人教版九年级数学上册 第23章 旋转 单元测试卷(无答案)

合集下载

人教版九年级数学上册第23--24章 复习题 含答案

人教版九年级数学上册第23--24章 复习题  含答案

人教版九年级数学上册第二十三章旋转单元测试卷(满分:150分时间:120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请将正确选项的代号填写在答题框中,填写正确记4分,不填、填错或多填记0分.1.在平面直角坐标系中,点P(2,-3)关于原点的对称点P′的坐标是(C)A.(-2,-3) B.(-3,-2) C.(-2,3) D.(-3,2)2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是(B)A.96 B.69 C.66 D.993.下列图形属于中心对称图形的是(C)4.下列说法正确的是(B)A.全等的两个图形成中心对称B.成中心对称的两个图形全等C.成中心对称的两个图形一定关于某条直线对称D.关于某条直线成轴对称的两个图形一定关于某一点成中心对称5.如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是由△ABC 经过怎样的图形变化得到的?有下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确的结论是(D)A.①④ B.②③ C.②④ D.③④6.如图,将△ABC按顺时针方向转动一个角后成为△AB′C′,下列等式正确的有(C)①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′;④AB=B′C′.A.1个 B.2个 C.3个 D.4个7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为(B)A.10° B.15° C.20° D.25°8.如图,将线段AB先向右平移5个单位长度,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是(D)A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)9.如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′交于点O,则∠COA′的度数是(B)A .50°B .60°C .70°D .80°10.如图,等边三角形ABC 的边长为4,点O 是△ABC 的中心,∠FOG =120°.绕点O 旋转∠FOG,分别交线段AB ,BC 于D ,E 两点,连接DE ,给出下列四个结论:①OD=OE ;②S△ODE=S △BDE ;③四边形ODBE 的面积始终等于433;④△BDE 周长的最小值为6.上述结论正确的个数是(C)A .1B .2C .3D .4 二、填空题(本大题共6个小题,每小题4分,共24分) 请将答案填在对应题号的横线上.11.如图所示,图(1)经过平移变化成图(2),图(2)经过旋转变化成图(3).12.若点A(2x -1,5)和点B(4,y +3)关于点(-3,2)对称,那么点A 在第二象限. 13.如图,四边形ABCD 是菱形,O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为12.14.将一副三角尺按如图的方式放置,将三角尺ADE 绕点A 逆时针旋转α(0°<α<90°),使得三角尺ADE 的一边所在的直线与BC 垂直,则α的度数为15°或60°.15.如图,已知抛物线C 1与抛物线C 2关于原点中心对称,如果抛物线C 1的解析式为y=34(x +2)2-1,那么抛物线C 2的解析式为y =-34(x -2)2+1.16.如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm ,将△AOB 绕顶点O 按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =1.5 cm.三、解答题(本大题共9小题,共86分) 解答题应写出必要的文字说明或推演步骤.17.(8分)如图,在△ABC 中,∠B =10°,∠ACB =20°,AB =4 cm ,△ABC 按逆时针方向旋转一定角度后与△ADE 重合,且点C 恰好成为AD 的中点.(1)指出旋转中心,并求出旋转的度数; (2)求出∠BAE 的度数和AE 的长.解:(1)∵△ABC 逆时针旋转一定角度后与△ADE 重合,A 为公共顶点, ∴旋转中心是点A.根据旋转的性质可知:∠CAE=∠BAD=180°-∠B-∠ACB=150°, ∴旋转角度是150°.(2)由(1)可知:∠BAE=360°-150°×2=60°, 由旋转可知△ABC≌△ADE,∴AB =AD ,AC =AE.又∵C 为AD 中点,AB =4 cm , ∴AE =AC =12AB =2 cm.18.(8分)某居民小区搞绿化,小区的居民们把一块矩形垃圾场地清理干净后,准备建几个花坛,老张说:花坛应该有圆有方;老李说:花坛和整个矩形空地应该成中心对称图案,这样比较漂亮.你能设计一个让大家都满意的方案吗?试试看(将你设计的方案画在下面的矩形方框中).解:如图所示.19.(8分)如图,在△ABC 中,∠CAB =70°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.解:∵CC′∥AB,∴∠ACC ′=∠CAB=70°. ∵△ABC 绕点A 旋转到△AB′C′的位置, ∴AC =AC′,∠BAB ′=∠CAC′, 在△ACC′中,∵AC =AC′, ∴∠ACC ′=∠AC′C=70°.∴∠CAC ′=180°-70°-70°=40°.∴∠BAB ′=40°.20.(10分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC 关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2.∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2.∴BC∥B′C′,BC=B′C′.∴四边形BCB′C′是平行四边形.∴S▱BCB′C′=2×6=12.21.(10分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)解:(1)画出下列一种即可:(2)画出下列一种即可:(3)画出下列一种即可:22.(10分)如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB 绕点B逆时针旋转一定角度后,可得到△CQB.