离散数学命题逻辑等值演算
一阶逻辑等值演算与推理课件(离散数学)分解

18
例题
(3)当个体域D={a,b}
xy( F ( x, y ) G( x, y ))
x((F ( x, a ) G( x, a )) ( F ( x, b) G( x, b)))
((F (a , a ) G(a , a )) ( F (a , b) G(a , b))) ((F (b, a ) G(b, a )) ( F (b, b) G(b, b)))
x( F ( x ) G( x ))
这句话相当于“有些学生没有上课”。
x( F ( x ) G( x ))
4
一、等值式的概念
定义:若AB为永真式,则称A与B是等 值的,记作 AB,并称AB为等值式。
其中A、B是一阶逻辑中任意的两个合式公
式。
5
二、基本等值式
1. 命题逻辑中16组基本等值式的代换实例
7
二、基本等值式
“并不是所有的人都是黄皮肤。” xA( x ) 这句话相当于 “有的人不是黄定等值式
xA( x ) xA( x ) xA( x ) xA( x )
8
二、基本等值式
4.
量词辖域收缩与扩张等值式
设A(x)是含x自由出现的公式,B中不含x的出现。 关于全称量词:
x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(A(x)B)xA(x)B
x(BA(x))BxA(x)
9
二、基本等值式
关于存在量词: x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
离散数学-第一部分-数理逻辑-第五章 一阶逻辑等值演算与推理

注意:对,对无分配律
5
量词分配等值式证明
设A(x),B(x)是任意的含自由出现个体变项x的公式,则
(1)x(A(x)∧B(x)) xA(x)∧xB(x) (2)x(A(x)∨B(x)) xA(x)∨ xB(x)
置换规则、换名规则、代替规则
1. 置换规则
设(A)是含A的公式, 那么, 若AB, 则(A)(B).
2. 换名规则 设A为一公式,将A中某量词辖域中个体变项的所有约束 出现及相应的指导变元换成该量词辖域中未曾出现过的个 体变项符号,其余部分不变,设所得公式为A,则AA.
3. 代替规则 设A为一公式,将A中某个个体变项的所有自由出现用A中 未曾出现过的个体变项符号代替,其余部分不变,设所得 公式为A,则AA.
14
实例
解法二
xy(F(x)G(y)) x(F(x)yG(y))
辖域缩小等值式
x(F(x)G(a)G(b)G(c))
(F(a)G(a)G(b)G(c))
(F(b)G(a)G(b)G(c))
(F(c)G(a)G(b)G(c))
15
实例
(2) xyF(x,y) xyF(x,y)
x(F(x,a)F(x,b)F(x,c)) (F(a,a)F(a,b)F(a,c))
而
x(F(x)G(x))
x(F(x)y(G(y)H(x,y))) 不是前束范式,
17
前束范式存在定理
定理5.1(前束范式存在定理) 一阶逻辑中的任何公式都存在与之等值的前束范式
例4 求下列公式的前束范式 (1) x(M(x)F(x)) 解 x(M(x)F(x))
离散数学一阶逻辑等值演算

在一阶逻辑中,推理系统还包括量词和谓词,量词 用于描述个体的数量,谓词则用于描述个体的性质 。
推理系统的构造
构造推理系统需要确定系统的 公理和推理规则。
公理的选择应确保系统的一致 性和完备性,即从公理推导出 的结论不与已知事实相矛盾, 并且所有需要的结论都能从公 理推导出来。
离散数学一阶逻辑等值演算的展望
形式化方法的普及和应用
随着计算机科学的不断发展,离散数学一阶逻辑等值演算的形式化方法将更加普及和应 用,成为解决复杂问题的关键工具之一。
人工智能与离散数学的深度融合
未来的人工智能系统将更加依赖于离散数学一阶逻辑等值演算的形式化方法,以实现更 加智能化的推理和决策。
新兴领域的应用拓展
离散数学一阶逻辑等值演算
目
CONTENCT
录
• 离散数学概述 • 一阶逻辑基础 • 等值演算 • 推理系统 • 应用实例 • 离散数学一阶逻辑等值演算的发展
趋势与展望
01
离散数学概述
定义与特点
定义
离散数学是研究离散对象(如集合、图、树、逻辑等)的数学分 支的总称。
特点
离散数学主要关注离散对象的结构、性质和关系,通常不涉及连 续的量或函数。
离散概率论是研究离散随机事件的数学分支,例如扔骰子、抽签等。一阶逻辑等值演算在离散概率论 中也有着重要的应用。
利用一阶逻辑等值演算,可以描述随机事件之间的关系和性质,例如计算事件的概率、推导事件的独 立性等。这些描述方法有助于深入理解随机事件和概率分布,为解决实际问题提供有力支持。
06
离散数学一阶逻辑等值演算的发展趋势与展望
第2章命题逻辑等值演算离散数学介绍

