兰州大学物理科学与技术学院 Lanzhou University.doc
基于亚波长光栅辅助定向耦合器的集成铌酸锂偏振分束器

transmission capacity of photonic communication systems. In recent years, PBS has been successfully implemented based on
various structures. Among them, the PBS based on subwavelength grating-assisted directional coupling structure stands out due
heterogeneous integration. Simulation results show that the device achieves a polarization extinction ratio greater than 24. 49 dB
in the wavelength range of 1 500 nm to 1 600 nm. Experimental data further confirms that the polarization extinction ratio of
基金项目:甘肃省自然科学基金重点项目(23JRRA1026) ;甘肃省自然科学基金在站博士后专项项目(23JRRA1126)
作者简介:陈 力(1998—) ,男,浙江省人,硕士研究生。 E-mail:lchen2021@ lzu. edu. cn
通信作者:田永辉,博士,教授。 E-mail:siphoton@ lzu. edu. cn
the device is greater than 18. 06 dB in the wavelength range of 1 500 nm to 1 580 nm.
物理科学与技术学院微电子科学与工程专业人才培养方案

注:物理学院开设的其他课程均可作为选修课。
五、 专业主干课程、特色课程和精品课程
合计
其中 B 类课程可以用相应的 A 类课程代替。
学分 5+5
3 3 4 3 2 25 必修+5 选修
1
三、 专业的基本要求
本专业是理、工兼容的专业,侧重专业实践能力的培养。要求学生具有扎实 的数学、物理基础知识和良好的外语应用能力;掌握各种微电子器件和集成电路 的基本原理及分析、设计、制造的基本方法;具备良好的实践技能和设计、开发 能力;了解专业领域的发展动态和前沿技术。
四、 专业的学制与学分
本专业学制 4 年。学校实行弹性学制,允许学生分阶段完成学业。但具有学 籍的时间最长不超过 8 年,累计修业时间不超过 6 年。
物理科学与技术学院 微电子科学与工程专业人才培养方案
一、 专业简介
微电子科学与工程是当前信息社会不可或缺的基础专业之一,是信息技术的 基石。正是得益于微电子科学与技术的发展,电子信息系统才能一直朝着智能化、 微型化、集成化的方向迈进,使人类的生活内容和生活方式发生了翻天覆地的变 化,许多高精尖技术与功能性装置目前已变为现实。微电子材料、微电子工艺、 以及微电子器件的迅猛发展不仅促成了信息技术日新月异的更新,而且为其它诸 多学科或领域带来新的发展途径或契机,已经在民用消费电子、信息通讯、计算 机、工业自动控制、航空航天系统、灵敏探测等诸多领域发挥着不可替代的重要 作用,也正在医疗诊断、生物信息获取、国防与信息安全等领域显示出越来越令 人振奋的应用前景,必将为科技发展和人类生活带来更深层次的变化。
英文介绍兰州大学的作文

文章标题:Exploring the AcademicTreasures of Lanzhou UniversityNestled in the majestic embrace of the Yellow River, Lanzhou University stands as a beacon of knowledge and wisdom in the heart of northwestern China. Since its establishment in 1909, this venerable institution has nurtured generations of scholars and leaders, shaping the intellectual landscape of the region and beyond.The