数学实验回归分析

合集下载

简单回归分析

简单回归分析

一、线性回归分析若是自变数与依变数都是一个,且Y 和X 呈线性关系,这就称为一元线性回归。

例如,以X 表示小麦每667m 2有效穗数,Y 表示小麦每667m 2的产量,有效穗数即属于自变数,产量即属于依变数。

在这种情形下,可求出产量依有效穗数而变更的线性回归方程。

在另一种情形下,两类变数是平行关系很难分出哪个是自变数,哪个是依变数。

例如,大豆脂肪含量与蛋白质含量的关系,依照需要确信求脂肪含量依蛋白质含量而变更的回归方程,或求蛋白质含量依脂肪含量而变更的回归方程。

回归分析要解决的问题要紧有四个方面:一是依如实验观看值成立适当的回归方程;二是查验回归方程是不是适用,或对回归方程中的回归系数的进行估量;三是对未知参数进行假设考试;四是利用成立起的方程进行预测和操纵。

(一)成立线性回归方程用来归纳两类变数互变关系的线性方程称为线性回归方程。

若是两个变数在散点图上呈线性,其数量关系可能用一个线性方程来表示。

这一方程的通式为:上式叫做y 依x 的直线回归。

其中x 是自变数,y ˆ是依变数y 的估量值,a 是x =0时的y ˆ值,即回归直线在y 轴上的截距,称为回归截距,b 是x 每增加一个单位时,y 将平均地增加(b >0时)或减少(b <0时) b 个单位数,称为回归系数或斜率(regression coefficient or slope )。

要使 能够最好地代表Y 和X 在数量上的互变关系,依照最小平方式原理,必需使将Q 看成两个变数a 与b 的函数,应该选择a 与b ,使Q 取得最小值,必需求Q 对a ,b 的一阶偏导数,且令其等于零,即得:()()⎩⎨⎧∑=∑+∑∑=∑+212xyx b x a yx b an ()()∑∑=--=-=nn Q bx a y yy Q 1min212ˆbx a y +=ˆ()1.7ˆbx a y+=由上述(1)解得:将()代入(2),那么得:()的分子 是x 的离均差与y 的离均差乘积总和,简称乘积和(sum of products ),可记为SP ,分母是x 的离均差平方和,也可记为SS x 。

数学建模-回归分析

数学建模-回归分析
回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:

spass回归分析实验报告

spass回归分析实验报告

上,看哪种模型拟合效果更好从拟合优度(Rsq 即R2)来看,QUA,CUB,POW 效果较好(因为其Rsq 值较大),于是就选QUA,CUB,POW来进行。

重新进行上面的过程,只选以上三种模型。

3、实验结果:Model Summary and Parameter EstimatesDependent Variable:远视率EquationModel Summary Parameter EstimatesRSquare F df1 df2 Sig。

Constant b1 b2 b3Linear。

674 22。

7101 11 .001 74.006—4。

768Logarith mic .793 42.251 1 11 。

000 156。

773-57.574Inverse。

883 83.244 1 11 。

000 -40。

567 615.321Quadrati c .94382。

1142 10 .000 192.085-26.567。

908Cubic.959 69。

5383 9 .000 290.851—54。

7173.398 —。

069Compound。

794 42.445 1 11 .000 308。

120 .731Power.861 68.413 1 11 .000 49462.724—3。

638S .877 78.119 1 11 .000 -1。

502 37.175Growth.794 42。

4451 11 。

000 5。

730 —。

314Exponen tial .79442。

4451 11 。

000 308.120 -.314Logistic 。

794 42.445 1 11 。

000 .003 1。

369The independent variable is 年龄.分析:可以用Cubic拟合曲线图的拟合效果最好.第四题:棉花单株在不同时期的成铃数(y)与初花后天数(x)存在非线性的关系,假设这一非线性关系可用Gompertz模型表示:y=b1*exp(-b2*exp(—b3*x))。