(1)求点P与点Q之间的距离;(2)求∠APB的度数.解:(1)连接PQ,由旋转性质有:BQ=BP=8,QC=PA=6,∠QBC=∠ABP,∠BQC=∠BPA,∴∠QBC+∠PBC=∠ABP+∠PBC,即∠QBP=∠ABC.∵△ABC是正三角形,∴∠ABC=60°.∴∠QBP=60°.∴△BPQ是等边三角形.∴PQ=BP=BQ=8,即点P与点Q之间的距离为8.(2)在△PQC中,PQ=8,QC=6,PC=10,∴PQ2+QC2=PC2.∴∠PQC=90°.∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°.23.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P 的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3).(3)点P2的坐标是(-b,a).24.(10分)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=2,求△AEF的面积.解:(1)∵四边形ABCD 是正方形, ∴AD =AB ,∠D =∠ABC=90°. 而F 是CB 的延长线上的点, ∴∠ABF =∠D=90°. 又∵AB=AD ,DE =BF , ∴△ADE≌△ABF(SAS). (3)∵BC=8,∴AD =8. 在Rt △ADE 中,DE =2,AD =8, ∴AE =AD 2+DE 2=217.∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到, ∴AE =AF ,∠EAF =90°. ∴S △AEF =12AE 2=12×4×17=34.25.(12分)在同一平面内,△ABC 和△ABD 如图1放置,其中AB =BD.小明做了如下操作:将△ABC 绕着边AC 的中点旋转180°得到△CEA,将△ABD 绕着边AD 的中点旋转180°得到△DFA,如图2,请完成下列问题:(1)试猜想四边形ABDF 是什么特殊四边形,并说明理由; (2)连接EF ,CD ,如图3,求证:四边形CDFE 是平行四边形.解:(1)四边形ABDF是菱形.理由如下:∵△ABD绕着边AD的中点旋转180°得到△DFA,∴AB=DF,BD=FA.∵AB=BD,∴AB=BD=DF=FA,∴四边形ABDF是菱形.(2)证明:∵四边形ABDF是菱形,∴AB∥DF,且AB=DF.∵△ABC绕着边AC的中点旋转180°得到△CEA,∴AB=CE,BC=EA.∴四边形ABCE为平行四边形.∴AB∥CE,且AB=CE.∴CE∥FD,CE=FD.∴四边形CDFE是平行四边形.人教版九年级数学上册第二十四章圆单元测试卷(满分:150分时间:120分钟)一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请将正确选项的代号填写在答题框中,填写正确记4分,不填、填错或多填记0分.1.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5 cm,CD=8 cm,则AE=(A)A.8 cm B.5 cm C.3 cm D.2 cm2.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A,B两点,P是优弧AB上任意一点(与A,B不重合),则∠APB的度数为(C)A .60°B .45°C .30°D .25°3.如图所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是(B)A .80°B .120°C .100°D .90° 4.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是(C)A .40°B .30°C .20°D .15°5.如图,A ,B 是⊙O 上两点,若四边形ACBO 是菱形,⊙O 的半径为r ,则点A 与点B 之间的距离为(B)A.2rB.3r C .r D .2r6.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2.那么下列说法中不正确的是(C)A .当a<1时,点B 在⊙A 外 B .当1<a<5时,点B 在⊙A 内C .当a<5时,点B 在⊙A 内D .当a>5时,点B 在⊙A 外7.圆锥的底面半径为1,侧面积为3π,则其侧面展开图的圆心角为(B)A.90° B.120° C.150° D.180°8.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D.若∠A=23°,则∠D的度数是(B)A.23° B.44° C.46° D.57°9.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=3x+23上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为(D)A.3 B.2 C. 3 D. 210.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连接AP,取AP中点Q,连CQ,则线段CQ的最大值为(D)A.3 B.1+ 6 C.1+3 2 D.1+7二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在对应题号的横线上.11.如图,四边形ABCD内接于⊙O,E为CD的延长线上一点.若∠B=110°,则∠ADE 的大小为110°.12.用一个半径为30 cm,面积为300π cm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为10_cm.13.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是100°.14.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点.若∠P=40°,则∠ACB=70°.15.如图,AB是⊙O的直径,点C和点D是⊙O上两点,连接AC,CD,BD.若CA=CD,∠ACD=80°,则∠CAB=40°.16.已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是2或14cm.三、解答题(本大题共9小题,共86分)解答题应写出必要的文字说明或推演步骤.17.(8分)已知:如图,OA,OB为⊙O的半径,C,D分别为OA,OB的中点,求证:AD =BC.