3.2线性规划问题的基本解ppt课件
合集下载
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
人教版高中数学必修5第三章不等式 3.3.2 简单的线性规划问题

钢板张数最少?
分
A规格 B规格 C规格 张数
析: 第一种钢板
2
1
1
x
列 第二种钢板
1
2
3
y
表 成品块数 2x y x 2y x 3y
解:设需截第一种钢板x张,第二种钢板y张,共需截
这两种钢板共z张,则
2x y 15,
x x
2y 3y
18, 27,
x 0,
分析:对应无数个点,即直线与边界线重合时. 作出可行域,结合图形,看直线 l : y ax z
与哪条边界线重合时,可取得最大值.
解:当直线 l : y ax z 与边界
线重合时,有无数个点,
使函数值取得最大值,
此时有 kl kAC .
3
3
k AC
5
, kl
a
ห้องสมุดไป่ตู้. 5
问题的最优解.
(1)在上述问题中,如果每生产一件甲产品
获利3万元,每生产一件乙产品获利2万元,
又当如何安排生产才能获得最大利润?
(2)由上述过程,你能得出最优解与可行域之间的关 系吗?
设生产甲产品x件乙产品y件时,工厂获得的利润为
z,则z=3x+2y.
把z 3x 2 y变形为y 3 x z ,这是斜率为 3 ,
利用平移的方法找出与可行域有公共点 且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解; (4)答:作出答案. 最优解一般在可行域的顶点处取得.
x 4 y 3, 例2 已知x, y满足 3x 5 y 25,设z ax y(a 0),
运筹学课件 第二章线性规划

2020/11/23
广东工业大学管理学院
10
配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
投资问题:如何从不同的投资项目中选出一个投资方案, 使得投资的回报达到最大。
甲
乙
丙
A B C 加工费
x11 60%以上 x12 20%以下 x13 0.50
x21 15%以上 x22 60%以下 x23 0.40
x31 x32 50%以下 x33 0.30
售价
3.40
2.85
2.25
原料成本 2.00 1.50 1.00
限制用量 2000 2500 1200
设该厂每月生产甲品牌糖果(x11 x12 x13)千克,其中用原料A x11千克,用原料B x12千克,用原料C x13千克; 生产乙品牌糖果(x21 x22 x23)千克,其中用原料A x21千克,用原料B x22千克,用原料C x23千克; 生产丙品牌糖果(x31 x32 x33)千克,其中用原料A x31千克,用原料B x32千克,用原料C x33千克。
设一共植了y棵树,男生中有x1人挖坑, x2人栽树, x3人浇水; 女生中有x4人挖坑, x5人栽树, x6人浇水.
max z y
20x1 10x4 y 0 30x2 20x5 y 0
s.t.
25x3
x1
x2
15x6 x3
y 30
0
x4
x5
x6
20
x1, x2 , x3 , x4 , x5 , x6 , y 0
松弛变量
xs 2 (2x1 3x2 x3)
线性规划问题的基本解

am1
x1
am2 x2
L
amn xn
bm
x1 0, x2 0,L , xn 0
1.2 1.3
满足约束条件的X称为线性规划问题的可行解;
X x1, x2, , xn T
所有可行解的集合称为可行域 (feasible region),
使目标函数(1.1)达到最大值的可行解称为最优解(an optimal solution)。
A.基本可行解 B.非基本解
C.非可行解
D.最优解
4. X是线性规划的基本可行解,则有( A. X中的基变量非零,非基变量为零 B. X不一定满足约束条件 C. X中的基变量非负,非基变量为零 D. X是最优解
)。
,P4
1
,P5
0
0
2
0
0
1
分别是变量 x1, x2 , x3, x4 , x5 的系数向量。
max z 3x1 5x2
3x1 2x2 x3
18
3 2 1 0 0
x1
x4 4
A 1 0 0 1 0
2x2
x5 12
0 2 0 0 1
x1, x2 , x3, x4 , x5 0
XB x j1 , x j2 ,L , x jm 表示基变量向量,
X N 表示非基变量向量。
现令所有的非基变量都等于0,即
XN 0
则约束方程(1.2)可化为:
Pj1 x j1 Pj 2 x j 2 L Pjm x jm b
BXB b
1.4
它是一个m个变量m个方程组成的线性方程组,B又是可逆
在上例1中,
对应于 B1 的基解为 X1 0, 0,18, 4,12T
线性规划问题