university's campus, a blend of traditional elegance and modern infrastructure, provides an ideal environment for academic pursuit. The lush greenery and serene landscapes offer a peaceful backdrop for students to delve into their studies, while the state-of-the-art facilities ensure that they are equipped with the latest tools and resources.The academic programs at Lanzhou University are diverse and comprehensive, covering a wide range of disciplines. From the humanities and social sciences to the natural sciences and engineering, the university offers a robust curriculum that caters to the interests and aspirations of its diverse student body. The faculty, a mix of experiencedscholars and emerging researchers, are committed to providing a rigorous and enriching educational experience. One of the hallmarks of Lanzhou University is its commitment to research and innovation. The university boasts a number of research centers and laboratories that are at the forefront of their respective fields. These facilities provide a platform for faculty and students to engage in cutting-edge research, contributing significantly to the advancement of knowledge and technology.Moreover, Lanzhou University is renowned for its strong international ties. The university has established partnerships with numerous institutions across the globe, facilitating exchange programs, joint research initiatives, and cultural exchanges. This international outlook not only broadens the horizons of its students but also enhances the university's reputation and standing in the global academic community.Beyond academics, Lanzhou University also places a strong emphasis on the personal and professional development of its students. The university offers a range of extracurricular activities, clubs, and organizationsthat cater to the interests and talents of its students. These activities provide an opportunity for students to