回归分析 实验报告

回归分析 实验报告

回归分析实验报告1. 引言回归分析是一种用于探索变量之间关系的统计方法。

它通过建立一个数学模型来预测一个变量(因变量)与一个或多个其他变量(自变量)之间的关系。

本实验报告旨在介绍回归分析的基本原理,并通过一个实际案例来展示其应用。

2. 回归分析的基本原理回归分析的基本原理是基于最小二乘法。

最小二乘法通过寻找一条最佳拟合直线(或曲线),使得所有数据点到该直线的距离之和最小。

这条拟合直线被称为回归线,可以用来预测因变量的值。

3. 实验设计本实验选择了一个实际数据集进行回归分析。

数据集包含了一个公司的广告投入和销售额的数据,共有200个观测值。

目标是通过广告投入来预测销售额。

4. 数据预处理在进行回归分析之前,首先需要对数据进行预处理。

这包括了缺失值处理、异常值处理和数据标准化等步骤。

4.1 缺失值处理查看数据集,发现没有缺失值,因此无需进行缺失值处理。

4.2 异常值处理通过绘制箱线图,发现了一个销售额的异常值。

根据业务经验,判断该异常值是由于数据采集错误造成的。

因此,将该观测值从数据集中删除。

4.3 数据标准化为了消除不同变量之间的量纲差异,将广告投入和销售额两个变量进行标准化处理。

标准化后的数据具有零均值和单位方差,方便进行回归分析。

5. 回归模型选择在本实验中,我们选择了线性回归模型来建立广告投入与销售额之间的关系。

线性回归模型假设因变量和自变量之间存在一个线性关系。

6. 回归模型拟合通过最小二乘法,拟合了线性回归模型。

回归方程为:销售额 = 0.7 * 广告投入 + 0.3回归方程表明,每增加1单位的广告投入,销售额平均增加0.7单位。

7. 回归模型评估为了评估回归模型的拟合效果,我们使用了均方差(Mean Squared Error,MSE)和决定系数(Coefficient of Determination,R^2)。

7.1 均方差均方差度量了观测值与回归线之间的平均差距。

在本实验中,均方差为10.5,说明模型的拟合效果相对较好。

第七章 回归分析

第七章  回归分析

第七章回归分析前几章所讨论的内容,其目的在于寻求被测量的最佳值及其精度。

在生产和科学实验中,还有另一类问题,即测量与数据处理的目的并不在于获得被测量的估计值,而是为了寻求两个变量或多个变量之间的内在关系,这就是本章所要解决的主要问题。

表达变量之间关系的方法有散点图、表格、曲线、数学表达式等,其中数学表达式能较客观地反映事物的内在规律性,形式紧凑,且便于从理论上作进一步分析研究,对认识自然界量与量之间关系有着重要意义。

而数学表达式的获得是通过回归分析方法完成的。

第一节回归分析的基本概念一、函数与相关在生产和科学实验中,人们常遇到各种变量。

从贬值辩证唯物主义观点来看,这些变量之间是相互联系、互相依存的,它们之间存在着一定的关系。

人们通过实践,发现变量之间的关系可分为两种类型:1.函数关系(即确定性关系)数学分析和物理学中的大多数公式属于这种类型。

如以速度v作匀速运动的物体,走过的距离s与时间t之间,有如下确定的函数关系:s=vt若上式中的变量有两个已知,则另一个就可由函数关系精确地求出。

2.相关关系在实际问题中,绝大多数情况下变量之间的关系不那么简单。

例如,在车床上加工零件,零件的加工误差与零件的直径之间有一定的关系,知道了零件直径可大致估计其加工误差,但又不能精确地预知加工误差。

这是由于零件在加工过程中影响加工误差的因素很多,如毛坯的裕量、材料性能、背吃刀量、进给量、切削速度、零件长度等等,相互构成一个很复杂的关系,加工误差并不由零件直径这一因素所确定。

像这种关系,在实践中是大量存在的,如材料的抗拉强度与其硬度之间;螺纹零件中螺纹的作用中径与螺纹中径之间;齿轮各种综合误差与有关单项误差之间;某些光学仪器、电子仪器等开机后仪器的读数变化与时间之间;材料的性能与其化学成分之间等等。

这些变量之间既存在着密切的关系,又不能由一个(或几个)变量(自变量)的数值精确地求出另一个变量(因变量)的数值,而是要通过试验和调查研究,才能确定它们之间的关系,我们称这类变量之间的关系为相关关系。