证明:∵OA,OB为⊙O的半径,C,D分别为OA,OB的中点,∴OA=OB,OC=OD.在△AOD和△BOC中,⎩⎪⎨⎪⎧OA =OB ,∠O =∠O,OD =OC ,∴△AOD ≌△BOC(SAS). ∴AD =BC.18.(8分)如图所示,一座圆弧形的拱桥,它所在圆的半径为10米,某天通过拱桥的水面宽度AB 为16米,现有一小船高出水面的高度是3.5米,问小船能否从拱桥下通过?解:找出圆心O 的位置,连接OA ,过点O 作OD⊥AB,交⊙O 于点D ,交AB 于点C , ∴AC =BC =12AB =8米.在Rt △AOC 中,AC =8米,OA =10米, 根据勾股定理,得OC =OA 2-AC 2=6米. ∴CD =OD -OC =4米. ∵4>3.5,∴小船能从拱桥下通过.19.(8分)如图,AB 是⊙O 的直径,点C ,D 均在⊙O 上,∠ACD =30°,弦AD =4 cm. (1)求⊙O 的直径; (2)求AD ︵的长.解:(1)∵AB 是⊙O 的直径, ∴∠ADB =90°.∵同弧所对的圆周角相等, ∴∠ABD =∠ACD=30°.在Rt △ABD 中,∠ABD =30°,AD =4 cm , ∴AB =2AD =8 cm. ∴⊙O 的直径为8 cm.(2)连接OD ,则∠AOD=2∠ACD=60°. ∴AD ︵的长为60π×4180=4π3cm.20.(10分)如图,在⊙O 中,弦AB =8,点C 在⊙O 上(C 与A ,B 不重合),连接CA ,CB ,过点O 分别作OD⊥AC,OE ⊥BC ,垂足分别是D ,E.(1)求线段DE 的长;(2)点O 到AB 的距离为3,求⊙O 的半径.解:(1)∵OD 经过圆心O ,OD ⊥AC ,∴AD =DC. 同理:CE =EB ,∴DE 是△ABC 的中位线. ∴DE =12AB =4.(2)过点O 作OH⊥AB,垂足为H ,则OH =3,连接OA , ∵OH ⊥AB ,∴AH =BH =12AB =4.在Rt △AHO 中,OA =AH 2+OH 2=5, ∴⊙O 的半径为5.21.(10分)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC =6 cm ,AC =8 cm ,∠ABD =45°.(1)求BD 的长;(2)求图中阴影部分的面积.解:(1)连接OD ,∵AB 为⊙O 的直径,∴∠ACB=90°.∵BC =6 cm ,AC =8 cm ,∴AB =BC 2+AC 2=10 cm.∴OB =5 cm. ∵OD =OB ,∴∠ODB =∠ABD=45°.∴∠BOD =90°. ∴BD =OB 2+BD 2=5 2 cm.(2)S 阴影=S 扇形OBD -S △OBD =90360π•52-12×5×5=25π-504(cm 2).22.(10分)如图,∠BAC 的平分线交△ABC 的外接圆于点D ,∠ABC 的平分线交AD 于点E.(1)求证:DE =DB ;(2)若∠BAC=90°,BD =4,求△ABC 外接圆的半径.解:(1)证明:∵AD 平分∠BAC,∴∠BAD =∠CAD. 又∵∠CBD=∠CAD,∴∠BAD=∠CBD. ∵BE 平分∠ABC,∴∠CBE =∠ABE.∵∠DBE =∠CBE+∠CBD,∠DEB =∠ABE+∠BAD,∴∠DBE =∠DEB.∴DE=BD. (2)连接DC ,∵∠BAC =90°, ∴BC 是圆的直径.∴∠BDC=90°. ∵∠BAD =∠CAD, ∴BD =CD =4.∴BC=4 2. ∴△ABC 外接圆的半径为2 2.23.(10分)如图,⊙O 的直径CD 垂直于弦AB ,垂足为E ,F 为DC 延长线上一点,且∠CBF =∠CDB.(1)求证:FB 为⊙O 的切线; (2)若AB =8,CE =2,求⊙O 的半径. 解:(1)证明:连接OB.∵CD 是⊙O 的直径,∴∠CBD =90°, 又∵OB=OD ,∴∠OBD =∠D, 又∠CBF=∠D,∴∠CBF =∠OBD, ∴∠CBF +∠OBC=∠OBD+∠OBC. ∴∠OBF =∠CBD=90°,即OB⊥BF. 又∵OB 是⊙O 的半径,∴FB 是⊙O 的切线. (2)∵CD 是⊙O 的直径,CD ⊥AB , ∴BE =12AB =4.设⊙O 的半径是R ,则OE =R -2. 在Rt △OEB 中,根据勾股定理,得R 2=(R -2)2+42,解得R =5. ∴⊙O 的半径为5.24.(10分)如图,AB =AC ,CD ⊥AB 于点D ,点O 是∠BAC 的平分线上一点,⊙O 与AB 相切于点M ,与CD 相切于点N.(1)求证:∠AOC=135°;(2)若NC =3,BC =25,求DM 的长.解:(1)证明:作OE⊥AC 于点E ,连接OM ,ON ,∵⊙O 与AB 相切于点M ,与CD 相切于点N ,∴OM ⊥AB ,ON ⊥CD. 又∵AO 平分∠BAC,OE ⊥AC ,∴OM =OE ,即OE 是⊙O 的半径. ∴AC 是⊙O 的切线.∵ON =OE ,ON ⊥CD ,OE ⊥AC ,∴OC 平分∠ACD. ∵CD ⊥AB ,∴∠ADC =∠BDC=90°.∴∠AOC =180°-12(∠DAC+∠ACD)=180°-45°=135°.(2)∵AD,CD ,AC 是⊙O 的切线,M ,N ,E 是切点, ∴AM =AE ,DM =DN ,CN =CE =3.设DM =DN =x ,AM =AE =y ,则AC =AE +EC =y +3,AD =AM +MD =y +x. ∵AB =AC ,∴BD =AC -AD =3-x. 在Rt △BDC 中,∵BC 2=BD 2+CD 2,∴20=(3-x)2+(3+x)2,解得x =1(负值舍去) ∴DM =1.25.(12分)如图,△ABC 内接于⊙O,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF.(1)判断AF 与⊙O 的位置关系并说明理由; (2)若⊙O 的半径为4,AF =3,求AC 的长.解:(1)AF 与⊙O 相切.理由: 连接OC ,∵PC 为⊙O 切线,∴CP ⊥OC.∴∠OCP=90°. ∵OF ∥BC ,∴∠AOF =∠B,∠COF =∠OCB. ∵OC =OB ,∴∠OCB =∠B.∴∠AOF=∠COF. 又∵OA=OC ,OF =OF ,∴△AOF ≌△COF(SAS). ∴∠OAF =∠OCF=90°,即OA⊥AF. 又∵OA 是⊙O 的半径,∴AF 与⊙O 相切.(2)∵OA=OC ,∠AOF =∠COF,∴AE =CE =12AC ,OE ⊥AC.在Rt △AOF 中,OA =4,AF =3,根据勾股定理,得OF =OA 2+AF 2=5. ∵S △AOF =12OA•AF=12OF•AE,∴AE =125.∴AC =2AE =245.。