以上约束方程组有无穷多个解,单纯形法就是 确定这些解的过程
.(1)初始单纯形表: X1 x2 x3 x4 x0
x3
x4
3
5
4
4
1
0
0
1
36
40
-32
-30
0
0
0
在初始单纯形表中,横线上以上部分即为约束方程组
的增广矩阵,而横线以下的这一行由目标函数的系数
组成(注意到目标函数中未出现 x3和x4 及常数项,
X1 X3 x1
0
0 1
x2
8 5 4 5
x3
1 0
x4
3 5 1 5
x0 12 8 256
22 5
0
32 5
对这张单纯形表,横线以上部分对应与原 约束方程组同解的方程组,此时等价地将 原规划问题变为如下问题:
22 32 min z 256 x2 x4 . 5 5
第二节:线性规划的解法 一、几个概念
对线性规划问题称满足全部约束条件的解为线 性规划问题的可行解,全部可行解的集合称为 可行域。使目标函数取最小值的可行解,称为 最优解,此时目标函数的最小值称为最优值。 一般讲,线性规划问题可行解有无穷多个,要从中 找出最优解也是很困难的。通常线性规划问题 的可行域的顶点只有有限多个,将这些点的的标 函数值全算出也是可以的.一般对于两个变量线 性规划问题进行图解法。
3x1 4 x 2 x3 36, 5x1 4 x 2 x 4 40;
以上可以得到问题的标准形 min z 32x 30x .
1 2
s.t.
3x1 4 x2 x3 36 5 x1 4 x2 x4 40 x 0 ( j 1,2,3,4) j
线性规划课件ppt

根据实际问题的特点,选择适合的线性规划模型进行建模和优化。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
详细描述
在选择线性规划模型时,应根据实际问题的特点进行选择。例如,对于简单的最优化问题,可以使用标准型线性规划模型;对于需要约束条件或特殊处理的问题,可以选择扩展型线性规划模型。在建立模型后,还可以使用优化软件对模型进行优化,以提高求解效率和准确性。
CHAPTER
线性规划的求解方法
总结词
最常用的方法
要点一
要点二
详细描述
单纯形法是一种迭代算法,用于求解线性规划问题。它通过不断地在可行解域内寻找新的解,直到找到最优解或确定无解为止。单纯形法的主要步骤包括建立初始单纯形、确定主元、进行基变换和更新单纯形等。该方法具有简单易行、适用范围广等优点,但在某些情况下可能会出现迭代次数较多、计算量大等问题。
在选择变量时,应考虑其物理意义、数据的可靠性和敏感性等因素。
选择变量时,首先要考虑变量的物理意义和实际背景,以便更好地理解模型和求解结果。同时,要重视数据的可靠性,避免使用不可靠的数据导致模型失真或错误。敏感度分析可以帮助我们了解变量对目标函数的影响程度,从而更好地选择变量。
总结词
详细描述
总结词
线性规划在工业生产中的应用已经非常广泛,未来将会进一步拓展其应用领域。
工业生产
线性规划在物流运输领域中的应用也将会有更广阔的前景,例如货物的合理配载、车辆路径规划等。
物流运输
线性规划在金融管理中的应用也将逐渐增多,例如投资组合优化、风险控制等。
金融管理
非线性优化
将线性规划拓展到非线性优化领域是一个具有挑战性的研究方向,但也为线性规划的应用提供了更广阔的发展空间。
软件特点
Lingo具有强大的求解能力,可以高效地解决大规模线性规划问题,同时具有友好的用户界面,方便用户进行模型输入和结果输出。
管理运筹学 线性规划的图解法课件