回归分析实验报告

回归分析实验报告

回归分析实验报告实验报告:回归分析摘要:回归分析是一种用于探究变量之间关系的数学模型。

本实验以地气温和电力消耗量数据为例,运用回归分析方法,建立了气温和电力消耗量之间的线性回归模型,并对模型进行了评估和预测。

实验结果表明,气温对电力消耗量具有显著的影响,模型能够很好地解释二者之间的关系。

1.引言回归分析是一种用于探究变量之间关系的统计方法,它通常用于预测或解释一个变量因另一个或多个变量而变化的程度。

回归分析陶冶于20世纪初,经过不断的发展和完善,成为了数量宏大且复杂的数据分析的重要工具。

本实验旨在通过回归分析方法,探究气温与电力消耗量之间的关系,并基于建立的线性回归模型进行预测。

2.实验设计与数据收集本实验选择地的气温和电力消耗量作为研究对象,数据选取了一段时间内每天的气温和对应的电力消耗量。

数据的收集方法包括了实地观测和数据记录,并在数据整理过程中进行了数据的筛选与清洗。

3.数据分析与模型建立为了探究气温与电力消耗量之间的关系,需要建立一个合适的数学模型。

根据回归分析的基本原理,我们初步假设气温与电力消耗量之间的关系是线性的。

因此,我们选用了简单线性回归模型进行分析,并通过最小二乘法对模型进行了估计。

运用统计软件对数据进行处理,并进行了以下分析:1)描述性统计分析:计算了气温和电力消耗量的平均值、标准差和相关系数等。

2)直线拟合与评估:运用最小二乘法拟合出了气温对电力消耗量的线性回归模型,并进行了模型的评估,包括了相关系数、残差分析等。

3)预测分析:基于建立的模型,进行了其中一未来日期的电力消耗量的预测,并给出了预测结果的置信区间。

4.结果与讨论根据实验数据的分析结果,我们得到了以下结论:1)在地的气温与电力消耗量之间存在着显著的线性关系,相关系数为0.75,表明二者之间的关系较为紧密。

2)构建的线性回归模型:电力消耗量=2.5+0.3*气温,模型参数的显著性检验结果为t=3.2,p<0.05,表明回归系数是显著的。

回归分析数据

回归分析数据回归分析是一种统计方法,用于研究自变量与因变量之间的关系。

它的目的是通过建立数学模型来预测和解释因变量的变化。

在进行回归分析时,数据的收集和整理是至关重要的环节。

本文将介绍回归分析数据的搜集、整理和分析方法。

回归分析的数据搜集通常依赖于可用的数据源。

这些数据源可以是实验室实验、调查问卷、历史记录等。

为了进行回归分析,我们需要收集自变量(也称为解释变量或预测变量)和因变量(也称为被解释变量或响应变量)的数据。

自变量是用来解释因变量的变化的变量,而因变量则是我们想要预测或解释的变量。

在收集回归分析数据时,我们需要注意数据的质量和可信度。

确保数据来源可靠,并且数据收集过程中避免错误或失误的发生。

此外,还要注意数据的完整性和一致性。

如果数据不完整或存在不一致性,可能会影响回归分析的精度和可靠性。

当我们收集到回归分析所需的数据后,需要对数据进行整理和清洗。

数据整理的目的是为了使数据集合规整并符合分析的要求。

在整理数据时,我们首先要对数据进行检查,确认是否存在缺失值、异常值或离群点。

如果发现缺失值,我们可以选择删除这些缺失值,或者使用插补方法进行填充。

异常值和离群点可能是由于数据收集或记录错误造成的,我们需要审查并决定如何处理这些异常值。

数据整理后,我们还可以进行数据变换,如对数转换、标准化等操作,以满足回归分析的假设和前提条件。

完成数据整理后,我们可以开始进行回归分析。

回归分析的主要目的是找到自变量与因变量之间的关系,即建立一个数学模型来描述这种关系。

最常用的回归分析方法是线性回归分析,即通过线性方程来拟合数据。

线性回归模型可以用于预测和解释数值型因变量的变化。

此外,还有其他回归方法,如逻辑回归、多元回归等,用于不同类型的因变量和自变量。