人教版九年级数学上册第23章《图形的旋转》单元检测试题2

人教版九年级数学上册第23章《图形的旋转》单元检测试题2

第 23 章旋转单元检测( B 卷)附答案(满分 100 分,时间40 分钟)命题人:陈锦喜单位:矿泉中学试卷命题企图 : 中考取有好多实质操作题,可是考试中有时不行能实质操作,这就需要同学们在平常着手,培育自己的实践操作能力. “旋转”既考察基着手操作有考察图形空间想象能力,本测试题是在掌握本章的知识基础长进行提高和稳固,考察数学解题过程,学生解题的切入点不一样,运用的思想方法不一样,表现出不一样的思想水平。

使不一样思想层次的考生都有表现的时机,进而有效地域分出学生不一样的数学能力。

试卷展望难度为0.6 左右。

一. 选择题 ( 每题 4 分,共 20 分)1.如图 , 过圆心 O和圆上一点 A 连一条曲线 ,将曲线OA绕 O点按同一方向连续旋转三次, 每次旋转900, 把圆分红四部分 , 则( )AA.这四部分不必定相等B.这四部分相等O·C.前一部分小于后一部分D.不可以确立2.图( 1)中,能够经过旋转和翻折形成图案(2)的梯形切合条件为()A.等腰梯形 ; B .上底与两腰相等的等腰梯形 ;C.底角为 60°且上底与两腰相等的等腰梯形;D.底角为 60°的等腰梯形3.按序连结矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B.是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D.没有对称性4.如图,直线y= 3 x+ 3 与y轴交于点P,将它绕着点P 旋转 90?°所得的直线的分析式为().A. y=3x+ 3B. y=-3x+ 3 33C. y= 1x+ 3D. y=-1x+ 3 335.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕极点 A 旋转 180°,点 C 落在C′处,则 CC′的长为()A.4 B .42C.23 D .25二、填空题(每题 4 分,共 20 分)6.以下图的五角星绕中心点旋转必定的角度后能与自己完整重合,则其旋转的角度起码为 __ ______ .7.如图,将 Rt △ ABC 绕点 C 按顺时针方向旋转 90°到△ A?′B′ C 的地点, ?已知斜边AB=?10cm,?BC=?6cm, ?设 A?′ B?′的中点是 M,?连结 AM, ?则 AM= cm .8.以下图,P 是等边△ ABC 内一点,△ BMC 是由△ BPA 旋转所得,则∠PBM =.9.如图,设 P 是等边三角形 ABC 内随意一点,△ ACP′是由△ ABP 旋转获得的,则 PA___ ___PB+ PC(填“ >”、“<”或“=” ).第 8题图第9题图第10题图10.如图, E、F 分别是正方形ABCD 的边 BC、CD 上一点,且BE+ DF = EF,则∠ EAF =____ .三. 解答题(共 60 分)11.( 10 分)作图 (1) 已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC对于点 O成中心对称.(2)已知四边形 ABCD和点 O,求作四边形 A'B'C'D' ,使四边形 A'B'C'D' 和四边形 ABCD对于点 O成中心对称 .12.( 10 分)如图是一个每边长4m 的荷花池, O 到各极点距离相等,计划在池中安装13盏灯,使夜景变得更为美丽。

【初三数学】北京市九年级数学上(人教版)第二十三章旋转单元测试(含答案解析)

【初三数学】北京市九年级数学上(人教版)第二十三章旋转单元测试(含答案解析)

人教版九年级上册第二十三章旋转单元测试(含答案)(3)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°【答案】C 解:∵△ABC 是等腰直角三角形,∴∠CAB =45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB +∠BAB′=125°,故选:C .2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒ 【答案】D 解 ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆∴∠BAD=∠CAE=20°∴BAE ∠=+BAC CAE ∠∠=30°+20°=50°故选D3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.【答案】C解A可以从基本图形转到整体图形;B可以通过旋转将基本图形旋转成整体图形;C不可以通过旋转得到整体图形;D可以通过旋转将基本图形旋转成整体图形。

故选C.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶【答案】A解A 是平移;B是旋转;C是旋转;D是旋转。

故选A5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B.C. D.【答案】D解A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,不符合题意。

