第二章命题逻辑的等值和推理演算

合集下载

命题逻辑_ls第2章_2.1

命题逻辑_ls第2章_2.1
例:人不犯我,我不犯人;人若犯我,我必犯人。 解:令 P:人犯我。 Q:我犯人。 该命题符号化为: (PQ)∧(PQ) 或: PQ
2.1.2 命题公式及分类
本节主要讨论:
命题公式的定义 命题公式的层次 命题公式的真值表 命题公式的分类
一、命题公式的概念
命题常项:简单命题。 命题变项:真值可以变化的陈述句。
p∧q 的逻辑关系是 p与q同时为真
p∧q真值表如图所示:
P
Q
P∧ Q
0
0
0
0
1
0
1
0
0
1
1
1
(2) 合取联结词“∧” --且
例如,p: 李军聪明 q: 李军用功 则命题 “李军既聪明又用功” 可描述为: p∧q
以下自然语言中的联结词等都可以抽象为“∧” 。 “并且”、“既…又…”、 “与”、“和”、“以及”、
一、命题公式的概念
例: (1) A = p ∨q,
则 A是2层公式。
(2) A = p ∧ q ∧ r , 则 A是2层公式。
(3) A =(p ∧q) (r ∨s), 则A为4层公式。
二、公式的赋值或解释
定义2.8 (P.44) --公式的赋值或解释
设A 为含有命题变项 p1, p2,…, pn的命题公式, 给 p1, p2, …, pn 一组确定的真值, 称作对公式 A
举例:
令:p:天气好。
q:我去公园。
如果天气好,我就去公园。符号化为:pq
只要天气好,我就去公园。
pq
仅当天气好,我才去公园。
qp
只有天气好,我才去公园。
qp
我去公园玩,除非天气好。
qp
例2.5 将下列命题符号化,并求其真值。

21命题逻辑的等值和推理演算

21命题逻辑的等值和推理演算

A,B代表任意 的命题公式
摩根律 : (AB) = AB,
(AB) = AB
吸收律: A(AB) = A, A(AB) = A
零律:
AT = T, AF = F
同一律: AF = A, AT = A
TA = A, T A = A,
补余律: AA = T, AA = F,
等值公式
2. 常用等值公式
公式A的子公式置换后,A化为公式B,必有A = B
n 等值演算
n 由已知的等值公式推演出新的等值公式的过程 n 如已知: AA = A
则: BAA = BA
n 等值演算的基础: (1) 等值关系的性质:自反、对称、传递 (2) 基本的等值式 (3) 置换规则
三个重要的等值式
P Q = P Q P Q = (P Q) ( P Q )
C
P∧Q
FF
T
T
F
T
P∧Q
FT
T
T
F
F
TF
F
F
T
T
P∧Q
TT
T
F
F 任意
2.3 命题公式与真值表的关系
按真值表列出命题公式的方法
从F来列出
如下表中B为F有二种可能
所以,B的命题公式形式为:□ ∧ □
而取F相应的P、Q解释分别为: P∨Q 、 P∨ Q
所以,B=(P∨Q)∧(P∨Q ) 同理,A= P∨Q
按真值表列出命题公式的方法
从T来列出
如下表中A为T有三种可能
所以,A的命题公式形式为:□∨ □ ∨□ 而取T相应的P、Q解释分别为: P∧Q、P∧Q、 P∧Q
所以,A=(P∧Q) ∨(P∧Q) ∨(P∧Q)

第2章 命题逻辑(1)

第2章 命题逻辑(1)