在回归分析中,我们还需要评估模型的拟合程度和预测能力。

拟合程度可以通过计算回归系数和相关系数来衡量。

回归系数表示自变量与因变量之间的变化关系,相关系数则表示变量之间的线性相关度。

数学中各种回归分析方法总结

其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。

经典最小二乘回归以使误差平方和达到最小为其目标函数。

因为方差为一不稳健统计量,故最小二乘回归是一种不稳健的方法。

为减少异常点的作用,对不同的点施加不同的权重,残差小的点权重大,残差大的店权重小。

2、变系数回归地理位置加权3、偏最小二乘回归长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。

而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。

偏最小二乘法在统计应用中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。

偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。

偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。

能够消除自变量选取时可能存在的多重共线性问题。

普通最小二乘回归方法在自变量间存在严重的多重共线性时会失效。

自变量的样本数与自变量个数相比过少时仍可进行预测。

4、支持向量回归能较好地解决小样本、非线性、高维数和局部极小点等实际问题。

传统的化学计量学算法处理回归建模问题在拟合训练样本时,要求“残差平方和”最小,这样将有限样本数据中的误差也拟合进了数学模型,易产生“过拟合”问题,针对传统方法这一不足之处,SVR采用“ε不敏感函数”来解决“过拟合”问题,即f(x)用拟合目标值yk时,取:f(x)=∑SVs(αi-α*i)K(xi,x)上式中αi和α*i为支持向量对应的拉格朗日待定系数,K(xi,x)是采用的核函数[18],x为未知样本的特征矢量,xi为支持向量(拟合函数周围的ε“管壁”上的特征矢量),SVs为支持向量的数目.目标值yk拟合在yk-∑SVs(αi-α*i)K(xi,xk)≤ε时,即认为进一步拟合是无意义的。

5、核回归核函数回归的最初始想法是用非参数方法来估计离散观测情况下的概率密度函数(pdf)。

一元线性回归分析研究实验报告

一元线性回归分析研究实验报告一元线性回归分析研究实验报告一、引言一元线性回归分析是一种基本的统计学方法,用于研究一个因变量和一个自变量之间的线性关系。

本实验旨在通过一元线性回归模型,探讨两个变量之间的关系,并对所得数据进行统计分析和解读。

二、实验目的本实验的主要目的是:1.学习和掌握一元线性回归分析的基本原理和方法;2.分析两个变量之间的线性关系;3.对所得数据进行统计推断,为后续研究提供参考。

三、实验原理一元线性回归分析是一种基于最小二乘法的统计方法,通过拟合一条直线来描述两个变量之间的线性关系。

该直线通过使实际数据点和拟合直线之间的残差平方和最小化来获得。

在数学模型中,假设因变量y和自变量x之间的关系可以用一条直线表示,即y = β0 + β1x + ε。

其中,β0和β1是模型的参数,ε是误差项。

四、实验步骤1.数据收集:收集包含两个变量的数据集,确保数据的准确性和可靠性;2.数据预处理:对数据进行清洗、整理和标准化;3.绘制散点图:通过散点图观察两个变量之间的趋势和关系;4.模型建立:使用最小二乘法拟合一元线性回归模型,计算模型的参数;5.模型评估:通过统计指标(如R2、p值等)对模型进行评估;6.误差分析:分析误差项ε,了解模型的可靠性和预测能力;7.结果解释:根据统计指标和误差分析结果,对所得数据进行解释和解读。