develop leadership skills, build networks, and engage in meaningful community service.In conclusion, Lanzhou University is a preeminent institution of higher learning that offers an exceptional educational experience. Its commitment to academic excellence, research innovation, and international engagement positions it as a leader in the field of higher education. For students seeking a rigorous and enriching academic journey, Lanzhou University stands as a worthy destination.**探索兰州大学的学术宝藏**兰州大学,坐落于黄河之滨,是西北地区乃至全国范围内的一所知识与智慧之光。
兰州大学自然科学类非实体性科研机构管理办法-兰州大学科学技术处

附件兰州大学自然科学类非实体性科研机构管理办法第一章总则第一条为进一步加强和规范我校自然科学类非实体性科研机构的建设和管理,推动我校科学研究事业的发展,结合学校实际,特制定本办法。
第二条本办法所称的自然科学类非实体性科研机构(以下简称非实体性科研机构),是指由学校正式发文批准成立,挂靠学校自然科学类教学科研单位的科研机构(包括研究院、研究中心、研究所、实验室等)。
非实体性科研机构不设行政级别,不设专门的人员编制,不下拨日常运行经费。
第三条非实体性科研机构的主要任务是面向科学前沿和国家战略,坚持学科交叉与开放协同,组织开展高水平科研活动和高层次学术交流,争取更多的外部支持,着力提升学校科学研究水平,支撑学科建设和人才培养,推动“双一流”建设。
第四条非实体性科研机构实行分类设置、分级管理、定期评估、动态调整的管理模式。
第二章管理职责第五条科学技术发展研究院是非实体性科研机构的业务管理部门,其主要职责是:(一)制定自然科学类非实体性科研机构发展方针和政策,宏观指导机构的建设和运行;(二)负责机构的设立审批、调整和撤销;(三)聘任机构负责人;(四)组织机构的考核与评估。
第六条自然科学类教学科研单位作为非实体性科研机构的挂靠单位,是机构建设和运行管理的主体,其主要职责是:(一)组织机构的申报,制定运行管理的实施细则,提供必要的机构管理运行条件保障,解决机构建设运行中的有关问题;(二)推荐机构负责人;(三)负责日常监督管理,配合做好定期评估。
第三章组建第七条非实体性科研机构分为三类:(一)学校自主批准建立的非实体性科研机构;(二)政府部门委托建立的非实体性科研机构;(三)学校以协议形式与校外单位联合建立的非实体性科研机构。
第八条组建非实体性科研机构需具备以下基本条件:(一)有明确的研究方向和目标,有切实可行的中长期建设规划,发展潜力大;(二)具有承担国家、地方以及企事业单位科研任务的能力,有持续的研究项目和经费来源,具备开展国内外高层次学术交流和技术合作的渠道和条件;(三)在本学科或本领域具有一定的研究优势,拥有一批高质量的研究成果;(四)具有学科搭配得当、人员结构合理、以中青年骨干力量为主体的、专职与兼职相结合的科技人才队伍。
热学-兰州大学物理学院

热学课程教学大纲一、课程说明课程名称:热学所属专业:物理学专业本科学生课程性质:大类平台课程学分:3分主要先修课程和后续课程:(1)先修课程:高等数学,力学。
(2)后续课程:热力学与统计物理,电磁学,原子物理学,固体物理。
课程简介、目标与任务:“普通物理学”课程是理科物理类专业的重要基础课,由力学、热学电磁学、光学和原子物理学这五个部分组成。
各个部分单独设课,“热学”是其中继“力学”后的第二门课程。
“普通物理学”课程的“目的是使学生系统地了解和掌握物理学的基本概念、基本原理、基本知识、基本思想“和方法,以及它们的实验基础;了解物理学的发展方向及物理学与其它自然科学和社会科学等的关系;培养学生进一步学好物理学的兴趣,提高学生的自学能力、分析和解决问题的能力;逐步帮助学生建立科学的自然观、世界观和方法论。
”“热学”课程在物理类专业一年级第二学期开设。
