微机继电保护基本算法

合集下载

电力系统微型计算机继电保护

电力系统微型计算机继电保护

2002年4月电力系统微型计算机继电保护1.以微型计算机为核心的继电保护装置称为微型机继电保护装置。

2.交流电流交换器输出量的幅值与输入模拟电流量的幅值成正比。

3.脉冲传递函数定义为:在零初始条件下,离散系统输出响应的Z变换与输入信号的Z变换之比值4.当离散系统特征方程的根,都位于Z平面的单位圆之外时,离散系统不稳定。

5.在一个控制系统中,只要有一处或几处的信号是离散信号时,这样的控制系统称为离散_控制系统。

6.反映电力系统输电设备运行状态的模拟电气量主要有两种:来自电压互感器和电流互感器二次侧的交流电压和交流电流信号。

7.在一个采样周期内,依次对每一个模拟输入信号进行采样的采样方式称为顺序采样。

8.脉冲传递函数分子多项式为零的根,称为脉冲传递函数的零点。

9.从某一信号中,提取出有用频率成份信号的过程,称为滤波。

10.合理配置数字滤波器脉冲传递函数的零点,能够滤除输入信号中不需要的频率成份。

11.合理配置数字滤波器脉冲传递函数的极点,能够提取输入信号中需要的频率成份信号。

12.数字滤波器脉冲传递函数的零点z i在脉冲传递函数表达式中以因子1-Z i Z-1的形式出现。

13.如果设计样本的频率特性频谱的最大截止频率为fmax,则要求对设计样本的单位冲激响应h(t)进行采样时,采样频率要求大于2fmax。

14.为了提高微型机继电保护装置的抗干扰能力,在开关量输入电路中采取的隔离技术是光电隔离。

15.利用正弦函数的三个_瞬时采样值的乘积来计算正弦函数的幅值和相位的算法称为三点采样值乘积算法。

16.在电力系统正常运行时,微型机距离保护的软件程序工作在自检循环并每隔一个采样周期中断一次,进行数据采集。

17.微型机距离保护的软件程序主要有三个模块—初始化及自检循环程序、采样中断子程序和故障处理程序。

18.在电力系统正常运行时,相电流瞬时采值差的突变量起动元件△I bc等于零。

19.电力系统在非全相运行时,一旦发生故障,则健全相电流差起动元件起动。

第03部分--微机保护算法

第03部分--微机保护算法
第三部分 微机保护算法
天津大学 李斌
1
本节主要内容
一、概述 二、半周积分算法 三、傅立叶级数算法 四、起动元件算法 五、其他保护原理算法
2
一、概述
微机保护装置根据模数转换器提供的 输入电气量的采样数据进行分析、运算和 判断,以实现各种继电保护功能的方法称 为算法。
3
一、概述
继电保护的种类很多: 按保护对象分有元件保护、线路保护等; 按保护原理分有差动保护、距离保护、电压、电 流保护等。 不管哪一类保护的算法其核心问题归根结底 不外乎是算出可表征被保护对象运行特点的物理 量等。有了这些基本的电气量的计算值,就可以 很容易地构成各种不同原理的保护。
35
四、起动元件算法
突变量起动判据及其实现
Δi ( k ) = [i ( k ) − i ( k − N )] − [i ( k − N ) − i ( k − 2 N )]
计算得到的突变量可补偿电网频率 变化引起的不平衡电流,因此受频 率偏差、系统振荡的影响小得多。
36
四、起动元件算法
相电流差突变量起动判据 起动元件算法 带浮动门槛的突变量起动判据
15
二、半周积分算法
总评:
半周积分算法需要的数据窗为10ms。该算法本身具 有一定的滤除高频分量的作用。因为在积分的过程中, 谐波分量的正、负半周相互抵消,而剩余的未被完全抵 消的部分所占的比重就小的多了。但是该算法不能滤除 直流分量。由于该算法运算量小,因而对精度要求不高 时可以采用此种此种算法。
另一类算法是直接模仿模拟型算法,仍以距 离保护为例,根据动作方程来判断是否在动作区 内。 它是直接模仿模拟型距离保护的实现方法,根 据动作方程来判断是否在动作区内,这一类算法 的计算工作量略有减小。