解答 方法一、真值表法。
方法二、观察法。易知,010是(p→q)→r的成假赋值,而010是 p→(q→r)的成真赋值,所以原不等值式成立。
方法三、通过等值演算化成容易观察真值的情况,再进行判断。
A=(p→q)→r (┐p∨q)→r
(蕴涵等值式)
┐(┐p∨q)∨r
(蕴涵等值式)
(p∧┐q)∨r
(德摩根律)
(┐p∨q)∨q)∧p)∨q
(蕴涵等值式)
(┐(┐p∨q)∨┐p)∨q
(德摩根律)
((p∧┐q)∨┐p)∨q
(德摩根律)
((p∨┐p)∧(┐q∨┐p))∨q (分配律)
(1∧(┐q∨┐p))∨q
(排中律)
(┐q∨q)∨┐p
(同一律)
1∨┐p
(排中律)
1
B=p→(q→r) ┐p∨(┐q∨r)
(蕴涵等值式)
┐p∨┐q∨r
(结合律)
000,010是A的成假赋值,而它们是B的成真赋值。
例题2.5 用等值演算判断下列公式的类型: (1)(p→q)∧p→q (2)(p→(p∨q))∧r (3)p∧(((p∨q)∧┐p)→q)
(1) (p→q)∧p→q
离 散 数 学介绍
本章的主要内容
– 等值式与基本的等值式 – 等值演算与置换规则 – 析取范式与合取范式、主析取范式与主合取范式 – 联结词完备集(不讲) – 可满足性问题与消解法(不讲)
本章与后续各章的关系
– 是第一章的抽象与延伸 – 是后续各章的现行准备
两公式什么时候代表了同一个命题呢? 抽象地看,它们的真假取值完全相同时即
一个逻辑等值式,如果只含有┐、∨、∧、0、1
那么同时 把∨和∧互换 把0和1互换
离散数学 第2章 命题逻辑

6
程序解法:
#include "stdio.h" #include "conio.h" main() { int p,q,r,A1,A2,A3,B1,B2,B3,C1,C2,C3,E; for(p=0;p<=1;p++) for (q=0;q<=1;q++) for(r=0;r<=1;r++) { A1=!p&&q;A2=(!p&&!q)||(p&&q);A3=p&&!q; B1=p&&!q;B2=(p&&q)||(!p&&!q);B3=!p&&q; C1=!q&&r;C2=(q&&!r)||(!q&&r);C3=q&&r; E=(A1&&B2&&C3)||(A1&&B3&&C2)||(A2&&B1&&C3)||(A2&&B3&&C1)||(A3&&B1&&C2)||(A3 &&B2&&C1); if (E==1) printf("p=%d\tq=%d\tr=%d\n",p,q,r); } getch(); }
复合命题: E=(A1 ∧B2 ∧C3) ∨ (A1 ∧B3 ∧C2) ∨ (A2 ∧B1 ∧C3) ∨ (A2 ∧B3∧C1) ∨ (A3 ∧B1 ∧C2) ∨ (A3 ∧B2 ∧C1)
A1 ∧B2 ∧C3 = (p ∧q ) ∧ ((p ∧ q) ∨(p ∧ q) ) ∧(q ∧ r) 0 A1 ∧B3 ∧C2 = (p ∧q ) ∧ ( p ∧ q) ∧( (q ∧ r) ∨(q ∧ r ) ) p ∧q ∧ r A2 ∧B1 ∧C3 =A2 ∧B3∧C1 = A3 ∧B2 ∧C1 = 0 A3 ∧B1 ∧C2 p ∧ q ∧ r E (p ∧q ∧ r) ∨ (p ∧ q ∧ r) 所以王教授是上海人。
离散数学课件-5-一阶逻辑等值演算与推理