通过“热学”课程的学习,使学生认识物质热运动形态的特点、规律和研究方法,深刻地理解热运动的本质,较为系统地掌握热力学、气体动理论和物性学的基础知识,能独立解决今后学习中遇到的一般热学问题,为进一步学习电磁学、原子物理学、理论物理热力学和统计物理等后续课程打下良好的基础。
教材:《热学》(第二版),李椿等编,高等教育出版社,2008主要参考书:1. 《热学》(第二版)习题分析与解答,宋峰常树人编,高等教育出版社,20102. 《热学》(第二版)常树人编,南开大学出版社,20092.《热学教程》,包科达编,科学出版社,20073. 《热学》(第二版),张玉民编,科学出版社,20064.《新概念物理教程·热学》(第二版),赵凯华等编,高等教育出版社,20055.《普通物理学教程·热学》(第二版),秦允豪编,高等教育出版社,20046. 《热学》(第二版),李洪芳编,高等教育出版社,2001二、课程内容与安排绪论(1学时)第一节热学研究的对象和方法第二节热学发展简述主要内容:热学研究的对象热现象热运动热力学统计物理学气体动理学理论物性学热学研究的方法宏观量微观量宏观量与微观量的关系热学发展简史热学常用物理量的符号热学常用物理量的单位基本物理常量基本物理常量的国际推荐值物理量的数量级物质世界的层次分子的典型数据热学课程的特点【掌握】:热学研究的对象热运动热学研究的方法宏观量微观量宏观量与微观量的关系热学课程的特点【了解】:热学发展简史热学常用物理量的符号热学常用物理量的单位物理量的数量级分子的典型数据物质世界的层次【难点】:深入理解热学是适用于宏观和微观的普适理论宏观理论和微观理论的本质关系第一章温度(5学时)第一节平衡态状态参量第二节温度第三节气体的物态方程主要内容:平衡态热动平衡对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量电磁参量热接触热平衡热动平衡的条件热力学第零定律温度及温标建立温标的要素水的冰点水的汽点水的三相点经验温标华氏温标摄氏温标理想气体温标热力学温标国际实用温标ITS-90 温度计液体温度计定体气体温度计定压气体温度计物态方程气体物态方程玻意耳定律阿伏伽德罗定律理想气体物态方程普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程分体积定律平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程范德瓦耳斯方程范德瓦耳斯气体昂内斯方程【重点掌握】:平衡态热动平衡热动平衡的条件热力学第零定律温度及温标的概念理想气体物态方程范德瓦耳斯方程【掌握】:对平衡态的描述力学平衡热学平衡化学平衡相变平衡状态参量几何参量力学参量化学参量热接触热平衡建立温标的要素水的冰点水的汽点水的三相点经验温标理想气体温标热力学温标玻意耳定律阿伏伽德罗定律普适气体常量阿伏伽德罗常量玻尔兹曼常量洛施密特常量道尔顿分压定律混合理想气体的物态方程【了解】:国际实用温标ITS-90华氏温标摄氏温标温度计液体温度计定体气体温度计定压气体温度计各种物态方程平均摩尔质量体积分数压强分数摩尔质量分数质量分数物质的量分数混合理想气体的密度非理想气体物态方程昂内斯方程【难点】:平衡态热动平衡温度及温标概念的建立物态方程的建立第二章气体分子动理论的基本概念(6学时)第一节物质的微观模型第二节理想气体的压强第三节温度的微观解释第四节分子力第五节范德瓦耳斯气体的压强主要内容:气体动理学理论的基本论点分子论点热运动论点分子力论点统计论点布朗运动的微观解释统计规律性与涨落现象偶然性与必然性的关系统计性假设平均值加权平均统计平均理想气体的微观模型理想气体压强公式的推导气体压强的微观解释用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系温度的微观解释对理想气体定律的推证阿伏伽德罗定律道尔顿分压定律分子间力伦纳德-琼斯模型短程力分子间力势能常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据分子体积引起的修正分子间引力所引起的修正范德瓦耳斯常量b 