电厂循环冷却水系统中的问题解决

合集下载

循环冷却水系统管道安装问题分析

循环冷却水系统管道安装问题分析

循环冷却水系统管道安装问题分析摘要:近年来随着我国经济建设的高速发展,以及在一带一路思路的引导下,我国在海内外各地陆续投资兴建了大批大型工程项目。

各种项目所使用的机电机组、换热器等,都必定会使用到循环冷却水系统,虽然循环冷却水系统在整个项目中所占投资比例不大,但因每个项目投资总额基数高,所以循环冷却水系统的投资金额也是常大的,因此,在循环冷却水系统的设计和施工中,如果能够合理的安装和使用,维护好循环冷却水系统,将会为整个项目投资节约不少资金,缓解投资压力。

关键词:循环冷却水系统;冷却塔;蝶阀;沟槽式管道连接在大型工业与民用建筑中广泛的应用到了循环冷却水系统,如暖通空调的循环冷却水系统,化工车间的循环冷却水系统,电厂海水循环冷却系统等。

冷却塔、循环冷却水系统运行况正常与否,直接影响到机组水泵的运行能耗、冷水机组的正常出力和换热器换热效果。

1循环冷却水统的安装存在的问题(1)冷却水系统在启动时,循环冷却水泵在瞬间吸引大量水流,巨大的水流由进水管道进入进水口,巨大的水冲量对管道产生冲击,进水管产生强烈的振动,此冲量通过管道及冷却塔的传递慢消减。

同时振动的传递也将产生噪声并传递出去,使周围环境受到噪音的污染。

同时,在循环冷却水泵开机运转至系统正常运行的过程中,振动频率慢慢衰减,在某个时值达到与冷却塔相同的固有频率,进而产生了共振,将会直接影响冷却塔的运转性能,减少其使用寿命。

(2)冷却塔在运转时,管道内的水流量大速度快,管道压力巨大,并伴随着不停的振动,如果没有安装支架来固定管道,管道的振动会使管道之间的连接口产生磨损,管道的密封性破坏,发生泄漏,进而影响整个机组的运作,而且污染周围环境,这样会减少管道的使用寿命,增加投资成本,还会直接影响作效率,减缓工程进度。

(3)冷却塔进水管上安装作用低下的蝶阀与闸阀。

蝶阀具有一定的静态调节能力,其调节性能在系统的初调试中可以胜任,但在进水塔正常运转中却功能缺缺。

而闸阀却是一种典型的快开式阀门,调节能力微乎其微,只能当开关式双位阀来使用,不适合用在冷却塔进水管中,因为冷却塔对进塔水压要求较为精确。

沿海电厂循环水系统堵塞的处理及预防

沿海电厂循环水系统堵塞的处理及预防

沿海电厂循环水系统堵塞的处理及预防摘要:循环水系统作为沿海大型汽轮发电机组的冷却系统,对机组的安全、经济运行至关重要,循环水系统堵塞,轻则引起循环水拦污栅或旋转滤网垮塌、变形拉裂等设备循环,重则造成机组出力下降,甚至全厂停运的恶性事故,通过对循环水系统堵塞事故案例的分析,探讨了应对不同时期旋转滤网堵塞的预防及处理,提出了运行处理的优化策略、设备系统的改进措施并完善自动预警及控制系统,实际应用中确保了循环水系统及机组安全稳定运行。

关键词:旋转滤网;水位差;冲洗;海生物;循环水泵。

0前言某沿海电厂循环水系统为开式循环,水源为海水,取水采用引水明渠,循环水通过引入箱涵进入循环水泵前池,主要由前池、拦污栅、旋转滤网、循环水泵、凝汽器、二次滤网及其附属设备和配套管道阀门组成。

一期2×630MW机组,每台机组设置两台循环水泵,二期2×1000MW机组,每台机组设置三台循环水泵,一、二期机组均采用扩大单元制,一、二期两台机组循环水母管之间设置了联络阀门,可以灵活安排循环水泵的运行方式。