1. 介绍线路微机继电保护中三段式距离保护原理

1. 介绍线路微机继电保护中三段式距离保护原理

线路微机继电保护是电力系统中非常重要的一环,它能够在电力系统出现故障时快速准确地对故障进行定位和保护,保证系统的安全运行。

上线路微机继电保护中,三段式距离保护是其中一种常见的保护方式。

下面我们将介绍三段式距离保护的原理。

1. 三段式距离保护的概念三段式距离保护是指在电力系统中的保护装置对距离保护进行划分,通常分为近、中、远三个保护段。

这三段保护分别对应不同的距离范围,可以满足系统不同位置的保护需求。

三段式距离保护通常应用于输电线路,能够快速准确地定位故障并切除故障段,保护电力系统的安全稳定运行。

2. 三段式距离保护的原理三段式距离保护的原理是基于电力系统中故障发生时的电压和电流的变化规律来进行保护。

具体原理如下:第一段保护:近端距离保护近端距离保护主要是针对距离线路较近的故障进行保护。

当故障发生时,由于电压和电流的变化,距离保护装置会通过比较故障点处的电压和电流来判断故障的位置,并根据之前设定的保护范围来切除故障段落,保护系统的安全。

第二段保护:中段距离保护中段距离保护是针对线路中段的故障进行保护。

当故障距离超过近端距离保护的范围时,中段距离保护会根据故障点处的电压和电流变化情况来判断故障位置,并进行相应的保护动作。

第三段保护:远端距离保护远端距离保护主要是对线路远端的故障进行保护。

当故障发生上线路远端时,距离保护装置会根据故障点处的电压和电流变化情况来判断故障位置,并进行适当的保护动作。

3. 三段式距离保护的优势三段式距禿保护具有以下优势:(1) 定位精准:三段式距禿保护能够根据故障的位置,快速精确地对故障进行定位,保护系统的稳定运行。

(2) 保护范围广:三段式距禿保护能够覆盖线路不同位置的故障,保护范围广,能够适应不同的系统需求。

(3) 动作可靠:三段式距禿保护基于电压和电流的变化来进行保护,动作可靠。

三段式距禿保护的原理清晰、动作灵敏,能够有效地保护电力系统。

三段式距禿保护是线路微机继电保护中的重要组成部分,它通过对电力系统中距禿保护范围进行划分,依据电压和电流的变化来进行保护,能够快速精确地定位故障,并进行保护动作,保证电力系统的安全稳定运行。