范德瓦耳斯常量a范德瓦耳斯气体的压强范德瓦耳斯气体的压强与理想气体的压强范德瓦耳斯方程的适用范围范德瓦耳斯气体的摩尔体积【重点掌握】:气体动理学理论的基本论点理想气体的微观模型气体压强的微观解释温度的微观解释【掌握】:理想气体压强公式的推导用不同的简化模型推导理想气体压强公式理想气体分子平均平动动能与热力学温度的关系对理想气体定律的推证常用分子间力势能模型微观粒子的弹性碰撞模型分子有效直径的概念分子体积引起的修正分子间引力所引起的修正范德瓦耳斯气体的压强【了解】:布朗运动的微观解释分子间力来源分子直径与热力学温度的关系分子间力的平衡距离分子间斥力的有效作用距离分子间引力的有效作用距离分子间力的典型数据范德瓦耳斯常量b范德瓦耳斯常量a范德瓦耳斯方程的适用范围【一般了解】:偶然性与必然性的关系统计性假设算术平均几何平均加权平均统计平均范德瓦耳斯气体的压强与理想气体的压强用迭代法计算范德瓦耳斯气体的摩尔体积【难点】:各种简化模型的建立方式物体内分子之间的相互作用和分子的热运动决定其宏观性质理想气体压强公式的推导宏观量的微观本质第三章气体分子热运动速率和能量的统计分布(11学时)第一节气体分子的速率分布率第二节用分子射线实验验证麦克斯韦速度分布律第三节玻尔兹曼分布律重力场中微粒按高度的分布第四节能量按自由度均分定理主要内容:分布函数速率分布函数速率分布函数的归一化条件麦克斯韦速率分布律麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围随机事件概率概率加法定理概率乘法定理概率分布函数气体分子的最概然速率麦克斯韦速率分布函数的约化形式用麦克斯韦速率分布函数求平均值气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数误差函数的计算气体分子速率其他特征速率麦克斯韦速度分布律麦克斯韦速度分布曲线的特征麦克斯韦速度分布函数的约化形式速度空间麦克斯韦速度分布函数与麦克斯韦速率分布函数的关系麦克斯韦速度分布函数的定义域气体分子速度分量的最概然值、平均值和方均根值分子通量公式泻流分子束泻流存在的条件麦克斯韦发射分布麦克斯韦发射分布的约化形式麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验等温大气等温气压公式气压计和高度计玻尔兹曼分布律重力场中微拉按高度的分布阿伏伽德罗常量的测定大气标高大气粒子总数大气的温度结构标准大气负绝对温度自由度分子运动的自由度分子的平动自由度分子的转动自由度分子的振动自由度刚性分子和非刚性分子的自由度线形分子和非线形分子的自由度能量均分定理理想气体的内能理想气体热容的经典理论能量均分定理的应用限度量子理论对气体热容量的解释【重点掌握】:麦克斯韦速率分布律麦克斯韦速度分布律玻尔兹曼分布律能量均分定理【掌握】:麦克斯韦速率分布曲线的特征麦克斯韦速率分布律的适用范围气体分子的最概然速率用麦克斯韦速率分布函数求平均值、气体分子的平均速率和方均速率用麦克斯韦速率分布函数求分子数麦克斯韦速度分布曲线的特征分子通量公式等温大气等温气压公式重力场中微拉按高度的分布分子运动的自由度理想气体的内能理想气体热容的经典理论【了解】:分布函数随机事件概率概率加法定理概率乘法定理气体分子特征速率的量纲分析麦克斯韦速率分布函数的约化形式麦克斯韦发射分布麦克斯韦速率分布律的实验验证密勒和库士实验葛正权实验大气标高能量均分定理的应用限度量子理论对气体热容量的解释【一般了解】:误差函数的计算麦克斯韦发射分布的约化形式阿伏伽德罗常量的测定大气粒子总数大气总质量大气的温度结构大气的均质层标准大气负绝对温度【难点】:速率分布函数及分布函数的统计意义麦克斯韦速率及速度分布律函数的统计意义及应用玻尔兹曼分布律的统计意义及应用第四章气体内的输运过程(5学时)第一节气体分子的平均自由程第二节输运过程的宏观规律第三节输运过程的微观规律主要内容:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程气体分子的平均相对速率与平均速率的关系分子的自由程分布函数穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离黏性现象牛顿黏性定律黏度系数黏性现象的微观解释热传导现象傅里叶定律热导率热传导现象的微观解释热传导与电传导扩散现象菲克定律扩散系数扩散现象的微观解释黏度系数、热导率、扩散系数与压强的关系黏度系数、热导率、扩散系数与温度的关系黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定估算分子有效直径的方法的比较分子热运动的典型数据【重点掌握】:气体分子的碰撞频率气体分子的碰撞截面气体分子的平均自由程黏性现象热传导现象扩散现象【掌握】:牛顿黏性定律及其微观解释傅里叶定律及其微观解释菲克定律及其微观解释低压下气体的黏性现象低压下气体的热传导