每台循环水泵进水流道上配套装设1台旋转滤网与拦污栅,拦截和清除水流中水草、鱼虾等水生物,以及工农业和城市生活中的废弃杂物。

凝汽器循环水内、外圈进水管道上还设置有二次滤网,以进一步过滤循环水,并设有胶球清洗装置保持凝汽器钛管清洁度。

因电厂地处广东省东部沿海,临近北回归线,年均气温21.5度,每年3-10月渔汛期,海生物群大量聚集且循环水中编织袋等漂浮杂物堆集,多次造成循环水系统堵塞。

本文结合循环水系统堵塞处置实际案例进行分析并对运行方面如何处置及预防进一步探讨。

循环水系统堵塞案例分析1.1异常前工况:16:40,某厂1、2号机负荷550MW、550MW, 1号机循环水泵B运行、A备用,2号机循环水泵A、B运行。

1号机高、低压侧凝汽器真空分别为-94.7/-93.2kpa,凝汽器内/外圈二次滤网差压5.1/3.0KPa,循环水泵B旋转滤网前后水位差0.15m。

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析
海水冷却电厂循环水系统在设计上存在的问题主要包括以下几个方面:首先是管道设计问题。

海水循环水系统的管道设计需要考虑到海水的盐度以及腐蚀性,选择合适的材料和防腐措施是非常关键的。

而在实际运行中,很多海水冷却电厂循环水系统存在着管道腐蚀、泄漏等问题,这直接影响了系统的稳定运行。

其次是循环水泵设计问题。

海水冷却电厂循环水系统中的循环水泵需要能够适应海水的特殊性能,同时还需要兼顾能效和耐腐蚀性。

然而很多电厂循环水泵的选型存在问题,导致系统运行效率低下和维护成本增加。

最后是海水冷却系统的冷却塔设计问题。

冷却塔的设计需要充分考虑海水冷却的特性,防止海水水气混合过多而影响电厂的稳定运行。

这些设计问题直接影响了海水冷却电厂循环水系统的运行效果。

海水冷却电厂循环水系统在运行中存在的问题也是非常严重的。

首先是海水冷却系统的冷却效果下降问题。

海水中的微生物和盐分会在管道和设备表面形成生物膜和结垢,导致冷却效果降低。

海水冷却电厂循环水系统的设备的清洗和防腐工作都面临巨大的挑战。

其次是海水冷却系统的故障率较高。

海水的腐蚀性、微生物污染和结垢问题也会导致设备的故障率较高,维护成本较大。

海水冷却系统的环境影响也是一个重要问题。

过高的海水排放温度和含氯量都会对周边的海洋环境造成大量的污染和影响。

海水冷却电厂循环水系统设计和运行问题是一个复杂的工程问题,需要多方面的努力进行解决。

只有通过加强设计优化、加强监测管理和加强技术创新,才能够保证海水冷却电厂循环水系统的安全、稳定、经济运行,为我国清洁能源发展做出应有的贡献。

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析海水冷却电厂循环水系统是一种利用海水作为冷却介质的系统,用于降低发电设备的温度并将余热排放到海水中。