析取
符号
读作“析取”
定义2.3:设p,q为两命题,复合命题“p或q” 称为p与q的析取式,
记作p Ú q ,符号 称为析取联结词。并规定p q为假当且仅当p与q
同时为假。
真值表:
PQ 00
P Q
0
例子 小李是学数学或者计算
01
1
10
1
11
1
机科学pq p:小李是学数学 q:小李是学计算机 科学
2.1.1 命题与联结词
例3:判断下列命题是否为复合命题
(1)5能被2整除。
原子命题
(2)2是素数当且仅当三角形有三条边。 复合命题
(3)4是2的倍数或是3的倍数。
复合命题
(4)李明与王华是同学。
原子命题
(5)蓝色和黄色可以调配成绿色。
原子命题
(6)3不是偶数。
复合命题
(7)林芳学过英语或日语。
复合命题
合取
例:将下列命题符号化。
(1)吴颖既用功又聪明。
p q
(2)吴颖不仅用功而且聪明。
p q
(3)吴颖虽然聪明,但不用功。
p q
(4)张辉与王丽都是三好学生。
r s
(5)张辉与王丽是同学。
t
p:吴颖用功。
q:吴颖聪明。
r:张辉是三好学生。
s:王丽是三好学生。
t:张辉与王丽是同学。
注意:若“和”、“与”连接的是主语成分,则该陈述句为简单命题。
FT
T
F
F
补充:翻译语句
因为语言(包括一切人类语言)常有二义性,把 句子译成逻辑表达式可以消除歧义
把语言翻译成由命题变量和逻辑联接词组成的表 达式

《离散数学》命题逻辑

《离散数学》命题逻辑
由原子命题组合而成的命题称为复合 命题(compound proposition)。
例如:
和 e 都是无理数。 6和8至少有一个是合数。 说刘老师讲课不好是不正确的。 不下雨我就去买书。
7
命题与命题联结词
将命题连接起来的方式叫做命题联结词
( proposition connective ) 或 命 题 运 算 符
3
命题与命题联结词
逻辑
如何表示? 如何“操作”?
非真即假的陈述句称为命题(proposition)。 一个命题如果是对的或正确的,则称为真命
题,其真值为“真”(true),常用T或1表示; 一个命题如果是错的或不正确的,则称为假
命题,其真值为“假”(false),常用F或0表示。
4
命题与命题联结词
32
命题公式及其分类
为简化公式的形式,作如下规定:
(1) 优先级 , (∧, ∨), (, ) (2) 公式 (~p) 的括号可以省略,写成 ~p (3) 整个公式最外层的括号可以省略
例1
(((p)∧q)(q∨p)) p∧q q∨p
例2
p∧q∨r 不是 命题公式 应写作 (p∧q)∨r 或 p∧(q∨r)
例 判断下列句子哪些是命题,哪些不是
这门课程题为“离散数学”。 这门“离散数学”讲得好吗? X 这门“离散数学”讲得真好! X 请学习“离散数学” 。 X 5是素数。 太阳从西方升起。 如果明天晴,而且我有空,我就去踢球。 天王星上没有生命。 x + 3 > 5。 X 5 本命题是假的。X
俞伯牙和钟子期是好朋友。 俞伯牙是好朋友 ∧ 钟子期是好朋友 俞伯牙 ∧ 钟子期是好朋友 Friend (俞伯牙,钟子期)
23