现象容器对其内的低压气体分子的碰撞频率和平均自由程的限定【了解】:黏度系数、热导率、扩散系数与压强、温度的理论和实验比较黏度系数、热导率、扩散系数彼此之间的关系黏度系数、热导率、扩散系数的数量级估算分子有效直径的方法的比较分子热运动的典型数据【一般了解】:穿过指定截面的分子的平均自由程分子穿过指定截面前最后一次受碰处至截面的平均距离的概念【难点】:气体分子的碰撞频率、气体分子的碰撞截面、气体分子的平均自由程的概念的建立分子穿过指定截面前最后一次受碰处至截面的平均距离第五章热力学第一定律(10学时)第一节热力学过程第二节功第三节热量第四节热力学第一定律第五节热容焓第六节气体的内能焦耳-汤姆孙实验第七节热力学第一定律对理想气体的应用第八节循环过程和卡诺循环主要内容:热力学过程准静态过程非静态过程作功体积功作功的计算过程曲线示功图广义坐标广义位移广义力广义功绝热过程绝热功内能热量传热传热的计算热容量比热容摩尔热容焓作功与传热都是过程量作功与传热的等当性热力学第一定律能量守恒定律第一类永动机符号规定焦耳实验绝热自由膨胀过程等内能过程理想气体的内能焦耳-汤姆孙实验绝热节流膨胀过程等焓过程焦耳-汤姆孙效应焦耳-汤姆孙系数理想气体的焓反转温度理想气体的宏观定义迈耶关系热功当量的测定热力学第一定律对理想气体的应用等体过程等压过程等温过程绝热过程多方过程等热容过程直线过程理想气体绝热过程方程泊松公式循环热机的工作原理正循环的效率制冷机与热泵的工作原理逆循环的制冷系数符号规定卡诺热机卡诺循环理想气体卡诺循环的效率理想气体逆向卡诺循环的制冷系数奥托循环狄塞尔循环斯特林循环回热式循环热机与热泵的组合应用【重点掌握】:热力学过程准静态过程作功体积功作功的计算绝热功内能热量热容量比热容摩尔热容焓理想气体的宏观定义迈耶关系热力学第一定律对理想气体的应用循环热机的工作原理正循环的效率逆循环的制冷系数【掌握】:理想气体的内能理想气体绝热过程方程泊松公式【难点】:绝热过程多方过程第六章热力学第二定律(6学时)第一节热力学第二定律第二节热现象过程的不可逆性第三节热力学第二定律的统计意义第四节卡诺定理第五节热力学温标第六节应用卡诺定理的例子主要内容:热力学第二定律开尔文表述克劳修斯表述第二类永动机热力学第二定律的适用范围热力学第二定律两种表述的等效性可逆过程不可逆过程各种不可逆过程互相关联热力学第二定律的实质论证过程的不可逆性的方法不可逆过程的特点孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义卡诺定理可逆卡诺循环的效率不可逆卡诺循环的效率对于制冷机类似卡诺定理的结论卡诺定理的推广任意正循环的效率卡诺定理的应用热力学温标的引入热力学温标与理想气体温标和摄氏温标的关系内能随体积的改变与物态方程的关系定压摩尔热容与定体摩尔热容的关系【重点掌握】:热力学第二定律开尔文表述克劳修斯表述热力学第二定律两种表述的等效性可逆过程不可逆过程热力学第二定律的实质卡诺定理【掌握】:孤立系统宏观状态和微观状态气体自由膨胀的不可逆性热力学第二定律的统计意义【难点】:论证过程的不可逆性的方法不可逆过程的特点第七章固体(1学时)第一节晶体第二节晶体中粒子的结合力和结合能第三节晶体中粒子的热运动主要内容:物质的聚集态凝聚体固体液体气体晶体与非晶体单晶体和多晶体长程有序晶体中粒子的结合力晶体弹性的微观解释晶体中粒子的热运动热振动杜隆-珀蒂定律晶体热膨胀的微观解释晶体线膨胀率的计算非晶态固体过冷液体短程有序【重点掌握】:晶体中粒子的热运动热振动杜隆-珀蒂定律【掌握】:晶体与非晶体单晶体和多晶体晶体中粒子的结合力晶体弹性的微观解释晶体热膨胀的微观解释第八章液体(4学时)第一节液体的微观结构液晶第二节液体的彻体性质第三节液体的表面性质主要内容:液体与晶体和气体的比较液体的宏观特征液体的微观结构定居时间液体各向同性液晶外界因素对液晶的影响显示技术液体的表面性质表面张力表面层表面张力的微观解释表面张力系数影响表面张力系数的因素表面活性物质球形液面下的附加压强拉普拉斯公式柱形液面下的附加压强马鞍形液面下的附加压强接触角润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释毛细现象毛细管【重点掌握】:液体的表面性质表面张力表面层表面张力的微观解释表面张力系数球形液面下的附加压强接触角毛细现象【掌握】:润湿和不润湿附着层附着力和内聚力润湿和不润湿的微观解释第九章相变(5学时)第一节单元系一级相变的普遍特征第二节气液相变第三节克拉珀龙方程第五节