这种系统在电力行业中被广泛应用,但在设计和运行过程中可能会出现一些问题。

在设计循环水系统时,需要考虑到海水的特性和环境因素。

海水中含有盐分和杂质,可能会对设备造成腐蚀和堵塞,因此在设计中需要考虑到循环水系统对盐分和杂质的过滤和处理。

海水的温度较低,可能会导致循环水系统在寒冷季节采取额外的保护措施,如加热系统。

在设计中还需要考虑到海水潮汐、洪水和风暴等自然因素对循环水系统的影响,以确保系统的安全运行。

在运行过程中,循环水系统可能出现以下问题:1. 频繁的堵塞问题:由于海水中存在较多的盐分和杂质,循环水管道和冷却设备可能会频繁发生堵塞,影响系统的正常运行。

在运行过程中需要定期清洗和维护循环水系统,以防止堵塞问题的发生。

2. 腐蚀和腐蚀问题:海水中含有盐分和其他化学物质,可能会对循环水系统中的金属管道和设备造成腐蚀和腐蚀。

特别是在海水温度较高的地区,腐蚀问题可能更为严重。

在设计循环水系统时,应选择耐腐蚀的材料,并采取防腐措施,如涂层或防腐液体的使用。

3. 水质变化问题:海水的水质随着潮汐和气候条件的变化而变化。

水质的变化可能会影响循环水系统的性能和效率。

在运行过程中,需要进行水质监测,并根据水质变化进行调整和处理。

4. 海水温度问题:海水的温度随季节变化,可能会对循环水系统的运行产生影响。

在设计和运行过程中,需要考虑到海水温度的变化,并相应地调整系统的运行参数,以确保系统的安全和效率。

5. 能源消耗问题:海水冷却电厂循环水系统需要使用能量来驱动水泵和其他设备的运行,这将增加电厂的能源消耗。

在设计和运行过程中,需要考虑到能源消耗的问题,并尽量采取节能措施来降低能源消耗。

海水冷却电厂循环水系统的设计和运行过程中需要解决一系列的问题,如海水质量、温度、腐蚀、堵塞等。

通过综合考虑这些问题,可以优化循环水系统的设计和运行,提高系统的效率和可靠性。

浅析火电厂化学水处理系统节能降耗优化措施

浅析火电厂化学水处理系统节能降耗优化措施

浅析火电厂化学水处理系统节能降耗优化措施火电厂是我国重要的能源供应单位之一,化学水处理系统是火电厂运行过程中不可或缺的一环。

传统火电厂化学水处理系统存在能源浪费和资源消耗的问题。

针对这一问题,我们可以采取以下优化措施,实现节能降耗。

可以通过改进水处理工艺,降低化学品的投入量。

在火电厂中,常用的水处理化学品包括硫酸铵、氯化钠等。

过量使用这些化学品会导致能源浪费和资源消耗。

可以通过优化添加剂的种类和使用量,减少化学品的使用。

可采用低温水冷却技术,降低冷却水系统的温度。

传统火电厂冷却系统中,冷却水需要经过冷却塔降温后再循环使用。

冷却塔的运行需要消耗大量的电力和水资源。

采用低温水冷却技术可以降低冷却塔的运行温度,减少能源消耗。

火电厂化学水处理系统还可以采用膜分离技术进行水质处理。

传统的火电厂水处理系统中,常常使用离子交换树脂进行除盐。

这种方法需要大量的水和化学品来进行树脂再生,造成了资源的浪费。

膜分离技术可以实现高效的水质处理,不仅减少了化学品的使用量,还能够降低水的消耗量。

可以采用智能化控制系统对火电厂化学水处理系统进行优化。

传统的水处理系统往往采用人工操作,容易出现操作失误和能源浪费。

智能化控制系统可以实现对水处理设备的自动监控和调控,提高了操作的准确性和效率,从而降低了能源的消耗。

可以通过定期的设备维护和检修,保障水处理系统的正常运行。

火电厂化学水处理设备如反渗透设备、离子交换设备等,需要定期清洗和维护,以保证其正常工作和高效运行。

定期的设备维护可以减少能源的浪费和资源的消耗。

对于火电厂化学水处理系统的节能降耗优化措施来说,可以改进水处理工艺,降低化学品的投入量;采用低温水冷却技术和膜分离技术进行水质处理;应用智能化控制系统进行自动化调控;并定期维护设备,保障水处理系统的正常运行。

通过这些措施的实施,可以有效地降低火电厂化学水处理系统的能源消耗和资源浪费。

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析

海水冷却电厂循环水系统设计运行问题分析随着人口的不断增加,工业和城市化的快速发展,能源需求也不断增加。

为了满足这些能源需求,很多国家在建设大型电厂,而建设电厂必须考虑冷却水的供应问题,由于淡水资源的短缺和保护环境的要求,越来越多的电厂采用海水冷却系统来解决冷却水供应问题。

海水冷却电厂循环水系统原理:海水通过入口管道进入电厂,通过屏网将杂质过滤,然后进入冷却水箱。

冷却水从冷却水箱中循环,通过循环水泵送入循环水管道。

冷却水通过在冷凝器中与热量交换蒸发冷却水,并将汽化的水蒸气通过排气管道排出冷却塔。

排气后的水蒸气通过雾化水洗涤装置洗涤后进入大气。

冷却水在循环过程中会因为温度变化、海水污染等因素而产生腐蚀和细菌滋生等问题,导致循环水管道堵塞、系统运行效率下降等问题。

1.海水污染问题由于进入电厂的海水中含有大量的污染物质,如悬浮颗粒、有机物、沉积物等,这些污染物会附着在循环水管道上,导致管道内径减小、运行效率下降,同时还会在循环水箱中造成沉积,影响循环水在冷凝器中的流动,甚至导致冷却水泵运行不稳定,这些问题都将直接影响电厂的运行效率和生产成本。

