工程光学基础实验报告

一、实验目的1. 理解和掌握光学基本原理和实验方法;2. 学习使用光学仪器,观察光学现象;3. 分析光学实验数据,提高实验技能。

二、实验仪器与设备1. 光具座;2. 平面镜;3. 凸透镜;4. 薄透镜;5. 光屏;6. 光具箱;7. 刻度尺;8. 毫米尺;9. 精密水准仪;10. 光学显微镜;11. 光电传感器;12. 数据采集器。

三、实验原理1. 几何光学:利用光学仪器观察光的传播、反射、折射等现象,研究光与物质之间的相互作用。

2. 物理光学:研究光的波动性质,包括光的干涉、衍射、偏振等现象。

四、实验内容与步骤1. 观察平面镜成像现象:将平面镜放置在光具座上,调整光源和光屏,观察物体在平面镜中的成像。

2. 观察凸透镜成像现象:将凸透镜放置在光具座上,调整光源和光屏,观察物体在凸透镜中的成像。

3. 观察薄透镜成像现象:将薄透镜放置在光具座上,调整光源和光屏,观察物体在薄透镜中的成像。

4. 光的干涉现象:利用干涉仪观察光的干涉条纹,研究光的波长、相位等信息。

5. 光的衍射现象:利用衍射光栅观察光的衍射条纹,研究光的波长、衍射角等信息。

6. 光的偏振现象:利用偏振片观察光的偏振现象,研究光的偏振方向和强度。

7. 光电传感器实验:将光电传感器连接到数据采集器,观察光强度与光电传感器输出电压之间的关系。

五、实验数据与结果分析1. 观察平面镜成像现象:实验结果显示,物体在平面镜中的成像与物体本身位置关于平面镜对称。

2. 观察凸透镜成像现象:实验结果显示,物体在凸透镜中的成像为实像或虚像,成像位置与物体位置、透镜焦距有关。

3. 观察薄透镜成像现象:实验结果显示,物体在薄透镜中的成像为实像或虚像,成像位置与物体位置、透镜焦距有关。

4. 光的干涉现象:实验结果显示,干涉条纹间距与光的波长、干涉仪间距有关。

5. 光的衍射现象:实验结果显示,衍射条纹间距与光的波长、衍射光栅间距有关。

6. 光的偏振现象:实验结果显示,光的偏振方向与光的传播方向有关。

光学基础实验报告

光学基础实验报告

光学基础实验报告光学基础实验报告实验1:⾃组望远镜和显微镜⼀、实验⽬的1.了解透镜成像规律,掌握望远镜系统的成像原理。

2.根据⼏何光学原理、透镜成像规律和试验参数要求,设计望远镜的光路,提出光学元件的选⽤⽅案,并通过光路调整,达到望远镜的实验要求,从⽽掌握望远镜技术。

⼆、实验原理1.望远镜的结构和成像原理望远镜由物镜L1和⽬镜L2组成。

⽬镜将⽆穷远物体发出光会聚于像⽅焦平⾯成⼀倒⽴实像,实像同时位于⽬镜的物⽅焦平⾯内侧,经过⽬镜放⼤实像。

通过调节物镜和⽬镜相对位置,使中间实像落在⽬镜⽬镜物⽅焦⾯上。

另在⽬镜物焦⽅⾯附有叉丝或标尺分化格。

物像位置要求:⾸先调节⽬镜⾄能清晰看到叉丝,后调整⽬镜筒与物镜间距离即对被观察物调焦。

望远镜成像视⾓放⼤率要求:定义视⾓放⼤率M 为眼睛通过仪器观察物像对⼈眼张⾓ω’的正切与眼睛直接观察物体时物体对眼睛的张⾓ω的正切之⽐M=ωωtan 'tan 。

要求M>1。

2.望远镜主要有两种情况:⼀种是具有正光焦度⽬镜,即⽬镜2L 是会聚透镜的系统,称为开普勒望远镜;另⼀种是具有负光焦度⽬镜,即⽬镜2L 是发散透镜的系统,称为伽利略望远镜。

对于开普勒望远镜,有M=ωωtan 'tan =-''21f f公式中的负号表⽰开普勒望远镜成倒像。

若要使M 的绝对值⼤于1,应有1f >2f 。

对于伽利略望远镜,视⾓放⼤率为正值,成正像。

此外,由于光的衍射效应,制造望远镜时,还必须满⾜:M=d D式中D 为物镜的孔径,d 为⽬镜的孔径,否则视⾓虽放⼤,但不能分辨物体的细节。

三、思考题1.根据透镜成像规律,怎样⽤最简单⽅法区别凹透镜和凸透镜?答:(1)将这个透镜靠近被观察物,如果物的像被放⼤的,说明该透镜为凸透镜;(2)将这个透镜放在阳光下或灯光下适当移动,如果出现⼩光斑的,说明该透镜为凸透镜.2.望远镜和显微镜有哪些相同之处?从⽤途、结构、视⾓放⼤率以及调焦等⼏个⽅⾯⽐较它们的相异之处。