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法

线路微机继电保护中三段式距离保护原理与算法一、引言距离保护是电力系统继电保护中的一种重要类型,主要用于避免电网故障扩大,降低故障对电网的影响。

在微机继电保护中,三段式距离保护是一种常见的应用方式。

本论文将详细阐述三段式距离保护的原理及算法。

二、三段式距离保护原理三段式距离保护主要由近端保护、中端保护和远端保护三部分组成。

其基本原理是基于故障点到保护段的距离直接影响保护的动作时间。

当故障点靠近保护段时,响应时间应较长,反之则应较短。

这样就能根据故障点与保护段的距离来动态调整保护的响应时间,实现更好的保护效果。

三、微机实现方法在微机继电保护中,三段式距离保护的实现通常需要依靠微处理器或微控制器来完成。

根据距离测量结果和预设的保护段特性曲线,可以计算出对应的响应时间,并控制执行机构进行跳闸或隔离。

此外,微机还具有强大的数据处理能力和实时性,可以更精确地测量故障点到保护段的距离,从而提高保护的准确性。

四、算法分析三段式距离保护的算法主要包括故障点距离保护段的距离计算、响应时间的动态调整以及执行机构的控制等部分。

其中,距离计算通常采用测量值与预设阈值的比较,通过判断是否超过阈值来确定故障点到保护段的距离。

动态调整响应时间则需要根据实时测量的距离数据,通过算法计算出对应的响应时间,以适应不同距离的情况。

执行机构的控制则需要根据算法输出的跳闸或隔离指令,驱动相应的执行机构进行动作。

五、实际应用与优化在实际应用中,三段式距离保护需要考虑到各种可能的情况和影响因素,如线路阻抗变化、环境干扰等。

为了应对这些问题,需要进行相应的优化和调整。

例如,可以通过实时监测线路阻抗,调整保护段的特性曲线;可以通过优化算法,提高距离计算的准确性;可以通过加强硬件抗干扰能力,提高保护的稳定性等。

六、总结三段式距离保护是一种有效的电力系统继电保护方式,通过微机实现可以获得更高的精度和实时性。

在算法方面,需要根据实际情况进行优化和调整,以提高保护的准确性和稳定性。

微机继电保护 RL算法

微机继电保护 RL算法

微机继电保护作业摘要:本文用EMTP 建立了一个双端电源的输电线路模型,对A 相短路故障进行仿真模拟,得到故障波形。

首先用Tukey 低通滤波器对其进行滤波处理,接着分别采用R-L 模型算法和傅里叶算法对故障波形数据进行处理,并设定距离保护判据,对保护动作做出判断。

关键词:输电线路;R-L 算法;傅里叶算法;仿真为了提高电力系统的安全性与稳定性,电力系统继电保护一直是电力科研工作者研究的重点与热点。

从系统运行数据的在线监测,到故障信号的采样、滤波,数据分析算法以及保护判据原理,都取得很多的成绩。

继电保护装置的速动性、可靠性等特性都得到了很大的提升。

本文将对应用前景广泛的两种数据分析算法经行仿真验证。

输电线路仿真模型如下图所图1 输电线路模型其中,F 表示故障点位置,p 为故障点距M 侧的百分比。

一、仿真模型图2 EMTP 仿真模型在PSCAD 中建立系统仿真模型,如图2所示。

设线路中点发生A 相单相接地故障,故障起始时刻为t=0.1s ,故障持续时间为0.1s ,仿真时间在t=0.2s 时结束。

采样频率为1000Hz ,假设在距M 侧20km 处发生A 相接地短路故障,过渡电阻令其为0.1Ω。

系统参数选取如下:M 侧系统电感L m =131.6mH ;N 侧系统电感L n =329.1mH ,功角滞后10°;线路单位长度参数为:正序参数r 1=0.019/km Ω, L 1=0.9134/mH km ,C 1=0.14/F km μ;零序参数00.1675/r k m =Ω,1 2.7139/L mH km =,00.008/C F km μ=。

线路总长度L=100km 。

二、仿真波形EMTP 中的输出一个mm.mat 的数据文件,导入matlab 可以画出如下图形。

图(3)为三相电流仿真波形,图4为三相电压仿真波形。

从图3中可看出,当A 相发生单相接地故障时,A 相电流明显增大,而B 、C 两相电流基本保持不变,仍为负荷电流;A 相电压有明显的电压降低,而B 、C 两相电压基本保持不变。

第二节 微机继电保护算法介绍

第二节 微机继电保护算法介绍

第二节微机继电保护算法介绍第二节微机继电保护算法介绍第二节微机继电保护算法介绍这一节将要对微机保护算法进行简要概述,并介绍常见的几种算法。

一、微机保护算法概述把经过数据采集系统量化的数字信号经过数字滤波处理后,通过数学运算、逻辑运算、并进行分析、判断,以决定是否发出跳闸命令或信号,以实现各种继电保护功能。

这种对数据进行处理、分析、判断以实现保护功能的方法称为微机保护。

二、常见微机保护算法介绍1. 算法微机保护装置中采用的算法分类:(1)直接由采样值经过某种运算,求出被测信号的实际值再与定值比较。

例如,在电流、电压保护中,则直接求出电压、电流的有效值,与保护的整定值比较。

(2)依据继电器的动作方程,将采样值代入动作方程,转换为运算式的判断。

分析和评价各种不同的算法优劣的标准是精度和速度。

2. 速度影响因素(1)算法所要求的采样点数。

(2)算法的运算工作量。

3. 算法的计算精度指用离散的采样点计算出的结果与信号实际值的逼近程度。

4. 算法的数据窗一个算法采用故障后的多少采样点才能计算出正确的结果,这就是算法的数据窗。

算法所用的数据窗直接影响保护的动作速度。

例如,全周傅氏算法需要的数据窗为一个周波(20ms),半周傅氏算法需要的数据窗为一个半周波(10ms)。

半周波数据窗短,保护的动作速度快,但是它不能滤除偶次谐波和恒稳直流分量。

一般地算法用的数据窗越长,计算精度越高,而保护动作相对较慢,反之,计算精度越低,但是保护的动作速度相对较快。

尽量提高算法的计算速度,缩短响应时间,可以提高保护的动作速度。

但是高精度与快速动作之间存在着矛盾。

计算精度与有限字长有关,其误差表现为量化误差和舍入误差两个方面,为了减小量化误关基保护中通常采用的A/D芯片至少是12位的,而舍入误差则要增加字长。

不管哪一类算法,都是算出可表征被保护对象运行特点的物理量。

5. 正弦函数的半周绝对值积分算法假设输入信号均是纯正弦信号,既不包括非周期分量也不含高频信号。

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用

傅里叶变换FFT算法的介绍及其在微机继电保护中的应用摘要:传统的微机继电保护算法中 ,一般使用梯形算法来计算周期信号的直流分量和各次谐波的系数 ,此方法计算比较复杂。