解决方案:在入口管道处设置纱过滤器或砂滤器,以去除大颗粒的悬浮物,同时可以利用中央化学添加器等设备通过化学反应去除一些化学物质和杂质。

此外,还可以通过在循环水管道中介入生化反应器及喷淋设备,利用生物菌种进行氨氧化、硝化、除菌等反应,以去除有害物质并净化水质。

2. 循环水管道腐蚀问题由于海水的腐蚀性比较强,因此在接触循环水管道时,很容易发生腐蚀。

如果处理得不好,循环水管道的腐蚀速度会很快,导致管壁破裂,从而影响电厂正常运行。

在设计中选择耐腐蚀性能良好的材料,如塑料、耐酸碱的不锈钢、钛合金等。

对于铆钉和焊接部分,必须进行缝隙密封处理,以防止细菌和腐蚀物滋生。

此外,可以通过微生物控制、电化学保护等技术手段,对循环水进行保护。

3. 微生物滋生问题由于海水富含营养物质,循环水管道内温度适宜,光线慢慢的微生物繁殖起来,形成厚厚的生物膜,影响整个系统的操作。

发电厂循环水处理的必要性及措施

发电厂循环水处理的必要性及措施

发电厂循环水处理的必要性及措施发电厂循环水处理的必要性及措施发电厂循环水处理的必要性及措施火力发电厂,循环冷却系统的运行方式分为两种:(1)开放式(2)半开放式。

开放式系统没有冷却设备,只有冷却水泵,适用于靠近江、河、水库等水源充足的电厂,在整个过程中,对水质处理工作较少。

一般发电厂受地理条件限制,多使用半开式循环,冷却水经凝汽器换热后,通过自然通风冷却塔淋至水池降温后循环使用,在此过程中,需采用物理和化学方法进行处理,保证水质在合格范围。

1 循环水处理的必要性循环水作为机组的冷却介质,负责供给凝汽器、冷油器、空冷器等重要设备的用水。

如水质恶化,将导致设备管束结垢,换热效率降低,真空下降,严重时导致设备腐蚀、泄漏,直接影响汽水品质。

循环水质恶化危害:1)降低热交换器的热传导效率;2)水流量降低,管束堵塞;3)垢下腐蚀;4)机组能耗上升;5)维护费用上升。

循环水处理需解决的问题:1)腐蚀问题提高冷却水pH值,选用高效合成耐腐蚀材料,并加耐腐涂层。

2)结垢问题控制冷却水中钙离子浓度,投加药剂。

3)微生物问题投加杀菌剂,采用物理方法,减少阳光直射。

2 循环水处理中的重点1)冷却水在循环使用中,不断蒸发、浓缩。

Ca (HCO3)2受热分解生成难溶CaCO3,即碳酸盐水垢。

循环水处理应防止磷酸盐硬度浓缩,防止Ca (HCO3)2分解,维持极限运行中不结垢的极限碳酸盐硬度值(Ht)。

2)循环冷却水系统中,重碳酸盐是发生水垢附着的主要成份,其浓度随着蒸发浓缩而增加,在其以过饱和状态存在或换热后水温上升时,发生反应。

Ca(HCO3)2→CaCO3+CO2+H2O, CaCO3在换热器表面附着、沉积,形成水垢,水垢导热性能较差。

3)循环水在冷却塔喷淋过程中,溶入大量O2,水中O2以过饱和状态存在,金属表面与之长期接触,溶解氧加剧电化学腐蚀。

4)循环水在使用过程中的不断蒸发和浓缩,盐类物质不断增多,其中Cl-的不断浓缩,致使阳极腐蚀加剧,引起点蚀。

电厂循环冷却水系统节水分析及零排放技术

电厂循环冷却水系统节水分析及零排放技术

电厂循环冷却水系统节水分析及零排放技术摘要:为了加强水污染的防治力度,确保国家水资源安全,国家对水污染防治进行了统筹推进与合理部署,明确要求各行业生产应始终坚持按照节水减排和治理水污染的原则,重点针对生产活动涉及的水污染问题和能耗问题进行合理改进与优化处理。

在电厂生产的过程中应该进行循环冷却水系统和零排放技术的应用,其可以有效地提高循环冷却水的利用率,减少对水资源的消耗,进而为电厂创造更多的经济效益和社会效益。

基于此,本文就对电厂循环冷却水系统节水及零排放技术进行研究,可供参阅。

关键词:电厂循环;冷却水系统;节水及零排放技术1电厂循环冷却水系统概述作为电厂中最为关键的系统之一,循环冷却水系统能够保障电厂稳定运转。

大部分电厂通过冷却塔对机组进行降温,基本原理为:将水吸入冷却塔中,持续对电厂机组进行冷却,降低机组运转温度,冷却塔内水温逐渐提高,就会形成水蒸气,最后其由冷却塔顶部排出。