线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。
线性规划模型 ppt课件

例:求解线性规划问题的最优解
maxz2x23x3x4
x1x2x35 s.t. 2x2x246x3x3x4x5624
x1,x2,x3,x4,x5 0
1 1 1 0 0 0 1 4 1 0
0 2 6 0 1
解:(1)构造初始单纯单纯形表(第1、4 、5列构成的矩阵可逆)所以可取
x0(5,0,0,6,24)
分析和建立模型
(1)确定决策变量:设 x( i i 1, 2, 3, 4)
为第i种矿石的选取的数量(单位10kg) ; (2)确定目标函数:
目标应该是使得总费用最小,即
f 1 0 x 1 1 5 x 2 3 0 x 3 2 5 x 4
达到最小;
(3)确定约束条件:选定的四种矿石的数量 应该满足铸件对三种成分的需求量,并且矿石数 量应该是非负的,即
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
例 (配料问题)某铸造厂生产铸件 ,每件需要20千克铅,24千克铜和30 千克铁。现有四种矿石可供选购,它们 每10千克含有成分的质量(千克)和 价格(元)如图。问:对每个铸件来说 ,每种矿石各应该选购多少,可以使总 费用最少?试建立数学模型。
x( i i 1, 2, 3, 4)
具有以上结构特点的模型就是线性规划模型
,记为LP(Linear Programming),具有以 下一般形式:
s.t.
max(or min) f c1x1 c2 x2 cn xn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2 1 0 0 A 1 0 0 1 0
0 2 0 0 1
向量组 P2 , P4 , P5 是线性无关组
B2 P2,P4,P5 是此问题的一个基
x2 , x4 , x5 是基变量,
而 x1, x3 是非基变量。
9
注:(1)基不一定唯一
(2)设B是A的一个m阶子矩阵,则B是线性规划问题 的基阵,当且仅当B是可逆阵
1.3
记约束方程系数矩阵A的列向量是 P1, P2 , , Pn
即 A P1, P2 , , Pn ,
设 Pj1 , Pj2 ,L , Pjm 是A的m个列向量,
如果 Pj1, Pj2 , , Pjm 是线性无关的, 则称
Pj1, Pj2 , , Pjm 为基向量。
5
3、基变量(basic variables)
X 0
0
为一个基本可行解或基可行
(a basic feasible solution);
相应的基B也称为可行基(feasible base)。
13
max z 3x1 5x2
3x1 2x2 x3
x1
x4
2x2
18 4 x5 12
3 A 1
0
2 0 2
1 0 0
0 1 0
0 0 1
向量组 P3, P4 , P5 是线性无关组
B1 P3,P4,P5 是此问题的一个基
其中x3 , x4 , x5 为基变量,而 x1 , x2 是非基变量。
8
max z 3x1 5x2
3x1 2x2 x3
18
x1
x4 4
2x2
x5 12
x1, x2 , x3, x4 , x5 0
设Pj1 , Pj 2 ,L , Pjm 构成线性规划问题的一组基向量,
则对应的变量 x j1 , x j 2 ,L , x jm 称为基变量, 其余的向量称为非基向量,其余的变量称为非基变量 (non-basic-variable),
矩阵 B Pj1 , Pj2 ,L , Pjm
称为基或基阵(basic matrix)。
x1, x2 , x3, x4 , x5 0
在上例1中,
对应于 B1 的基解为 X1 0, 0,18, 4,12T
是一个基可行解,
对应于 B2 的基解为X2 0, 9, 0, 4, 6。
而不是基可行解。
思考题:试列出例1中问题的所有基解、基可行解。
14
注:给定线性规划问题LP,其基可行 解的数目是有限个,不会超过 Cnm 。
阵,从而得出(1.4)的唯一解
XB B1b
得出约束方程(1.2)至少含有n-m个0元的解
X0
B1b 0
称之为相应于基B的一个基本解或基解(a basic solution)。
12
5、基可行解
设
X0
B1b
0
是对应于基阵B的一个基解,
如果
B b1
X 0
0
0
则称 解.
B b1
是线性规划问题LP的一基阵,
XB x j1 , x j2 ,L , x jm 表示基变量向量,
X N 表示非基变量向量。
现令所有的非基变量都等于0,即
XN 0
11
则约束方程(1.2)可化为:
Pj1 x j1 Pj 2 x j 2 L Pjm x jm b
பைடு நூலகம்
BXB b
1.4
它是一个m个变量m个方程组成的线性方程组,B又是可逆
图1给出了线性规划问题的解的关系。
非可行解
可基
行可
解
行 解
基 解
图1
15
1.设线性规划
max Z 5x1 2x2
2
x1
3x2
x3
50
4x1 2x2 x4 60
am1
x1
am2 x2
L
amn xn
bm
x1 0, x2 0,L , xn 0
1.2 1.3
满足约束条件的X称为线性规划问题的可行解;
X x1, x2, , xn T
所有可行解的集合称为可行域 (feasible region),
使目标函数(1.1)达到最大值的可行解称为最优解(an optimal
B 0。 (3)基的个数≤Cnm
max z 3x1 5x2
3x1 2x2 x3
18
x1
x4 4
2x2
x5 12
x1, x2 , x3, x4 , x5 0
3 2 1 0 0 A 1 0 0 1 0
0 2 0 0 1
10
4、基解
设 B Pj1, Pj2 , , Pjm
am1 x1 am2 x2 L amn xn bm x1 0, x2 0,L , xn 0
1.2 1.3
3
1、可行解 (a feasible solution)
maxz = c1x1 + c2x2 +L + cnxn 1.1
a11 x1 a12 x2 L a1n xn b1 a21 x1 a22 x2 L a2n xn b2 s.t. L L L L
solution)。
4
2、基(base)
max z c1x1 c2x2 cn xn 1.1
a11x1 a12 x2 L a1n xn b1 a21x1 a22 x2 L a2n xn b2 s.t.L L L L
1.2
am1x1 am2 x2 L amn xn bm x1 0, x2 0,L , xn 0
6
例1 max z 3x1 5x2
3 x1 2 x2 x3
18
x1
x4 4
2 x2
x5 12
x1, x2 , x3 , x4 , x5 0
约束方程A的系数矩阵为:
其列向量:
3 2 1 0 0 A 1 0 0 1 0
0 2 0 0 1
3
2
1
0
0
P1
1
,P2
0
,P3
3.2 线性规划问题的基本解
1
基本概念:
可行解、可行域、最优解、基、基变量、基阵、基本可行 解
2
一、基本概念:
给定一个线性规划问题LP
max z c1x1 c2x2 L cnxn 1.1
a11 x1 a12 x2 L a1n xn b1
a21 x1 a22 x2 L a2n xn b2 s.t. L L L L
0
,P4
1
,P5
0
0
2
0
0
1
分别是变量 x1, x2 , x3, x4 , x5 的系数向量。
7
max z 3x1 5x2
3x1 2x2 x3
18
3 2 1 0 0
x1
x4 4
A 1 0 0 1 0
2x2
x5 12
0 2 0 0 1
x1, x2 , x3, x4 , x5 0