光学基础知识

光学基础知识

光学基础知识光学基础学习报告⼀、教学内容:光电镜头是⽤来作为光电接收器(CCD,CMOS )的光学传感器元件。

光学特性参数:1、焦距EFL (学名f '是指主⾯到相应焦点的距离(如图 1.1)f'Q Q'图1.1每个镜⽚都有前后两个主⾯-前主⾯和后主⾯(放⼤率为 1的共轭⾯)个焦点⼀前焦和后焦。

凸透镜:双凸;平凸;正弯⽉(如图 1.1)凹透镜:双凹;平凹;负弯⽉Q Q'双凹两主⾯Q,Q 在镜⽚内Q Q'双凸两主⾯Q,Q 在镜⽚内Q Q'Q Q'平凸正弯⽉两主⾯Q,Q '两主⾯Q,Q '⼀在镜⽚内在镜⽚外⼀与凸⾯切图1.2相应的也有两Q Q'负弯⽉两主⾯Q,Q ' 在镜⽚外两主⾯Q,Q ⼀在镜⽚内⼀与凹⾯切图1.3折射率实际反映的是光在物质中传播速度与真空中速度的⽐值关系。

—透镜光焦距;f ‘⼀焦距;n —折射率;R1,R2-两球⾯曲率半径d —中⼼厚度⼲涉仪与光距座可以量测f ',R1,R2,d T利⽤上述的公式可以计算出n值,从⽽来确定所⽤材料。

A、EFL增加,TOTR (光学总长)增加;要降低TOTR就必须降低EFL,但EFL降低,像⾼就要降低B、EFL与某些象差相关C、EFL上升将使F/NO增⼤D、EFL , FOV (视场⾓)和IMA (像⾼)三者间有关系IMA EFL tanFOl-铁三⾓关系EFL的增⼤(减⼩)会使像⾼变⼤(⼩),为了保持像⾼,就必须要增⼤(减⼩)FOV , 然⽽FOV的增⼤会使得REL (相对照度)的数值增⼤。

3、F 数(F/NO )f 'F / NO -DfFELD⼊⼀⼊瞳直径⼊瞳为光阑经其前⽅光学镜⽚所成的像,反映进⼊光学系统的光线A、与MTF相关,F/NO f,贝U MTF f;反之下降B、与景深相关,F/NO f,则景深f,反之下降C、与象差相关,F/NO f,则象差J,反之增加薄透镜:1(n 1)临)(1R2)]厚透镜:1(n 1)[(—)(R11R2)](n 1)2dn R|R2图2.1D 、与光通量相关,F/NO f,则光通量J,反之增加对于光电镜头,F/NO 最⼤在2.8?3.5之间(经验值)允许有⼟ 5%的误差,在物⽅有照明时,F 数可根据照明的照度情况来增⼤4、视场⾓FOV (2 3),半视场⾓FOC/2(3)物镜在其接收元件上成像的空间范围称为视场⾓。

光学基础实验实验报告

光学基础实验实验报告

基础光学实验一、实验仪器从基础光学轨道系统,红光激光器及光圈支架,光传感器与转动传感器,科学工作室500或750接口,datastudio软件系统二、实验简介利用传感器扫描激光衍射斑点,可标度各个衍射单缝之间光强与距离变化的具体规律。

同样可采集干涉双缝或多缝的光强分布规律。

与理论值相对比,并比较干涉和衍射模式的异同。

理论基础衍射:当光通过单缝后发生衍射,光强极小(暗点)的衍射图案由下式给出asinθ=m' λ(m'=1,2,3,....)(1)其中a是狭缝宽度,θ为衍射角度,λ是光的波长。

下图所以为激光实际衍射图案,光强与位置关系可由计算机采集得到。

衍射θ角是指从单缝中心到第一级小,则数。

m'为衍射分布级双缝干涉:当光通过两个狭缝发生干涉,从中央最大值(亮点)到单侧某极大的角度由下式给出:dsinθ=mλ(m=1,2,3,....)(2)其中d是狭缝间距,θ为从中心到第m级最大的夹角,λ是光的波长,m为级数(0为中心最高,1为第一级的最大,2为第二级的最大...从中心向外计数)。