离散数学第2章 命题逻辑等值演算

离散数学第2章 命题逻辑等值演算
6/2/2013 9:02 PM Discrete Math. , Chen Chen 15
例2.6
CHAPTER TWO
例2.6 在某次研讨会的休息时间,3名与会者根据王教授的口音 对他是哪个省市的人进行了判断: 甲说王教授不是苏州人,是上海人。
乙说王教授不是上海人,是苏州人。 丙说王教授不是上海人,也不是杭州人。 听完3人的判断,王教授笑着说,他们3人中有一人说得全对, 有一人说对了一半,有一人说得全不对。试用逻辑演算法分析 王教授到底是哪里的人? 解: 设命题 p, q, r分别表示 : 王教授是苏州、上海、杭州人。 则p, q, r中必有一个真命题,两个假命题。要通过逻辑演算将 真命题找出来。 设: 甲的判断为: A1= ┐p∧q; 乙的判断为:A2= p∧┐q; 丙的 判断为:A3= ┐q∧r。
等值式模式
CHAPTER TWO
当命题公式中变项较多时,用上述方法判断两个公式是否 等值计算量很大。为此,人们将一组经检验为正确的等值式作 为等值式模式,通过公式间的等值演算来判断两公式是否等值。 常用的等值式模式如下:
1.双重否定律:A⇔ ┐(┐A) 2.幂等律:A⇔A∨A, A⇔A∧A
3.交换律: A∨B⇔B∨A, A∧B⇔B∧A 4.结合律: (A∨B)∨C⇔A∨(B∨C), (A∧B)∧C⇔A∧(B∧C) 5.分配律:A∨(B∧C)⇔(A∨B)∧(A∨C) (∨对∧的分配律)
⇔ ┐(┐p∨q)∨r (蕴含等值式,置换规则) ⇔ (p∧┐q)∨r (德摩根律,置换规则)
⇔(p∨r)∧(┐q∨r)(分配律,置换规则) 为简便起见, 以后凡用到置换规则时, 均不必标出。
6/2/2013 9:02 PM Discrete Math. , Chen Chen 10

离散数学-第二章命题逻辑

离散数学-第二章命题逻辑

设A( P1,P2,…,Pn )是一个命题公式,
P1,P2,…,Pn是出现于其中的全部命题变元,对P1, P2,…,Pn分别指定一个真值,称为对P1,P2,…,Pn公式A 的一组真值指派。
列出命题公式A在P1,P2,…,Pn的所有2n种真值指 派下对应的真值,这样的表称为A的真值表。
16
例3
值表。
例12 用符号形式表示下列命题。
(1) (2) 如果明天早上下雨或下雪,那么我不去学校 如果明天早上不下雨且不下雪,那么我去学校。
(3)
(4)
如果明天早上不是雨夹雪,那么我去学校。
只有当明天早上不下雨且不下雪时,我才去学校。 解 令P:明天早上下雨; Q:明天早上下雪; R:我去学校。 (1)(P∨Q)→ ¬ R; (2)(¬ ∧¬ P Q)→R; (3)¬ (P∧Q)→R (4)R→(¬ ∧¬ Q) P
4
例4
2.合取“∧” 定义2.2.2
设P和Q是两个命题,则P和Q的合取 是一个复合命题,记作“P ∧ Q”(读作“P且Q”)。
当且仅当命题P和Q均取值为真时,P ∧ Q才取值为真。
P 0 0 1 1 Q 0 1 0 1 P∧Q 0 0 0 1
例5
设P:我们去看电影。Q:房间里有十张桌子。则
P ∧ Q表示“我们去看电影并且房间里有十张桌子。”
5
3. 析取“∨” 定义2.2.3
设P和Q是两个命题,则P和Q的析取是一个复 合命题,记作“P∨Q”(读作“P或Q”)。
当且仅当P和Q至少有一个取值为真时,P∨Q取值为真。
P
0 0 1 1 Q 0 1 0 1 P∨Q 0 1 1 1
例6 设命题P:他可能是100米赛跑冠军;
Q:他可能是400米赛跑冠军。