此外,循环冷却水系统还可以为机组运转供应冷却水。

因生产阶段会形成诸多废热,通常需要通过冷却水将其排出。

电厂一般需要构建冷却塔进行冷却,将废热引入冷却塔,其会和空气产生热交换,通过空气扩散到大气中。

2电厂循环冷却水系统的节水意义起初,多数电厂通过水力除灰渣系统进行节水,排污水与循环水大都源于该系统,这样有助于废水利用,但是电厂耗水量并未显著降低。

近年来,为了降低耗水量,真正实现节约水资源这一目标,诸多电厂研发出不少节水系统与方法,耗水量有所降低,但是依然无法得到有效控制,这就需要利用循环冷却水系统。

因此,电厂循环冷却水系统具有十分重要的节水意义,不仅能保障电厂机组稳定运转,还能控制耗水量,降低环境污染。

3电厂循环冷却水系统运行特点电厂循环冷却水系统在运行过程当中主要通过换热器交换热量或者直接接触换热方式,并经冷却塔冷却后对介质热量交换过程的循环使用,以节约水资源,实现循环冷却水节水和零排放要求。

循环水的冷却主要通过水与空气的相互作用,如从蒸发散热、接触散热和辐射散热三个过程实现循环水冷却过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电厂循环冷却水系统中的问题解决
2011年7月31日FJW提供
1.概述
电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。

该系统是利用冷却水进行降温和水质处理。

冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。

因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。

2.敞开式循环冷却水系统存在的问题
2.1循环冷却水系统中的沉积物
2.2.1沉积物的析出和附着
一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。

在直流冷却水系统中,重碳酸盐的浓度较低。

在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应
Ca(HCO3)2=CaCO3+CO0 +H2O
冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应
向右进行
CaCO沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。

不同的水垢其导热系数不同,但一般不超过1.16W/(m.K), 而钢材的导热系数为46.
4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。

水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。

2.2设备腐蚀循环冷却水系统中大量的设备是金属制造的换热器。

对于碳钢制成的换热器,
长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。

2.2.1冷却水中溶解氧引起的电化学腐蚀敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。

当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳极区和阴极区分别会发生下列氧化反应和还原反应。

在阳极区Fe=Fe2++2e
在阴极区0.5O2+H2O+2e=2OH-
在水中Fe2++2OH-=Fe(OH)2
Fe(OH)P Fe(0H)3
这些反应,促使微电池中阳极区的金属不断溶解而被腐蚀。

2.2.2 有害离子引起的腐蚀循环冷却水在浓缩过程中,除重碳酸盐浓度随浓缩倍数增加而增加外,其他的盐类如氯化物、硫酸盐的浓度也会增加。

当CL-和SO42-
浓度增高时,会加速碳钢的腐蚀。

CL-和SO42- 会使金属上保护膜的保护性能降低,尤其是CL- 的半径小,穿透性强,容易穿过膜层,置换氧原子形成氯化物,加速阳极过程的进行,使腐蚀加速,所以氯离子是引起点蚀的原因之一。

对于不锈钢制造的换热器,Cl- 是引起应力腐蚀的重要原因,因此冷却水中Cl- 的含量过高,常使设备上应力集中的部分,如换热器花板上胀管的边缘迅速遭到腐蚀破坏。

循环冷却水系统中如有不锈钢制的换热器时,一般要求Cl- 的含量不超过
300mg/L
2.2.3 微生物引起的腐蚀微生物的滋生也会使金属发生腐蚀。

这是由于微生物排出的黏液与无机垢和泥沙杂物等形成的沉积物附着在金属表面,形成氧的浓差电池,促使金属腐蚀。

此外,在金属表面和沉积物之间缺乏氧,因此一些厌氧菌(主要是硫酸盐还原菌)得以繁殖,当温度为25-
30C时,繁殖更快。

它分解水中的硫酸盐,产生硫化氢,引起碳钢腐蚀,其反应如下:SO42-+8H++8e=S2-+4H20能量(细菌生存所需)
Fe2++S2=FeSj
铁细菌是钢铁锈瘤产生的主要原因,它能使Fe2+氧化为Fe3+,释放的能量供细菌生存需要。

Fe2+细菌f Fe3++能量(细菌生存所需)
上述各种因素对碳钢引起的腐蚀常使换热器管壁被腐蚀穿孔,形成渗漏,或工艺介质泄漏入冷却水,损失物料,污染水体;或冷却水渗入工艺介质中,使产品质量受到影响。