如下图所示,为双缝干涉的各级光强包络与狭缝的具体关系。

三、实验预备1.将单缝盘安装到光圈支架上,单缝盘可在光圈支架上旋转,将光圈支架的螺丝拧紧,使单缝盘在使用过程中不能转动。

要选择所需的狭缝,秩序旋转光栅片中所需的狭缝到单缝盘中心即可。

2、将采集数据的光传感器与转动传感器安装在光学轨道的另一侧,并调整方向。

3、将激光器只对准狭缝,主义光栅盘侧靠近激光器大约几厘米的距离,打开激光器(切勿直视激光)。

调整光栅盘与激光器。

4、自左向右和向上向下的调节激光束的位置,直至光束的中心通过狭缝,一旦这个位置确定,请勿在实验过程中调整激光束。

5、初始光传感器增益开关为×10,根据光强适时调整。

并根据右图正确讲转动传感器及光传感器接入科学工作室500.6、打开datastudio软件,并设置文件名。

四、实验内容 a、单缝衍射1、旋转单缝光栅,使激光光束通过设置为0.16毫米的单缝。

光纤光学基础实验报告

光纤光学基础实验报告

一、实验目的1. 了解光纤的基本结构和特性。

2. 掌握光纤通信的基本原理。

3. 学习光纤连接和测试的基本方法。

4. 熟悉光纤通信系统中的关键器件。

二、实验原理光纤通信是一种利用光波在光纤中传输信息的技术。

其基本原理是利用光的全反射原理,将光信号从光纤的一端传输到另一端。

光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。

三、实验仪器与设备1. 光纤测试仪2. 光纤跳线3. 光纤耦合器4. 光源5. 光功率计6. 光纤连接器四、实验内容1. 光纤基本特性测试(1)光纤衰减测试:使用光纤测试仪测量光纤的衰减系数,并与理论值进行比较。

(2)光纤带宽测试:使用光纤测试仪测量光纤的带宽,分析其传输性能。

(3)光纤连接损耗测试:使用光纤跳线和连接器,连接两根光纤,测量连接损耗。

2. 光纤通信系统搭建(1)搭建光纤通信系统,包括发送端、接收端、光纤、光模块等。

(2)使用光源和光功率计测试系统性能,分析系统中的损耗和噪声。

3. 光纤通信系统测试(1)测试系统传输速率,分析其性能。

(2)测试系统误码率,分析其抗干扰能力。

(3)测试系统稳定性,分析其长期运行性能。

五、实验结果与分析1. 光纤基本特性测试结果(1)光纤衰减测试:实验测得光纤的衰减系数为0.18dB/km,与理论值0.2dB/km基本一致。

(2)光纤带宽测试:实验测得光纤的带宽为20GHz,满足系统传输需求。

(3)光纤连接损耗测试:实验测得连接损耗为0.5dB,符合预期。

2. 光纤通信系统搭建与测试结果(1)系统传输速率:实验测得系统传输速率为1.5Gbps,满足设计要求。

(2)系统误码率:实验测得系统误码率为10^-9,说明系统抗干扰能力强。

(3)系统稳定性:实验测得系统运行稳定,长期性能良好。

六、实验结论1. 光纤具有低损耗、宽带宽、抗干扰等优点,是现代通信系统中的重要传输介质。

2. 光纤通信系统性能良好,满足设计要求。

3. 通过实验,掌握了光纤基本特性测试、光纤通信系统搭建与测试方法。

光学系列实验报告(3篇)

光学系列实验报告(3篇)

第1篇一、实验目的1. 了解光学实验的基本原理和实验方法;2. 掌握光学仪器的基本操作和调整技巧;3. 通过实验验证光学理论,加深对光学知识的理解;4. 培养团队合作精神和实验技能。

二、实验内容及步骤1. 实验一:光的反射和折射(1)实验目的:验证光的反射和折射定律,了解光在介质中的传播规律。

(2)实验步骤:1)将实验装置(光具座、平面镜、透镜、光屏等)组装好;2)调节光具座,使光源、平面镜、透镜、光屏等光学元件共线;3)调整平面镜,使入射光线垂直于镜面;4)观察并记录反射光线的方向,验证反射定律;5)将透镜置于入射光线和光屏之间,调整透镜位置,观察折射光线的方向,验证折射定律;6)计算入射角、反射角、折射角,分析光在介质中的传播规律。

(3)实验结果与分析:1)实验结果显示,反射光线与入射光线、法线在同一平面内,且反射角等于入射角,验证了反射定律;2)实验结果显示,折射光线与入射光线、法线在同一平面内,且折射角与入射角之间存在正弦关系,验证了折射定律;3)通过实验结果,加深了对光在介质中传播规律的理解。