故选D。

6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形【答案】D解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等腰直角三角形是轴对称图形,不是中心对称图形,故本选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D、菱形是轴对称图形,也是中心对称图形,故本选项正确.故选:D.7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.【答案】C解:如图:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=60°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°−∠C=90°−60°=30°,∴∠DAE=∠CAF+∠CAE=30°+65°=95°,∴∠BAC=∠DAE=95°.故选:C.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B 、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为( )A.(30,0)B.(32,0)C.(34,0)D.(36,0)【答案】D 解根据图形,每3个图形为一个循环组, ,图⑨的直角顶点在x 轴上,横坐标为 ,图⑨的顶点坐标为 ,图⑩的直角顶点与图⑨的直角顶点重合,图⑩的直角顶点的坐标为 .故选D.9.如图,将ABC △绕点B 顺时针旋转60︒得到DBE ,点C 的对应点E 落在AB 的延长线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=【答案】C 解如图,因为ABC △绕点B 顺时针旋转60︒得到DBE ,所以60ABD CBE ︒∠=∠=,AB=BD ,∠C=∠E所以ADB △是等边三角形,又∠COF=∠EOB所以=60EFC CFO CBE ︒∠=∠=∠因为∠C 的大小未知,所以∠COF不能确定,故选:C10.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4,则以下四个结论中:①△BDE是等边三角形;②AE∥BC;③△ADE的周长是9;④∠ADE=∠BDC.其中正确的序号是()A.②③④B.①②④C.①②③D.①③④【答案】D解:∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,所以①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∠BCD=∠BAE=60°,∴∠BAE=∠ABC,∴AE∥BC,所以②正确;∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE≠∠BDC,所以④错误;∵△BDE是等边三角形,∴DE=BD=4,而△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD ,∴△AED 的周长=AE+AD+DE=CD+AD+DE=AC+4=5+4=9,所以③正确.故选:D .二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;【答案】4解∵点P (4,-5)与点Q (-4,m+1)关于原点对称,∴m+1=5,解得:m=4,故答案是:4.12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.【答案】2解:如图,作AH ⊥BC 于H .由题意得:∠EAD =∠BAC =120°,∠EAC =∠C =30°,∴AE ∥BC ,∵∠ADH =∠B +∠BAD ,∠B =∠BAD =30°,∴∠ADH =60°,BD =AD =AE =2cm ,∴AH cm ),∵BD =AE ,BD ∥AE ,∴四边形ABDE 是平行四边形,∴S 平行四边形ABCD =BD •AH cm 2).故答案为:2.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.【答案】10.解∵ΔABC 绕点A 逆时针旋转60°得到ΔAB 1C 1∴AC=AC 1,∠CAC 1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC 1=90°,AB=8,AC 1=6,∴在RtΔBAC 1中,BC 1的长10=,故答案为:10.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.【答案】5;解:在Rt △ABC 中,∠A=30°,AC=10,∴BC=12AC=5. 根据旋转的性质可知,B C=BC′,所以BC′=5.故答案为5.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.【答案】解:将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,AE AB ∴=.设AB x =,则CD AE x ==,DE x =60DAG ∠=︒,90GAE ∠=︒,30DAE ∴∠=︒,在Rt ADE ∆中,2AE DE =,(2x x ∴=,解得x =故答案为:16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.【答案】150解将△BCD 绕点B 逆时针旋转60°得到△ABD',∴BD=BD',AD'=CD,∴∠DBD'=60°,∴△BDD'是等边三角形,∴∠BDD'=60°,∵BD=1,DC=2,∴DD'=1,AD'=2,在△ADD'中,AD'2=AD2+DD'2,∴∠ADD'=90°,∴∠ADB=60°+90°=150°,故答案为150.三、解答题:(共72分)17.如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.【答案】(1)图形见解析(2)(-1,1)【解析】解:(1)如图所示:(2)如图所示,A 1(-1,1).18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.【答案】(1)等边三角形,理由见解析;(2)5解:(1)BPP ∆’是等边三角形.理由:BP 绕点B 顺时针旋转60︒至BP ',BP BP ∴=',60PBP ∠=︒;BPP ∴∆'是等边三角形.(2)BPP ∆'是等边三角形,60BPP ∴∠'=︒,3PP BP '==,1506090P PC BPC BPP ∠'=∠-∠=-︒=︒;在Rt △P PC ''中,由勾股定理得5P C '=,∵60ABC BPP ∠=∠'=︒,∴∠ABP =∠CB P ' 人教版九年级上册第二十三章旋转单元测试(含答案)一、选择题1、在图所示的4个图案中既有图形的旋转,还有图形轴对称的是( )2、右边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是( D )A ①⑤B ②④C ③⑤D ②⑤3、在我国古代数学家赵爽所著《勾股圆方图注》中所画的图形(如图),下列说法正确是()A 它是轴对称图形,但不是中心对称图形B 它是轴对称图形,又是中心对称图形C 它是中心对称图形,但不是轴对称图形D 它既不是轴对称图形,也不是中心对称图形4、下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷

2024-2025学年人教新版九年级上册数学《第23章+旋转》单元测试卷

2024-2025学年人教新版九年级上册数学《第23章旋转》单元测试卷一.选择题(共10小题,满分30分)1.如图,若点M是等边△ABC的边BC上一点,将△AMC绕点A顺时针旋转得到△ANB,连接MN,则下列结论:①∠BMN=30°;②MN=AM;③BN∥AM,其中正确的个数有()A.3个B.2个C.1个D.0个2.把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°3.下列图形是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(3,1)5.我国杨秉烈先生在上世纪八十年代发明了繁花曲线规画图工具,利用该工具可以画出许多漂亮的繁花曲线,繁花曲线的图案在服装、餐具等领域都有广泛运用.下面四种繁花曲线中,是轴对称图形的是()A.B.C.D.6.如图,三个完全相同的四边形组成的图案绕点O旋转可以和原图形重合,则旋转角可以是()A.60°B.90°C.120°D.150°7.将如图所示的图案通过平移后可以得到的图案是()A.B.C.D.8.李明家有一个时钟,假期间,某天上午他8点整出门锻炼,回家时发现时针刚好旋转了60°,那么李明回家的时间是()A.9点整B.9点半C.10点整D.10点半9.如图,已知点A(﹣1,0),B(0,2),A与A′关于y轴对称,连结A′B,现将线段A′B以A′点为中心顺时针旋转90°得A'B',点B的对应点B′的坐标为()A.(3,1)B.(2,1)C.(4,1)D.(3,2)10.如图,在正方形网格中,A,B,C,D,E,F,G,H,M,N是网格线交点,△ABC与△DEF关于某点对称,则其对称中心是()A.点G B.点H C.点M D.点N二.填空题(共10小题,满分30分)11.在圆、正六边形、正八边形中,属于中心对称图形的有个.12.在平面直角坐标系中,若点A(a,3)与点B(﹣1,b)于原点对称,则a+b=.13.时钟从下午3时到晚上9时,时针沿顺时针方向旋转了度.14.如图,点O是矩形ABCD的对称中心,点P,Q分别在边AD,BC上,且PQ经过点O,AB=6,AP =3,BC=8,点E是边AB上一动点.则△EPQ周长的最小值为.15.如图,方格纸中每个小正方形的边长均为1,已知A(﹣1,3),B(﹣4,4),C(﹣2,1).(1)画△ABC关于原点成中心对称的△A1B1C1;(2)若第二象限存在点D,使点A、B、C、D构成平行四边形,则D的坐标为.16.如图,在平面直角坐标系中有一个航空母舰的简图.若将该图案各个顶点的纵坐标保持不变,横坐标都减去3,则所得到的新图案是由原图案向平移3个单位长度得到的.17.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n的最小值为.18.如图是由中国结和雪花两种元素组成的一个图案,这个图案绕着它的旋转中心旋转角度α°(0°<α<360°)后能够与它本身重合,则角α最小是度.19.如图,小刚利用计算机绘制了一个树叶图案,曲线C1为抛物线的一部分,顶点为A,曲线C2与曲线C1关于直线y=﹣x对称,点B为点A的对称点,则点B的坐标为.20.如图,O是△ABC内的点,AB=AC,∠BAC=90°,∠BOC=130°,将△AOB绕点A按逆时针方向旋转90°,得到△ADC,连接OD.设∠AOB为α,当△COD为等腰三角形时,α为.三.解答题(共6小题,满分60分)21.如图,这是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,求BB'的长.22.已知点M(3m﹣2,2m+1),解答下列问题:(1)若点M与(﹣7,﹣7)关于原点对称,求点m的值;(2)若点N(3,9),且直线MN平行于x轴,求点M的坐标.23.如图,在五边形ABCDE中,∠EAB=∠BCD=90°,AB=BC,∠ABC=α,AE+CD=DE.(1)将△ABE绕点B顺时针旋转α,画出旋转后的△BCM,并证明D、C、M三点在一条直线上;(2)求证:△EBD≌△MBD.24.如图3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.25.如图,在△ABC中,AB=BC,点O是AC边上的中点,将△ABC绕着点O旋转180°得到△ACD.(1)求证:四边形ABCD是菱形;(2)如果∠ABC=30°,BC=2,求菱形ABCD的面积.26.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.参考答案与试题解析一.选择题(共10小题)1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C二.填空题(共10小题)11.【答案】见试题解答内容12.【答案】﹣2.13.【答案】180.14.【答案】.15.【答案】(1)见解答.(2)(﹣5,2)或(﹣3,6).16.【答案】左.17.【答案】见试题解答内容18.【答案】60.19.【答案】(﹣2,0).20.【答案】85°或115°或145°.三.解答题(共6小题)21.【答案】4.22.【答案】(1)m=3;(2)M(10,9).23.【答案】(1)画图见解析,证明见解析;(2)见解析.24.【答案】见解析.25.【答案】(1)略;(2)2.26.【答案】见试题解答内容。

最新2019-2020年度人教版九年级数学上册《旋转》单元测试卷及解析-精品试题

最新2019-2020年度人教版九年级数学上册《旋转》单元测试卷及解析-精品试题

《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第象限.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= .边形ABCD三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?20.如图,请画出△ABC关于点O点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.《第23章旋转》参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第三象限.【考点】关于原点对称的点的坐标.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P1所在象限.【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P1在第三象限.故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB 上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= 25 .边形ABCD【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE=S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S△ABE=S△ADF,∴四边形AECF是边长为5的正方形,∴S四边形ABCD=S正方形AECF=52=25.故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD≌△AEB,所以可知点B旋转到什么位置是点D.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≌△DFA,∴可知点B旋转到什么位置是点D.【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC关于点O点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO 并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是 6 ,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=>a,BF=|AB﹣AF|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,∴∠OAD=∠ODA,∴OA=OD,点O在AD的垂直平分线上,∴直线BO是AD的垂直平分线,即BO⊥AD;方法二:延长BO交AD于点G,同方法一,OA=OD,在△ABO和△DBO中,,∴△ABO≌△DBO,∴∠ABO=∠DBO,在△ABG和△DBG中,,∴△ABG≌△DBG,∴∠AGB=∠DGB=90°,∴BO⊥AD.【点评】本题综合考查全等三角形、等腰三角形和旋转的有关知识.注意对三角形全等知识的综合应用.。