五、实验结果假设我们收集到的数据集如下:经过数据预处理和散点图绘制,我们发现因变量y和自变量x之间存在明显的线性关系。

以下是使用最小二乘法拟合的回归模型:y = 1.2 + 0.8x模型的R2值为0.91,说明该模型能够解释因变量y的91%的变异。

此外,p 值小于0.05,说明我们可以在95%的置信水平下认为该模型是显著的。

误差项ε的方差为0.4,说明模型的预测误差为0.4。

这表明模型具有一定的可靠性和预测能力。

六、实验总结通过本实验,我们掌握了一元线性回归分析的基本原理和方法,并对两个变量之间的关系进行了探讨。

回归分析的原理和应用

回归分析的原理和应用1. 回归分析的基本概念回归分析是一种通过建立数学模型来探究两个或多个变量之间关系的方法。

它的主要目的是了解因变量(响应变量)如何随着自变量变化而变化。

回归分析通过寻找最佳拟合线或曲线,以最小化观测值和预测值之间的差异,并预测新的观测值。

2. 简单线性回归简单线性回归是最基本的回归分析方法之一,它用于探究两个变量之间的线性关系。

在简单线性回归中,只有一个自变量和一个因变量。

该方法假定自变量和因变量之间存在线性关系,并通过最小二乘法来拟合一条直线。

拟合出的直线可以用来预测新的因变量取值。

3. 多元线性回归多元线性回归是在简单线性回归的基础上扩展出来的,它允许有多个自变量。

多元线性回归的主要思想是通过最小化残差平方和来找到最佳拟合函数。

该方法可以帮助我们探究多个自变量对因变量的影响,并进行预测和解释。

4. 回归分析的应用领域回归分析在许多领域都有广泛的应用。

以下是一些常见领域的例子:•经济学:回归分析可以用来研究经济变量之间的关系,如GDP与失业率之间的关系。

•医学研究:回归分析可以用来研究药物剂量与治疗效果之间的关系,或者研究某种特征与疾病发病率的关系。

•社会科学:回归分析可以用来研究教育水平与收入之间的关系,或者研究人口变量与犯罪率之间的关系。

•金融领域:回归分析可以用来研究股票价格与市场指数之间的关系,或者研究利率与债券价格之间的关系。

5. 回归分析的步骤进行回归分析通常需要以下步骤:1.收集数据:收集自变量和因变量的数据,可以通过实验、调查或观测等方式获取。

2.数据清洗:对收集到的数据进行清洗,包括处理缺失值、异常值和离群值等。

3.模型选择:根据研究目的和数据特点,选择合适的回归模型,如简单线性回归或多元线性回归。

4.拟合模型:使用最小二乘法或其他拟合方法,拟合出最佳的回归方程。

5.模型评估:对拟合出的模型进行评估,包括判断模型的拟合优度和统计显著性,通过残差分析检验模型的假设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.66.5 8.46.7 8.6 8.4 6.7];
x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793741 625 854 716 921 595 3353];
2.4
1.85
9.8
14
25.6
7.9
1.60
3.7
6
7.5
1.7
1.78
10.3
15
37.5
14.1
16.4
3.6
7
13.0
4.3
1.76
10.5
16
36.1
14.5
1.64
3.1
8
12.8
3.7
1.76
8.7
17
39.8
14.9
1.67
1.8
9
14.6
3.9
1.75
7.4
18
44.3
15.6
1.68
表11-16
(1)若x1~x3中至多只许选择2个变量,最好的模型是什么?
(2)包含3个自变量的模型比上面的模型好吗?确定最终模型。
(3)对最终模型观察残差,有无异常点,若有,剔除后如何。
三.实验过程
先做y和xi的散点图,来大致判断自变量和因变量的关系。Matlab实现:首先在matlab中输入以下内容
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.6,3.1,1.8];
n=16;m=2;
X=[ones(n,1),x1',x2'];
[b1,bint1,r1,rint1,s1]=regress(y1',X);
subplot(2,1,1)
4.3615
[1.1197 7.6033]
R2=0.8000F=34.0024P<0.0001S2=21.8247
置信区间没有包含0,R较大,p很小。因此,模型可以是:
y=-34.0725+1.2239X1+4.3989X2
(2)将三个变量均包含进去Matlab代码如下:
n=20;
m=3;
X=[ones(n,1),x1',x2',x3'];
rcoplot(r1,rint1)
(2)对于 ,剔除第14个点后
继续剔除第七个点,得到残差及置信区间图如下:
将输出结果汇总成下表:
普通型
回归系数
回归系数估值
回归系数置信区间
107.5601
[75.3160139.8042]
-37.9283
[-57.2842-18.5723]
-3.0314
[-3.7862-2.2767]
x3=[587 643 635 692 1248 643 1964 713 749 7895 762 2793 741 625 854 716 921 595 ];
n=18;
m=2;
X=[ones(n,1),x1',x2'];
[b,bint,r,rint,s]=regress(y',X);
b,bint,s
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,4.9,4.3,3.6,3.1,1.8];
n=15;m=2;
X=[ones(n,1),x1',x2'];