范德瓦耳斯等温线对比物态方程第六节固液相变第七节固气相变三相图主要内容:元单元系二元系多元系相相变一级相变单元系一级相变相变中体积的改变相变潜热内潜热和外潜热汽化蒸发气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线饱和蒸气压影响饱和蒸气压的因素饱和蒸气压与液面曲率的关系凝结过冷蒸气亚稳态凝结核云雾的形成云室沸腾沸腾的条件过热液体亚稳态汽化核泡室暴沸临界等温线临界点临界态临界参量临界温度临界压强临界摩尔体积克劳修斯—克拉珀龙方程沸点与压强的关系正常沸点高压锅蒸气压方程由蒸气压方程求潜热沸点与海拔高度的关系兰州市区水的沸点熔点与压强的关系正常熔点范德瓦耳斯等温线亚稳平衡范德瓦耳斯气体的临界参量临界系数由临界参量确定范德瓦耳斯常量对应态对应态定律熔化凝固熔化曲线凝固时体积的改变升华凝华升华曲线升华与蒸发升华热与汽化热和熔化热的关系三相点相图三相图【重点掌握】:单元系一级相变相变中体积的改变相变潜热克劳修斯—克拉珀龙方程【掌握】:气液等温相变饱和蒸气与液体平衡汽化曲线相平衡曲线【难点】:临界等温线临界点临界态临界参量范德瓦耳斯等温线亚稳平衡制定人:蔡让岐毛延哲审定人:批准人:日期:。
兰州大学物理学一级学科第五批甘肃省重点学科简介 .doc

兰州大学物理学一级学科第五批甘肃省重点学科简介兰州大学2013年12月一学科简介早在五十年代中期,兰州大学物理学科就已开始了科学研究和研究生的培养工作,长期以来,该学科坚持理论与应用并重,在学科建设、科学研究、人才培养、服务社会方面发挥了积极作用。
兰州大学物理学科1998年获一级学科博士学位授权,是全国首批具有学士、硕士、博士授予权的学科。
设有理论物理,粒子物理与原子核物理,凝聚态物理,无线电物理4个二级学科博士点和原子与分子物理,光学等6个二级学科硕士点。
1985年由原国家教委批准设立物理学博士后流动站,2002年粒子物理与原子核物理被批准为国家重点学科。
1993年批准设立国家物理学基础科学研究和教学人才培养基地,2008年大学物理实验教学中心进入国家级实验教学示范中心建设行列,2009年物理学本科专业被批准为教育部高等学校特色专业建设点。
依托该学科点,1994年原国家教委在本学科建立了应用磁学部门开放实验室,2000年更名为“磁学与磁性材料教育部重点实验室”。
2001年成立“教育部中子应用技术工程研究中心”和“核科学与技术教育部网上合作研究中心”,2008年获批特殊功能材料与结构设计教育部重点实验室,2010年国家自然科学基金委批准设立“理论物理交流平台”。
本学科点是兰州大学“211工程”和“985工程”重点支持学科,近年来先后投入6000余万元,形成了以物理学一级学科为依托,链接材料科学与工程、核科学、微电子学与固体电子学等学科的学科群,成为兰州大学的重要支柱,是国内有影响力,国际上有一定知名度的学科。
学科点的发展过程中,以段一士、汪志诚、钱伯初、马中骐、杨正、李发伸、徐躬耦、王顺金先生等为代表的老一代物理学家在理论物理、磁学与磁性材料、原子核物理等专业的基础研究领域开展了许多开创性的工作,为学科点的发展奠定了坚实的基础。
目前,学科点现有教学科研人员140余人,教授和副教授90余人。
形成了以罗洪刚、刘翔、刘玉孝、黄亮等教授为代表的理论物理研究团队,以薛德胜、贺德衍、谢二庆、彭勇等教授为代表的凝聚态物理研究团队,以胡碧涛、陈熙萌、姚泽恩等教授为代表的粒子物理与原子核物理研究团队,以张晓萍、马义德、万毅等教授为代表的无线电物理研究团队。
有机半导体NTCDA的合成及结构表征

应芳香环内c—H键的振动模式;1579.47cm~, 1512.69cm-。,1487.74cm~,1437.63cm。1处的峰位 均为芳香环骨架的特征振动吸收模式;1579. 47cm。1特征峰的出现说明分子中芳香环的共轭作 用很强,即整个环上的电子轨道相互作用后呈订键 的性质。根据上述分析,样品具有环状酸酐的性质, 而且分子中含有芳香环。
1.2 NTCDA的提纯
1.2.1萃取提纯 利用萘四甲酸易溶于甲醇而萘二甲酸不溶于甲
醇的特性,可以萃取分离提纯NTcDA。萃取分离是 利用溶剂把固体中的杂质分离出来从而实现物质提 纯的方法。分离萃取器提纯原理如图2所示。提取 前,将滤纸卷成筒状,其直径略小于提取筒的内径, 一端用线扎紧或将滤纸卷成一段封口的杯状即底端 要封好。将要提纯的样品装入纸筒,放入萃取室中。 烧杯中加入有机溶剂和1~2粒沸石,I●l▲ 虮∞o.N,
jl。。。.。.