离散数学课件-5-一阶逻辑等值演算与推理第五章一阶逻辑等值演算与推理§1 一阶逻辑等值式与置换规则定义:A,B两个谓词公式,若A?B是永真式,则称A与B是等值的,记为A?B。
常用等值式:第一组:命题逻辑中常用等值式的代换实例第二组:一阶逻辑中的特有等值式1.消去量词当D={a1, a2,…, a n}时,有①?xA(x)?A(a1)∧A(a2)∧…∧A(a n)②?xA(x)?A(a1)∨A(a2)∨…∨A(a n)2.量词否定①??xA(x)??x?A(x)②﹁?xA(x)??x?A(x)3.辖域收缩与扩张①?x(A(x)∨B)??xA(x)∨B②?x(A(x)∧B)??xA(x)∧B③?x(A(x)∨B)??xA(x)∨B④?x(A(x)∧B)??xA(x)∧B4.量词分配①?x(A(x)∧B(x))??xA(x)∧?xB(x)②?x(A(x)∨B(x))??xA(x)∨?xB(x)演算规则:1.置换规则:φ(A):含A的谓词公式φ(B):用公式B替换φ(A)中所有A之后的公式若A?B,则φ(A)?φ(B)。
2.换名规则:设A是谓词公式,把A中某指导变元对应的全部约束出现替换为A中未出现过的符号,而A中其余部分不变,设所得谓词公式为A′,则A?A′。
3.代替规则设A是谓词公式,把A中某个体变项的全部自由出现替换为A中未出现过的符号,而A中其余部分不变,设所得公式为A′,则A?A′。
例①?xF(x,y,z)→?yG(x,y,z)sF(s,y,z)→?tG(x,t,z) 换名②?x(F(x,y)→?yG(x,y,z))x(F(x,t)→?yG(s,y,z)) 代替例给定解释I:D I ={2,3},a:2,b:3G(x,y):G(a, a)=G(a, b)=G(b, a)=1,G(b, b)=0F(x):F(a)=0,F(b)=1① ?x(F(x)∧G(x,a))(F(a)∧G(a,a))∧(F(b)∧G(b,a))?(0∧1)∧(1∧1)? 0② ?x?yG(x,y)x(G(x,a)∧G(x,b))(G(a,a)∧G(a,b))∨(G(b,a)∧G(b,b))(1∧1)∨(1∧0)1例证明:﹁?x(F(x)→G(x))??x(F(x)∧﹁G(x)) 解:﹁?x(F(x)→G(x))﹁?x(﹁F(x)∨G(x))x﹁(﹁F(x)∨(G(x)x(F(x)∧﹁G(x))§2 前束范式定义:设A是谓词公式,若A有如下形式Q1x1Q2x2…Q k x k B其中Q i(1≤i≤k)为?或?,B为不含量词的公式,则称A为前束范式。
离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次): 说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔ ¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔ ¬( (p→q)∧(q→p) )等价等值式⇔ ¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔ ¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则 ¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0 m1 m3 m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q)p q r(p q) (q r)00010011010001111000101011001111013724 M5 M6.。
离散数学-命题演算

P Q
于是得到: (P Q) (P Q)
Lu Chaojun, SJTU
21
还有别的联结词吗?
• 除,,,,外还可定义其他联结词.如:
异或: P Q = (P Q) (P Q) 与非(NAND): P | Q = (P Q) Sheffer stroke 或非(NOR): P Q = (P Q) Peirce arrow
Lu Chaojun, SJTU
19
方法一
• 从每个使为真的解释写出一个各命题变
元的合取式;然后写出各合取式的析取式.
例:有三个成真解释.
P
Q
由(P,Q)=(F,F)可写出合取式: F
F
T
P Q
F
T
T
T
F
F
由(P,Q)=(F,T)可写出合取式: T
T
T
P Q
由(P,Q)=(T,T)可写出合取式:P Q
• 将 中所有肯定形式出现的变元Pi换成Pi, 所
有否定形式出现的变元Pi换成Pi, 所得公式记
为-. • 注意:求*时不能有,;求-时无此限制.
Lu Chaojun, SJTU
29
*和-的性质
• 定理
(*)* = (-)-=
• 定理
(*) = ()* (-) = ()-
• 定理
= *- (De Morgan律的一般形式)
命题逻辑的等值演算 和推理演算
主要内容
• 公式间的等值关系与等值演算 • 利用真值表列写公式 • 联结词的完备集 • 对偶定理 • 范式和主范式 • 公式间的重言蕴涵关系与推理演算
Lu Chaojun, SJTU
2
公式间的等值关系