最新离散数学-第二章命题逻辑等值演算习题及答案
离散数学,命题逻辑等值演算

任何命题公式都存在与之等值的主 析取范式和主合取范式,并且是唯 一的。
证明: (1)存在性:等值演算 (2)唯一性:反证法
例题与练习
【例2.8】求主析取范式与主合取范式: (p→q)↔r
合取范式 (p∨r) ∧ (¬q∨r) ∧ (¬p∨q∨¬r)
析取范式 (p∧¬q∧¬r)∨( ¬p∧r )∨( q∧r )
p(qr)
1 1 1 1 1 1 0 1
(pq)r
0 1 0 1 1 1 0 1
(p∧q)r
1 1 1 1 1 1 0 1
十六组重要的等值式(模式)
• 1.双重否定律 A¬¬A
• 2.幂等律 A∧A A,A∨A A
• 3.交换律 A∨B B∨A,A∧B B∧A
• 4.结合律 (A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
2.3 联结词的完备集
定义2.6
n元真值函数F:{0,1}n →{0,1}
定理
• 每个真值函数,都一一对应一个真值表。每个真 值函数,都存在许多与之等值的命题公式。反之, 每个命题公式对应唯一的与之等值的真值函数。
定义2.7
• 设S是联结词集合,如果任何n元真值函数 都可以由仅含S中的联结词构成的公式表 示,则称S是联结词完备集。
p∧q∧r
成真赋值
000 001 010 011 100 101 110 111
名称
m0 m1 m2 m3 m4 m5 m6 m7
极大项
极大项
p∨q∨r p∨q∨¬r p∨¬q∨r p∨¬q∨¬r ¬p∨q∨r p∨q∨¬r ¬p∨¬q∨r ¬p∨¬q∨¬r
成假赋值 名称
000
M0
001
离散数学-2.2-3命题逻辑等值演算.ppt

2.3 范式
• 2.3.1 析取范式与合取范式
– 简单析取式与简单合取式 – 析取范式与合取范式
• 2.3.2 主析取范式与主合取范式
– 极小项与极大项 – 主析取范式与主合取范式 – 主范式的用途
15
简单析取式与简单合取式
文字:命题变项及其否定的统称 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, …
29
主析取范式的用途
(1) 求公式的成真赋值和成假赋值 设公式A含n个命题变项, A的主析取范式有s个极小项, 则A 有s个成真赋值, 它们是极小项下标的二进制表示, 其余2n-s 个赋值都是成假赋值
例如 (pq)r m0 m2 m4 m5 m6 成真赋值: 000,010,100,101,110; 成假赋值: 001,011,111
范式:析取范式与合取范式的统称
定理2.4 (1) 一个析取范式是矛盾式当且仅当它的每一个 简单合取式都是矛盾式 (2) 一个合取范式是重言式当且仅当它的每一个简单析取 式都是重言式
17
范式存在定理
定理2.5 任何命题公式都存在着与之等值的析取范式与合 取范式. 证 求公式A的范式的步骤: (1) 消去A中的,
30
主析取范式的用途(续)
(2) 判断公式的类型 设A含n个命题变项,则 A为重言式当且仅当A的主析取范式含2n个极小项 A为矛盾式当且仅当 A的主析取范式不含任何极小项,记作0 A为可满足式当且仅当A的主析取范式中至少含一个极小项
31
实例
例3 用主析取范式判断公式的类型:
(1) A (pq)q (2) B p(pq) (3) C (pq)r
离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0
离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学-第二章命题逻辑等值演算习题及答案

第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律 真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔¬( (p→q)∧(q→p) )等价等值式⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0m1m3m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q) (q r) 真值表如下:p q r(p q) (qr)00010011010001111000101011001111013724 M5 M6.。
离散数学答案第二章习题解答

第二章 谓词逻辑习题与解答1. 将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(是火车, x x C :)(是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
(2) 取论域为所有物质的集合。
令x x M :)(是金属, x x L :)(是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
(3) 论域和谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
(4) 取论域为所有事物的集合。
令x x M :)(是人, x x J :)(是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀(5)论域和谓词与(4)同。
“有些职业是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
2. 取论域为正整数集,用函数+(加法),•(乘法)和谓词<,=将下列命题符号化:(1) 没有既是奇数,又是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =•∃。
x x J :)(是奇数,)(x J 可表示为)2(x v v =•⌝∃。
离散数学课后习题答案(第二章)