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。

人教版九年级数学上《第23章旋转》单元测试题含答案

人教版九年级数学上《第23章旋转》单元测试题含答案

第23章 旋转一、选择题1.在平面直角坐标系中,点A (﹣2,1)与点B 关于原点对称,则点B 的坐标为( )A .(﹣2,1)B .(2,﹣1)C .(2,1)D . (﹣2,﹣1)2.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交边AD 、BC 与E 、F 两点,则阴影部分的面积是( )A .1B .2C .3D . 43.如图,△ABC 绕着点O 按顺时针方向旋转90°后到达了△CDE 的位置,下列说法中不正确的是( )A .线段AB 与线段CD 互相垂直 B .线段AC 与线段CE 互相垂直C .点A 与点E 是两个三角形的对应点D .线段BC 与线段DE 互相垂直 4.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A =45°,∠D =30°,斜边AC =BD =10,若将三角板DEB 绕点B 逆时针旋转45°得到△D′E′B,则点A 在△D′E′B 的( )A .内部B .外部C .边上D .以上都有可能 5.如图,如果正方形ABCD 旋转后能与正方形CDEF 重合,那么图形所在平面内,可作为旋转中心的点个数( )A .1个B .2个C .3个D .4个6.如图,直线y =-43x +4与x 轴、y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)7.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是( )A.4 B.5 C.6 D.89.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE 与△COF成中心对称,其中正确的个数为( )A.2个 B.3个 C.4个 D.5个10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)二、填空题11、将一个直角三角尺AOB绕直角顶点O旋转到如图3所示的位置,若∠AOD=110°,则旋转角的角度是______°,∠BOC =______°.12、时钟6点到9点,时针转动了__度.13.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90°得△A ′B ′O ,则点A 的对应点A ′的坐标为_ _.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15.如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C 是对应点),点B′恰好落在BC 边上,则∠C=__ __度.16.如图,已知抛物线C 1,抛物线C 2关于原点对称.若抛物线C 1的解析式为y =34(x +2)2-1,那么抛物线C 2的解析式为__ __.三、解答题17.在如图所示的直角坐标系中,解答下列问题:(1)分别写出A ,B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1.18.直角坐标系第二象限内的点P(x 2+2x ,3)与另一点Q(x +2,y)关于原点对称,试求x +2y 的值.19.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1,BC 1分别交于点E ,F.(1)求证:△BCF≌△BA 1D ;(2)当∠C=α度时,判定四边形A 1BCE 的形状,并说明理由.答案 BACCC DBCDA11、20°、70°,12、90º ,13. (2,3)14. π15. 10516. y =-34(x -2)2+1 17.解:(1)由点A 、B 在坐标系中的位置可知:A (2,0),B (-1,-4);(2)如图所示:2)如图所示:18 解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-719解:(1)∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,由ASA可证△BCF≌△BA1D(2)四边形A1BCE是菱形,理由如下:∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∵∠C=α,∴∠AED=∠C,∴A1E∥BC,由(1)知△BCF≌△BA1D,∴∠C=∠A1,∴∠A1=∠AED=α,∴A1B ∥AC,∴四边形A1BCE是平行四边形,又∵A1B=BC,∴四边形A1BCE是菱形。