2. 实验二:薄膜干涉(1)实验目的:观察薄膜干涉现象,了解干涉原理和薄膜厚度与干涉条纹的关系。

(2)实验步骤:1)将实验装置(薄膜干涉仪、白光光源、光屏等)组装好;2)调整薄膜干涉仪,使白光光源垂直照射到薄膜上;3)观察光屏上的干涉条纹,记录条纹间距;4)改变薄膜的厚度,观察干涉条纹的变化,分析薄膜厚度与干涉条纹的关系。

(3)实验结果与分析:1)实验结果显示,光屏上出现明暗相间的干涉条纹,验证了干涉现象;2)通过改变薄膜的厚度,发现干涉条纹间距与薄膜厚度呈线性关系,符合干涉原理;3)通过实验结果,加深了对干涉原理和薄膜干涉现象的理解。

3. 实验三:衍射和光的衍射极限(1)实验目的:观察光的衍射现象,了解衍射原理和衍射极限。

(2)实验步骤:1)将实验装置(单缝衍射仪、光具座、光屏等)组装好;2)调整单缝衍射仪,使光源垂直照射到单缝上;3)观察光屏上的衍射条纹,记录条纹间距;4)改变单缝宽度,观察衍射条纹的变化,分析衍射极限。

物理光学基础实验报告

物理光学基础实验报告

物理光学基础实验报告物理光学基础实验报告引言:光学是研究光的传播、反射、折射、干涉、衍射和吸收等现象的学科,是物理学的重要分支之一。

在光学实验中,我们通过观察和测量光的性质和行为,来深入了解光的本质和规律。

本实验报告将介绍我们进行的一系列物理光学基础实验。

实验一:光的反射和折射在这个实验中,我们使用一束光线照射到一个平面镜上,观察光线的反射现象。

我们发现,光线遵循反射定律,即入射角等于反射角。

通过测量入射角和反射角的大小,我们验证了反射定律的准确性。

接下来,我们将光线照射到一个透明介质中,观察光线的折射现象。

我们发现,光线在从一种介质传播到另一种介质时,会发生折射。

通过测量入射角和折射角的大小,我们验证了折射定律,即折射角的正弦值与入射角的正弦值成正比。

实验二:光的干涉在这个实验中,我们使用一束单色光通过一个狭缝,形成一个光源。

然后,我们将这束光照射到一个干涉装置上,观察干涉现象。

我们发现,当两束光线相遇时,会出现干涉条纹。

通过观察和测量干涉条纹的间距和亮暗程度,我们可以推断出光的波动性和干涉的规律。

实验三:光的衍射在这个实验中,我们使用一束单色光通过一个狭缝,形成一个光源。

然后,我们将这束光照射到一个衍射装置上,观察衍射现象。

我们发现,当光通过狭缝时,会发生衍射,形成一系列衍射图样。

通过观察和测量衍射图样的形状和大小,我们可以推断出光的波动性和衍射的规律。

实验四:光的偏振在这个实验中,我们使用一束偏振光通过一个偏振片,观察光的偏振现象。

我们发现,偏振片可以选择性地通过振动方向与其平行的光线,而阻止垂直方向的光线通过。

通过旋转偏振片的角度,我们可以改变通过的光线的振动方向。

这个实验揭示了光的振动性和偏振的规律。

实验五:光的吸收在这个实验中,我们使用一束光线照射到一个吸收介质上,观察光的吸收现象。

我们发现,光线在通过吸收介质时,会被吸收部分能量,使光线的强度减弱。

通过测量光线的强度和吸收介质的特性,我们可以推断出光的吸收规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学基础学习报告
一、教学内容:
光电镜头是用来作为光电接收器(CCD,CMOS )的光学传感器元件。

光学特性参数:
1、 焦距EFL (学名f ’)
是指主面到相应焦点的距离(如图1.1)
图1.1
每个镜片都有前后两个主面-前主面和后主面(放大率为1的共轭面)。

相应的也有两个焦点-前焦和后焦。

凸透镜:双凸;平凸;正弯月(如图1.1)
图1.2
凹透镜:双凹;平凹;负弯月

1.3
折射率实际反映的是光在物质中传播速度与真空中速度的比值关系。

薄透镜:)]1()1[()1('12
1R R n f -⨯-==
Φ Φ—透镜光焦距;
f ’—焦距; n —折射率;
R 1,R 2-两球面曲率半径
厚透镜:2
1221)1()]1()1[()1('1R nR d
n R R n f -+
-⨯-==Φ d -中心厚度
干涉仪与光距座可以量测f ’,R1,R2,d →利用上述的公式可以计算出n 值,从而来确定所用材料。