[b1,bint1,r1,rint1,s1]=regress(y1',X);
subplot(2,1,1)
(1)对于 剔除第14、18个点后,输入代码如下:
y1=[22.1,15.4,11.7,10.3,11.4,7.5,13.0,12.8,14.6,18.9,19.3,30.1,28.2,37.5,36.1,39.8];
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.76,1.75,1.74,1.70,1.70,1.68,1.61,1.64,1.67];
[-0.0006 0.0021]
R2=0.8163F=23.6946P<0.0001S2=21.3036
如上表所示,虽然R2等量变化不大,但是β3的置信区间包含了0点,而且β1的置信区间距离0点也比较近。另外,从散点图来分析,y与x3的线性关系也不佳。因此,最终模型是y与x1,x2建立起来的模型。
(3)先观察观察模型残差Matlab代码如下:
rcoplot(r1,rint1)
继续自此基础上剔除第11个点,输入代码如下:
y1=[22.1,15.4,11.7,10.3,11.4,7.5,13.0,12.8,14.6,18.9,30.1,28.2,37.5,36.1,39.8];
x1=[1.89,1.94,1.95,1.82,1.85,1.78,1.76,1.76,1.75,1.74,1.70,1.68,1.61,1.64,1.67];
剔除之后结果如下:
回归系数
回归系数估计值
回归系数置信区间
β0
-35.5229
[-45.1435 -25.9023]
β1
1.6040
[0.7661 2.4418]
β2
3.3581
[1.1590 5.5572]
R2=0.9111F=76.9102P<0.0001S2=9.3423
同未剔除异常点前相比,β估计值改变不大,但是置信区间变短,R2和F值提高,S2值变小。而且残差中没有异常点出现。因此可认为,剔除之后模型变得更精确。最终模型可以是:y=-35.5229+1.6040x1+3.3581x2
四.实验总结
从最终的结果来看,影响犯罪率的因素是失业率与低收入。本题训练了逐步回归命令stepwise来分析多自变量情况下的变量选择问题。而且得到最优的模型还不够,还要分析残差,剔除不符的数据之后再次计算才能得到最终的模型。
题目(二)
一.实验目的
1.了解回归分析的基本原理,掌握MATLAB实现的方法;
数学实验报告
学 院:
班 级:
学 号:
姓 名:
完成日期:2016年6月24日
回归分析
题目(一)
一.实验目的
1.了解回归分析的基本原理,掌握MATLAB实现的方法.
2.练习用回归分析解决实际问题。
二.问题描述
社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比x1、失业率x2和人口总数x3(千人)进行了调查,结果如表11-16所示。
2.练习用回归分析解决实际问题。
二.问题描述
汽车销售商认为汽车销售量与汽油价格、贷款利率有关,两种类型汽车(普通型和豪华型)18个月的调查资料如表,其中 是普通型汽车售量(千辆), 是豪华型汽车售量(千辆), 是汽油价格(元/gal), 是贷款利率(%)
(1)对普通型和豪华型汽车分别建立如下模型:
给出 的估计值和置信区间,决定系数 值及剩余方差等。
x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 17.2 14.3 18.1 23.1 19.1 24.7 18.6 24.9 17.9 22.4 20.2 ];
x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.4 6.7 8.6 8.4 ];
x2=[6.1,6.2,6.3,8.2,9.8,10.3,10.5,8.7,7.4,6.9,5.2,4.9,4.3,3.7,3.6,3.1,1.8,2.3];
n=18;m=2;
X=[ones(n,1),x1',x2'];
[b1,bint1,r1,rint1,s1]=regress(y1',X);
[b2,bint2,r2,rint2,s2]=regress(y2',X);
rcoplot(r,rint)
stepwise(x,y') %进行逐步回归
pause;
n=18;
X=[ones(n,1) x1' x2']; %由前面的逐步回归可以得到包含2个变量x1,x2时s最小[b,bi,r,ri,s]=regress(y',x);
s2=sum(r.^2)/(n-3);
b,bi,s,s2 rcoplot(r,ri) %残差分析
subplot(2,1,1)
rcoplot(r1,rint1)
subplot(2,1,2)
rcoplot(r2,rint2)
得到如下图:
在残差及置信区间的图中,有三个点的残差的置信区间不包含零点,以红色标出。残差应该服从均值为0的正态分布,可以认为这个数据是异常的,偏离了数据整体的变化趋势,给模型的有效性的精度带来不利影响,应予以剔除。剔除点后的模型求解
[b,bint,r,rint,s]=regress(y',X);
b,bint,s
结果如下表所示:
回归系数
回归系数估计值
回归系数置信区间
β0
-36.5104
[-51.4209-21.5998]
β1
1.1908
[-0.0150 2.3965]
β2
4.6840
[1.4149 7.9532]
β3
0.0008
n=20;
m=2;
X=[ones(n,1),x1',x2'];
[b,bint,r,rint,s]=regress(y',X);
相关文档
最新文档