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册第二十三章旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是()2.下列说法中正确的有()(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=2AC D.AE=AB+CD(第3题)(第4题)(第5题)(第7题) 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5) 6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是()A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为()A.60°B.90°C.100°D.30°8.如图,点A-1,52,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为()A.-1,-52 B.1,52 C.52,1 D.1,-52(第8题)(第9题)(第10题)(第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=2,BP=10,则DP的长度为()A.2 B.6C.22 D.1010.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x 轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标为()A.(3,3)B.(3,-3)C.(-3,1)D.(1,-3)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)(第14题)(第15题)(第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA 绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=10,求BC边的长.21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM 与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB ,过点C 作CP ⊥OA ,垂足为P ,如图所示.∵AB =CB ,OA =OC ,OB =OB ,∴△AOB ≌△COB (SSS ).∴∠AOB =∠COB =12∠AOC =30°.在Rt △AOB 中,AB =2,∠AOB =30°,∴OB =2AB =4.∴OA =OB 2-AB 2=2 3.∴OC =2 3.在Rt △COP 中,∠POC =60°,∴∠OCP =30°.∴OP =12OC =3.∴CP =OC 2-OP 2=3.∴点C 的坐标为(3,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C 的位置和最开始时点C 的位置相同.∴第2025次旋转结束时,点C 的坐标为(3,3).故选A.二、11.6012.(-1,2)13.(1)△EDB(2)814.-1415.4-216.(1)40°(2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA =OB =OP ,进而得∠OBP =∠OPB ,然后根据三角形外角的性质得到∠OBP=12∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG =65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=5,∴DE=5. 18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=10,所以(10)2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH =AC,B=∠ACH,=CH,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°. 23.解:(1)①=②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11∴∠CPN +∠NPB =90°,∠ABP =∠C .∵MP ⊥PN ,∴∠BPM +∠NPB =90°.∴∠BPM =∠CPN .在△MPB 和△NPCBPM =∠CPN ,=CP ,MBP =∠C ,∴△MPB ≌△NPC (ASA ).∴PM =PN .(3)不变.∵S △ABC =4,O 是AC 的中点,P 在O 处,∴S △BCP =12S △ABC =2.由(2)知△MPB ≌△NPC ,∴三角尺PEF 与△ABC 重叠部分的面积=△MPB 的面积+△BON 的面积=△NPC 的面积+△BON 的面积=△BCP 的面积=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第23章旋转单元测试卷
题号一二三四总分得分
一、选择题(本大题共10小题,共30分)
1.下列各交通标志中,不是中心对称图形的是()
A. B. C. D.
2.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点
B′落在DA的延长线上,若AB=2,BC=4,则点C与其
对应点C′的距离为()
A. 6
B. 8
C. 2√5
D. 2√10
3.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕
点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,
连接BB′,则∠B′BC′的度数是()
A. 35°
B. 40°
C. 50°
D. 55°
4.在平面直角坐标系中,点A(−4,3)关于原点对称点的坐标为()
A. (−4,−3)
B. (4,3)
C. (−4,3)
D. (4,−3)
5.下列命题中,是真命题的是()
A. 平行四边形的四边相等
B. 平行四边形的对角互补
C. 平行四边形是轴对称图形
D. 平行四边形的对角线互相平分
6.下列四边形中,是中心对称但不一定是轴对称图形的是()
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
7.如图,△OAB绕点O逆时针旋转到△OCD的位置,已
知∠BOD=80°,∠AOB=45°,则∠AOD等于()
A. 55°
B. 45°
C. 40°
D. 35°
8.下列命题中,真命题是().
①如果两个三角形全等,则它们一定能关于某直线成轴对称;
②如果两个三角形关于某直线成轴对称,那么它们一定是全等三角形;
1 / 5
③到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点;
④成轴对称的两个图形中,对应点的连线被对称轴垂直平分;
A. ①②③
B. ②③④
C. ①③④
D. ①②③④
9.如图,P为正方形ABCD内的一点,△ABP绕点B顺时针旋转得
到△CBE,则△BPE是()
A. 直角三角形
B. 等腰直角三角形
C. 等腰三角形
D. 等边三角形
10.如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕
某点旋转一定的角度得到的,则其旋转中心是().
A. (1,0)
B. (0,0)
C. (−1,2)
D. (−1,1)
二、填空题(本大题共7小题,共21分)
11.如图,将RtΔABC绕直角顶点A顺时针旋转90°,得到
ΔAB’C’,连结BB’,若∠1=20°,则∠C的度数是.
12.下列图形:①正三角形;②正方形;③正六边形;④正八边形.其中是旋转对称
图形,且有一个旋转角为120°的是_________.(填序号)
13.如图,将边长为2cm的正方形ABCD绕点A顺时针旋
转到AB′C′D′的位置,旋转角为30°,则C点运动到C′点
的路径长为______cm.
14.如图:在△ABC中,AB=7,BC=4,那么______<AC<______
15.平面直角坐标系中,点P(1,−3)关于原点对称的点的坐标是______.
16.若点M(3,a−2)与N(−3,a)关于原点对称,则a=______.
17.若点A(2,1)与点B是关于原点O的对称点,则点B的坐标为
______.
三、计算题(本大题共2小题,共16分)
18.如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方
向旋转至与△CBP′重合,若PB=3,求PP′的长.
19.如图,在△ABC中,AB=AC,点P是BC边上的一点,PD⊥
AB于D,PE⊥AC于E,CM⊥AB于M,试探究线段PD、
PE、CM的数量关系,并说明理由.
四、解答题(本大题共5小题,共53分)
20.已知△ABC中,∠ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连
接CD,CE.
(1)求证:△ACD为等腰直角三角形;
(2)若BC=1,AC=2,求四边形ACED的面积.
3 / 5
21.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,
▵ABC的顶点均在格点上,点C的坐标为
(4,−1).
①把▵ABC向上平移5个单位后得到对应的▵A1B1C1,画出▵A1B1C1,并写出C1的
坐标;
②画出▵A1B1C1绕点O逆时针旋转90∘后的▵A2B2C2,并求点C1旋转到C2所经过的
路线长.
22.如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°得
到,且AB⊥BC,连接DE.
(1)∠DBE的度数.
(2)求证:△BDE≌△BCE.
23.四边形ABCD是正方形,△ADF旋转一定角度后得到
△ABE,如图所示,如果AF=4,AB=7.
(1)旋转中心是点______,旋转了______度,DE的长
度是______;(答案直接填)
(2)BE与DF的位置关系如何?请说明理由.(提示:延
长BE交DF于点G)
24.如图,已知△ABC,以BC为边向外作△BCD并连接AD,
把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且点A,C,E在一条直线上,若AB=3,AC=2,求∠BAD的度数与AD的长?
5 / 5。

相关文档
最新文档