A 、 EFL 增加,TOTR (光学总长)增加;要降低TOTR 就必须降低EFL ,但EFL 降低,
像高就要降低
B 、 EFL 与某些象差相关
C 、 EFL 上升将使F/NO 增大
D 、 EFL ,FOV (视场角)和IMA (像高)三者间有关系
tanFOV
⨯=EFL IMA -铁三角关系
EFL 的增大(减小)会使像高变大(小),为了保持像高,就必须要增大(减小)FOV ,然而FOV 的增大会使得REL (相对照度)的数值增大。

2、 BFL 后焦距(学名后截距)
图2.1
3、 F 数(F/NO )
D
f NO F '/=
f ’-FEL
D 入-入瞳直径
入瞳为光阑经其前方光学镜片所成的像,反映进入光学系统的光线 A 、 与MTF 相关,F/NO ↑,则MTF ↑;反之下降 B 、 与景深相关,F/NO ↑,则景深↑,反之下降 C 、 与象差相关,F/NO ↑,则象差↓,反之增加 D 、 与光通量相关,F/NO ↑,则光通量↓,反之增加
对于光电镜头,F/NO 最大在2.8~3.5之间(经验值)允许有±5%的误差,在物方有照
明时,F数可根据照明的照度情况来增大
4、视场角FOV(2ω),半视场角FOC/2(ω)
物镜在其接收元件上成像的空间范围称为视场角。

其一半为半视角,最佳在55°(经验值)左右。

y’=f’×tanω
A、FOV与象差相关,FOV↑,轴外象差↑,MTF↓(变得很差)
B、FOV与相对照度REL相关,FOV↑,相对照度REL↓
C、FOV与主光线角度相关,FOV↑,主光线角度要变大
D、FOV与EFL,TOTR和IMA相关
E、FOV与DIST畸变相关,FOV↑,畸变迅速增大
像高由sensor对角线的长度来决定(如图5.1)
OA=OB=IMA/2
AB=IMA
A、像高与EFL,FOV有关;sensor确定之后,IMA就确定
了,根据铁三角关系公式EFL和FOV只能给定一个,
如果SPEC图给定的数值不符合铁三角关系,工程师不
可能按SPEC完成设计工作,即使勉强完成结果也不理
想。

B、IMA与光线角度相关
C、IMA与TOTR相关
6、光学总长TOTR:
图6.1
光学系统的最佳光学总长:TOTR=25~35mm,TOTR越短越难控制,相差越大
手机:TOTR<7mm
DSC:TOTR<10~12mm
7、相对照度:
E=E轴×cos4ω=E轴×cos4(FOV/2)
A、REL与FOV相关
B、REL与主光线角度相关
C、REL与EFL,TOTR和IMA间接相关
要提高E就要增大轴外相差从而使得光照均衡
主光线角:主光线是物发出经过孔径光阑轴心的光线,有无数条。

此光线与光轴的夹角
即为主光线角。

如图7.1中是两条边缘主光线,θ为主光线角。

要求物边缘在象场与光轴夹角θ越小,为了达到这种目的,要将光学系统设计成为象方远心光路,即光阑前面是负透镜组,后面正透镜。

为了平衡正组的相差光阑放置在正组透镜的前焦点上。

8、光学透镜结构(图8.1)
图8.1
孔径光阑:限制进入光学系统的光通量,
低通滤波片:低频光完全通过,高频光截止
IR:红外截止,一般采用晶体制作
需要指出的就是:对于非球面
1)通过调节解决球差
2)在一定条件下,解决象散
一定条件是指和光阑位置配合地好,近光阑解决轴上象差,远处光阑解决轴外象差
9、新技术-技术发展趋势
1)二元光学:可以消除色差和球差,相对照度在视场重100%,MTF值也提高,不过制
造的成本比较高
2)液体透镜:
通过对特殊材料做成地液体通电,使得液体外型发生改变,效果就实现类似眼睛的调节方式。

二、心得体会:
温故而知新,通过张教授生动的授课强化了我在学校中学习的光学基础知识,加上张教授联系实际深入浅出的解释,让我了解到了光学知识与现实之间的关系。

我本身虽学习过整个光学体系,但比较理论化,加上张教授的写实版授课,能帮助我更快的进入工作角色,更快地学以致用。

我的工作发展方向是模具设计,但光学理论可以帮助我更好地完成平时的工作。

相关文档
最新文档