本文提出了一种基于 FFT 的算法。

该算法利用 FFT 可以由输入序列直接计算出输入信号的直流分量和各次谐波的幅值和相角的特点 ,大大简化了谐波分析的计算。

与梯形算法相比 ,该算法具有精度高、计算量小、更易在数字信号处理器上实现等优点。

因而可以取代梯形算法来计算谐波系数。

针对 FFT计算 ,还介绍了正弦信号采样频率的选择方法。

关键字:傅里叶算法; FFT; 谐波分析;微机继电保护。

The Introduction of Fourier algorithm based on FFT inModif ied model of power meteringAbstract: In microcomputer relay protection of traditional algorithm, coefficient of DC component generally use the trapezoidal algorithm to calculate the periodic signal and harmonic,and this method is very complex. This paper presents an algorithm based on FFT. The algorithm makes use of the FFT and it can be calculated directly from the input sequence characteristics of amplitude and phase of the DC component of the input signal and harmonic, greatly simplifies the calculation of harmonic analysis. Compared with the trapezoidal algorithm, this algorithm has high precision, small computation, easily realized in digital signal processor. So that you can replace trapezoidal algorithm to calculate the harmonic coefficient. For the FFT calculation, the selection method of sine signal sampling frequency is also presented. Keywords: Fourier algorithm;FFT;harmonic analysis;Modif ied model of power metering.一、傅立叶变换FFT算法简介:计算离散傅里叶变换的一种快速算法,简称FFT。

微机保护

微机保护

微机保护:以微型机、微控制器等器件作为核心部件构成的继电保护。

光电耦合器:把发光器件和光敏器件组合在一起,实现以光信号为媒介的电信号变换。

滤波器:就广义来说是一个装置或系统,用于对输入信号进行某种加工处理,以达到取得信号中的有用信息而去掉无用成份的目的。

数字滤波器:通过对输入信号的进行数字运算的方法来实现滤波的滤波器滤波器的响应时间:滤波器的输入从一个稳态变到另一个稳态时,其输出要经过一个过渡过程的延时才能达到新的稳态输出,这段延时被称为滤波器的响应时间。

系统的频率特性:一个系统的输出和输入的傅氏变换之比。

时间窗:DF运算时所用到的最早采样到最后一个采样之间的时间跨度。

数据窗:数字滤波器完成每一次运算,输出一个采样值,所需要的输入信号采样值的个数。

时延(暂态时延) :输入信号发生跃变时刻起到滤波器获得稳态输出之间的时间。

非递归型数字滤波器:将输入信号和滤波器的单位冲激响应作卷积而实现的一类滤波器。

微机保护算法:微机保护装置根据模数转换器提供的输入电气量的采样数据进行分析、运算和判断,以实现各种继电保护功能的方法。

差模干扰:串联于信号源之中的干扰。

共模干扰:引起回路对地电位发生变化的干扰称为共模干扰导数算法:是利用输入正弦量在某一个时刻的采样值及在该时刻采样值的导数,即可算出有效值和相位的算法解微分方程算法:是利用输电线路的数学模型,根据故障类型和保护安装处电流和电压信号的瞬时采样值,计算出故障点到保护安装处的测量阻抗,通过阻抗元件,实现输电线路距离保护的算法。

全零点数字滤波器:如果数字滤波器的脉冲传递函数H(z)只有零点而没有极点,这种数字滤波器称全零点数字滤波器。

有限脉冲响应滤波器:是数字滤波器的一种,简称FIR数字滤波器。

这类滤波器对于脉冲输入信号的响应最终趋向于0,因此是有限的无限脉冲响应滤波器,简称IIR数字滤波器,是数字滤波器的一种。

由于无限脉冲响应滤波器中存在反馈回路,因此对于脉冲输入信号的响应是无限延续的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档