离散数学第二章 命题逻辑等值演算

离散数学第二章 命题逻辑等值演算

范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一

交大数理逻辑课件2-3 命题逻辑的等值和推理演算

交大数理逻辑课件2-3 命题逻辑的等值和推理演算

9. Q (PQ) PBiblioteka 拒取式基本的推理公式
10. (PQ)(QR) PR 假言三段论 11.(PQ)(QR) P R 等价三段论 12. (PR)(QR) (PQ) R 13. (PQ)(RS)(PR) QS 构造性二难 14. (PQ)(RS)( QS) (PR) 破坏性二难 15. (QR) ((PQ) (PR)) 16. (QR) ((PQ) (PR))
附加前提证明法 ——举例
例如:证明下列推理。 前提: P(QR),S∨P, Q 结论: S R 证明:(1) S P 前提 (2) S 附加前提引入 (3) P (1)(2) 析取三段论 (4) P (Q R) 前提 (5) Q R (3)(4) 假言推理 (6) Q 前提 (7) R (5)(6) 假言推理
((PQP Q
例:判断下面推理是否正确
(1)若天气凉快,小王就不去游泳。天气凉快,所 以小王没去游泳。 ③判断 ((PQ)P) Q是否为重言式 方法3:主析取范式法 ((PQ)P) Q = ((PQ)P)Q = (PQ) P Q = m11m0xmx0 = m11m00m01m00m10 = (0,1,2,3) = T ((PQP Q
(PQ(RS(PRQS 构造性二难
写出对应下面推理的证明
在大城市球赛中,如果北京队第三,那么如果上海队第 二,则天津队第四;沈阳队不是第一或北京队第三,上海队第 二。从而知:如果沈阳队第一,那么天津队第四。 解:设 (1) P (Q R) 前提 P:北京队第三 Q:上海队第二 (2) Q (P R) (1)置换 R:天津队第四 (3) Q 前提 S:沈阳队第一 (4) P R (2)(3)假言推理 前提:
P(QR),S∨P, Q 结论: S R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等值演算(考察逻辑关系符 ):
1)等值定理、公式 2)由真值表写命题公式(由T写、由F写) 3)联结词的完备集(由个别联结词表示所
有联结词的问题) 4)对偶式(命题公式的对偶性) 5)范式(命题公式的统一标准)
推理演算(考察逻辑关系符 ) :
1)推理形式(正确推理形式的表示)
2)基本推理公式(各种三段论及五种证明 方法)
例1: 证明(P∧P)∨Q = Q
证明: 画出(P∧P)∨Q与Q的真值表可看出等 式是成立的。
例2: 证明P∨P = Q∨Q
证明: 画出P∨P, Q∨Q的真值表, 可看出 它们是等值的, 而且它们都是重言式。
等值定义补充说明:两个公式等值并不要 求它们一定含有相同的命题变项。若仅在 等式一端的公式里有变项P出现, 那么等式 两端的公式其真值均与P无关。例1中公式 (P∨P) ∨Q与Q的真值都同P无关, 例2中 P∨P, Q∨Q都是重言式, 它们的真值也都 与P、Q无关。
对蕴涵词、双条件词作否定有 (PQ) = P∧Q
(PQ) = PQ = PQ = (P∧Q)∨(P∧Q)
8. 同一律 P∨F = P P∧T = P TP = P TP = P
还有 PF = P FP = P
9. 零律 P∨T = T P∧F = F
还有
PT = T FP = T 10. 补余律 P∨P = T P∧P = F 还有
证明:
左端= (P∧(Q∧R)) ∨((Q∨P)∧R) (分配律)
=((P∧Q)∧R))∨((Q∨P)∧R) (结合律)
=((P∨Q)∧R)∨((Q∨P)∧R) (摩根律)
=((P∨Q)∨(Q∨P))∧R
(分配律)
=((P∨Q)∨(P∨Q))∧R
(交换律)
=T∧R
(置 换)
=R
(同一律)
例2: 试证 ((P∨Q)∧(P∧(Q∨R)))
2.2.3 置换规则 (注意与代入规则p8的区别)
置换定义:对公式A的子公式, 用与之等值的 公式来代换便称置换。