b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )
离散数学第2章习题解答

F(x) F(x)),也可能不存在其值不确定的解释。
2.10(1)
xA(x)
(A(a)
A(b)
A(c))
(消去量词等值式)
A(a)
A(b)
A(c)
(德·摩根律)
x A(x)
(消去量词等值式)
2)
xA(x)
(A(a)
A(b)
A(c))
( H (b,a) H (b,b) H (b, c)
(H(c,a) H(c,b) H (c,c)
分析 在有穷个体域内消去量词时, 应将量词的辖域尽量缩小, 例如,在(2) 中,首先将量词辖域缩小了(因为yG(y)中不含x,所以,可以缩小)。否则,演算是相当麻烦的。见下面的演算:
x(F(x) yG(y)
x(F(x) (G(x) H (x))
(2)令F(x):x是人,G(y):y是化,H (x) : x喜欢,命题符号化为x(F(x) y(G(y) H ( x, y)))
(3)令F(x):x是人,G(x) : x犯错误,命题符号化为
x(F(x) G(x)),
或另一种等值的形式为
x(F(x) G(x)
(4)令F(x): x在北京工作,G( x) : x是北京人,命题符号化为
在一阶逻辑中,将命题符号化时,当引入特性谓词(如题中的F(x))之后,
全称量词后往往使用联结词→而不使用,而存在量词 后往往使用 ,而不使用→,如果用错了,会将真命题变成假命题,或者将假命题变成真命题。
2.6在解释R下各式分别化为
(1)x( x 0);
(2)x y(x y x);
(3)x y z(x y) (x z y z));
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章作业 1 评分要求:
2 1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48
3 分
4 2. 给出每小题得分(注意: 写出扣分理由)
5 3. 总得分在采分点1处正确设置.
6 一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方
7 法每种方法至少使用一次):
8 说明
9 证
10 1. p ⇔(p ∧q)∨(p ∧¬q) 11
解逻辑方程法
12 设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:
13
⎩⎨
⎧=⌝∧∨∧=0)()(1
)1(q p q p p 或者 14
⎩⎨
⎧=⌝∧∨∧=1
)()(0
)2(q p q p p 15
(1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 16
等值演算法
17 (p ∧q)∨(p ∧¬q)
18 ⇔ p ∧(q ∨¬q) ∧对∨的分配率
19
⇔ p ∧1 排中律
20
⇔ p 同一律
21
真值表法
22
即 p↔ ((p∧q)∨(p∧¬q))为永真式, 得证23
2. (p→q)∧(p→r)⇔p→(q∧r)
24
等值演算法
25
(p→q)∧(p→r)
26
⇔ (¬p∨q)∧(¬p∨r)蕴含等值式
27
⇔¬p∨(q∧r)析取对合取的分配律
28
⇔ p→(q∧r)蕴含等值式
29
3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)
30
等值演算法
31
¬(p↔q)
32
⇔¬( (p→q)∧(q→p) )等价等值式
33
⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式
34
⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律
35
⇔ (p∨q)∧¬(p∧q)德摩根律
36
4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)
37
等值演算法
38
(p∧¬q)∨(¬p∧q)
39
⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律
40
41
说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.
42
等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写.
43
由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.
44
45
二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成
46
假赋值求解都至少使用一次):
47
1.
48
2.
49
3.
50
4.
51
52
53
54
1. (¬p→q)→(¬q∨p)
55
解
56
(¬p→q)→(¬q∨p)
57
⇔ (p∨q)→(¬q∨p)蕴含等值式
58
⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律59
⇔(¬p∧¬q)∨¬q ∨ p结合律
60
⇔ p∨¬q吸收律, 交换律
61
⇔ M1
62
因此, 该式的主析取范式为m
0∨m
2
∨m
3
63
64
2. (¬p→q)∧(q∧r)
65
解逻辑方程法
66
设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1, 67
解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m
3∨m
7
, 主
68
合取范式为M
0∧M
1
∧M
2
∧M
4
∧M
5
∧M
6
69
70
等值演算法
71
(¬p→q)∧(q∧r)
72
(p q)(q r) 蕴含等值式
73
(p q r)(q r) 对分配律, 幂等律
74
(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配75
律
76
m
7 m
3
77
主合取范式为M
0∧M
1
∧M
2
∧M
4
∧M
5
∧M
6
78
79
3. (p↔q)→r
80
解逻辑方程法
81
设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式82
为M
0∧M
6
, 主析取范式为m
1
∨m
2
∨m
3
∨m
4
∨m
5
∨m
7
83
84
等值演算法
85
(p↔q)→r
86
((p q)(q p))r 等价等值式
87
((p q)(q p))r 蕴含等值式
88
(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT) 89
(p q r)(q p r) 对分配律, 矛盾律, 同一律90
M
0 M
6
91
主析取范式为m
1∨m
2
∨m
3
∨m
4
∨m
5
∨m
7
92
93
4. (p→q)∧(q→r) 94
解
95
等值演算法
96
(p→q)∧(q→r)
97
(p q)(q r) 蕴含等值式
98
(p q)(p r)(q r) 对分配律, 矛盾律, 同一律
99
(p q r)(p q r) (p q r)(p q r) 100
(p q r)(p q r)
101
m
1 m
m
3
m
7
102
主合取范式为M
2 M
4
M
5
M
6
.
103
104
解逻辑方程法
105
设 (p q) (q r) = 1, 则p q =1 且 q r =1. 106
前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.
107
后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.
108
综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m
0 m
1
m
3
109
m
7, 主合取范式为M
2
M
4
M
5
M
6
.
110
111
真值表法
112
公式 (p q) (q r) 真值表如下:
113
p q r(p q) (q
r) 0001 0011 0100 0111 1000 1010 1100 1111
从而主析取范式为m
0 m
1
m
3
m
7
, 主合取范式为M
2
M
4
M
5
M
6
.
114。