当被腐蚀穿孔的管子数目不多时,可采取临时堵管的办法,使换热器在减少传热面的情况下继续使用。

当穿孔的管子过多时,换热器传热面减少的太多,失去冷却作用,此时只有停产更换。

因此,腐蚀与水垢附着一样,危害工厂安全生产,造成经济损失。

2.3微生物的滋生和粘泥
冷却水中的微生物一般是指细菌和藻类。

在新鲜水中,一般来说细菌和藻类都较少。

但在循环水中,由于养分的浓缩,水温的升高和日光照射,给细菌和藻类创造了迅速繁殖的条件。

大量细菌分泌出的黏液像粘合剂一样,能使水中漂浮的灰尘杂质和化学沉淀物等粘附在一起,形成黏糊糊的沉积物附着在换热器的传热表面上。

这种沉积物有人称他为生物粘
泥,也有人把它叫软垢。

粘泥积附在换热器管壁上,除了会引起腐蚀外,还会使冷却水的流量减少,从而降低换热器的冷却效率;严重时,这些生物粘泥会将管子堵死,迫使停产清洗。

例如北京某厂因换热器中菌藻大量繁殖,半月之内就使热负荷下降到50%,不得不经常停产清洗,使产量减少。

3.循环冷却水系统存在问题之水处理方案
3.1水垢的控制和污垢的控制
3.3.1水垢的控制
冷却水中如无过量的PO43-
或SiO2, 则磷酸钙垢和硅酸盐垢是不容易生成的。

循环冷却水系统中最易生成的是碳酸钙垢,因此水垢控制主要是防止碳酸盐水垢的析出。

其方法主要有以下几类:1、从冷却水中除去成垢的钙离子(离子交换树脂法和石灰软化法)。

2 、加酸或通二氧化碳气,降低pH值,稳定重碳酸盐。

3、投加阻垢剂
3.3.2污垢的控制
1、降低补充水浊度;
2、做好循环冷却水水质处理;
3、投加分散剂;
4、增加旁滤设备;
3.2循环冷却水系统中金属腐蚀的控制。

控制金属腐蚀的方法如下:
1、添加缓蚀剂;
2、提高冷却水的pH值;
3、选用耐蚀材料制造的换热器;
4、用防腐阻垢材料涂覆。

3.3冷却水中的微生物的控制方法
1、选用耐蚀材料;
2、控制水质;
3、采用杀生涂料;
4、阴极保护;
5、清洗
6、防止阳光照射(水池上面加盖和冷却塔的进风口加装百叶窗);
7、旁流过滤
;8、混凝沉淀;9、噬菌体法;10、添加杀生剂;11、静电水处理和电子水处理。

需要指出的是:一个良好的微生物控制方案往往是将几种方法联合使用其效果要好的多。

4. 结束语
结合本厂,由于普通旁滤设备的过滤精度非常低,一般在55um只能去除树叶等大颗粒物体。

工业冷却循环水系统内的杂质除了少数大颗粒杂质外,主要由空气中的尘沙、铁锈、粘泥等细小的悬浮物组成,普通旁滤设备对这些悬浮物的过滤效率几乎为零。

普通旁滤设备不能解决系统污垢的问题;根据国家冷却循环水设计规范规定,冷却循环水需对菌藻、悬浮物、污垢、腐蚀、生物粘泥进行处理及控制,同时必须控制水质的浓缩比,建议当补充自来水或总硬度在3 00mg/L(CaCO)3 左右的地下水时,浓缩比控制在2.5 倍左
右。

为控制浓缩比,采用直接排污的方式,将浪费大量的水资源。

因此,采用这种水处理方式不能完全解决系统存在的问题。

根据多方面的学习,我提出了两个还不太成熟的解决方案,还望有关领导依此作为参考,提出宝贵意见。

(1)(如果采用电子水处理器,也只能解决水垢问题,系统腐蚀、菌藻等问题也不能解决。

因此这种水处理配置只能解决一部分问题,不能综合解决问题;)这时可以在被冷却设备前安装防垢除垢设备,根据当地的水质情况,选择特定的射频参数来解决系统中的水垢问题;在系统中回水管安装过滤设备,通过机械变孔径阻挡、活性铁质滤膜及电晕场效应三位一体形成的综合过滤体系来解决系统中水质问题,并最终解决污垢问题;在系统中安装除菌藻设备来控制系统水质的菌藻滋生,并最终解决生物垢问题。

(2)也可在系统中安装全程处理器来解决循环水中悬浮物、杂质、菌藻、腐蚀、结垢等所引起的复合垢问题。

并通过正常排污控制水的浓缩比,使其控制在2.5〜3之间,同时达到节水的
目的。

相关文档
最新文档