置换规则:将公式A的子公式置换后,A化为 公式B, 必有A = B。
置换与代入是有区别的:代入规则要求操作 重言式、对所有同一命题变元都作代换
2.2.4 等值演算举例
例1: 证明(P∧(Q∧R))∨(Q∧R)∨(P∧R) = R
2.1.2 等值定理
定理2.1.1 对公式A和B, A = B的充分必要 条件是A B是重言式。 即任意解释下,A和B都有相同的真值。
证明:定理中的两部分都与上一行等同。
❖ “=”作为逻辑关系符是一种 等价关系
A = B是表示公式A与B的一种关系。这种关 系具有三个性质: 1. 自反性 A = A。 2. 对称性 若A = B则B = A。 3. 传递性 若A = B, B = C则A = C。 这三条性质体现了“=”的实质含义。
∨(P∧Q)∨(P∧R) = T
证明:
左端=((P∨Q)∧(P∨(Q∧R)))∨((P∨Q)∧(P∨R)) (摩根律)
=((P∨Q)∧(P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R))
(分配律)
=((P∨Q)∧(P∨R))∨((P∨Q)∧(P∨R)) (等幂律)
=T (置换规则)
2.3 命题真值表是容易 的,那么如何由真值表写命题公式呢?
2.3.1 从T来列写 1.记忆方法:各项间用∨,每项内用∧ 2.每项内书写方法:例
12. 逆否定理 PQ=QP
13. 前提合并 P(QR) = (P∧Q)R
17. 前提交换 P(QR) = Q(PR)
18. 另一种前提合并 (PR) ∧(QR)=(P∨Q)R
14. 从取真来描述双条件词
PQ = (P∧Q)∨(P∧Q)
15.从取假来描述双条件词
PQ = (P∨Q)∧(P∨Q)
16. 从蕴涵词描述双条件词 PQ = (PQ)∧(QP)
PQ=QP 4. 分配律
P∨(Q∧R) = (P∨Q)∧(P∨R) P∧(Q∨R) = (P∧Q)∨(P∧R)
P(QR) = (PQ)(PR) 5. 等幂律(恒等律)
P∨P = P P∧P = P
PP = T
PP = T
6. 吸收律 P∨(P∧Q) = P P∧(P∨Q) = P
7. 摩根律 (P∨Q) = P∧Q (P∧Q) = P∨Q
2.2 等值公式 (真值表验证,Venn图理解)
2.2.1 基本的等值公式(特别注意蓝色字) 1. 双重否定律 P = P 2. 结合律 (P∨Q) ∨R = P∨(Q∨R) (P∧Q) ∧R = P∧(Q∧R) (P Q) R = P (Q R)
3. 交换律 P∨Q = Q∨P P∧Q = Q∧P
PP = P PP = P PP = F
Venn图
这种图是将P、Q理解为某总体论域上 的子集合, 而规定P∧Q为两集合的公 共部分(交集合), P∨Q为两集合的全 部(并集合), P为总体论域(如矩形域) 中P的余集。
Venn图实例
1. P∨(P∧Q) = P 2. P∧(P∨Q) = P
3. (P∨Q) = P∧Q
Venn图可以用来理解 集合间、命题逻辑中、 部分信息量间的一些 关系。
2.2.2 若干常用的等值公式
等值演算中,由于人们对、∨、∧更为熟 悉,常将含有和的公式化成仅含有、 ∨、∧的公式。这也是证明和理解含有, 的公式的一般方法。但后面的推理演算 中,更希望见到和.
11. PQ = P ∨Q
第二章命题逻辑的等值和推理演算
内容:推理形式和推理演算是数理逻辑研 究的基本内容。
推理演算要用正确的推理:推理形式由前 提和结论经蕴涵词联接而成。我们关注正 确的推理形式 。正确的推理形式可由逻辑 关系符表达。
非形式描述:本章对命题等值和推理演算 进行的讨论,是以语义的观点进行的非形 式的描述。
3)推理演算(证明推理公式的第六种方法, 使用推理规则)
4)归结推理法(证明推理公式的第七种方 法,常用反证法)
2.1 等值定理
2.1.1 等值的定义
等值的定义:给定两个命题公式A和B, 而P1…Pn是出现于A和B中的所有命题 变项, 那么公式A和B共有2n个解释, 若 对其中的任一解释, 公式A和B的真值都 相等, 就称A和B是等值的(或等价的)。 记作A = B或A B。注意逻辑关系词
相关文档
最新文档