10 9 8 7 6 5 4 3 2 1 —0 ppm
Fig.4 Nuclear magnetic resonance spectmm of NTCDA
图4 NTcDA核磁共振谱
F培.5 M01ecule stnlcture of NTCDA 图5 NTcDA的分子结构
第13卷第6期 2007年12月
功能材料与器件学报 JOURNAL 0F FUNC7n0NAL MATERIALS AND DEVICES
文章编号:1007—4252(2007)06一0630—05
V01.13.No_6 Dec..2007
有机半导体NTCDA的合成及结构表征
李建丰,孙硕,董茂军,胥超,肖剑,张福甲
O引言
有机半导体是一类新型半导体材料,有机半导 体材料相对于无机半导体材料,具有价廉质轻、溶解 性好、可通过分子剪裁调控光电性能、在材料制备和 薄膜制备上具有灵活多变的技术特点可实现非晶态 柔性衬底的大面积化,进而有望大大降低半导体电 子元器件的制造成本。这些特性使有机半导体材料
兰州大学物理科学与技术学院本科大类招生培养专业分流方案

(3)在第 2 学期第 19 周-20 周,按照学生志愿进行专业分 流。当学生第一志愿填报情况未超出专业人数限制时,专业分 流工作小组不再做调整;若专业第一志愿人数超过上述限制, 则按照学生第一学年的学习成绩进行排序,择优录取。专业分 流 工 作 小 组 根 据 各 专 业 分 流 情 况 ,指 导 未 分 流 的 学 生 重 填 志 愿 , 进行专业分流。
2 、本 规 定 自 公 布 之 日 起 实 施 ,未 尽 事 宜 ,由 学 院 专 业 分 流 工作小组负责解释。
附表一:
物理科学与技术学院 第一、二学期专业基础课程
课程 类别
A 类 课 程
B 类 课 程
课程名称
力学 A 电磁学 A 热学 高等数学 I(上) 高等数学 I(下) 线性代数 力学 B 电磁学 B 热学 高等数学 II(上) 高等数学 II(下) 线性代数与概率论
一、专业分流原则
(一)公开公平,科学合理。坚持“方案公开、条件公正、名单 公示”的工作制度。
(二)因材施教,分类培养。根据学术型、应用型、复合型不同 类型的人才培养目标,促进学生个性化成长和全面发展,保证各专业 持续稳定发展。
(三)结合实际,尊重选择。在教学资源条件保障的范围内,尊 重学生的专业选择意愿,依据学生综合成绩进行专业分流。
(1)在第 2 学期第 15 周前,学院成立专业分流工作小组, 各专业负责人上报本专业拟接收学生人数。按照学院目前各专 业布局以及教学资源的配备情况,原则上,除物理学基地班之 外,物理学专业人数不超过 60 人,微电子科学与工程专业人数 不超过 70 人,材料物理专业人数不超过 40 人、材料化学专业 人数不超过 40 人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理科学与技术学院2018年研究生国家奖学金评审结果
博士研究生:
序号
姓 名
性别
年级
学位
专业
1
陈锐
男
2015
博士
理论物理
2
张玉鹏
男
2016博士Βιβλιοθήκη 理论物理3喻豪
男
2015
博士
理论物理
5
夏宝瑞
男
2016
博士
凝聚态物理
4
金晨东
男
2016
博士
凝聚态物理
6
刘桐垚
男
2017
博士
材料物理与化学
7
肖恢芙
男
2016
硕士
材料物理与化学
9
朱娇娇
女
2016
硕士
微电子与固体电子学
10
尹晋超
男
2017
硕士
微电子学与固体电子学
11
谢宏康
男
2016
硕士
材料工程
12
王海宁
女
2016
硕士
材料工程
博士
微电子学与固体电子学
硕士研究生:
序号
姓名
性别
年级
学位
专业
1
刘晓雄
男
2016
硕士
理论物理
2
周钦松
男
2017
硕士
理论物理
3
郝加新
男
2016
硕士
凝聚态物理
4
鲁玉兰
女
2016
硕士
凝聚态物理
5
王文强
男
2016
硕士
凝聚态物理
6
陈一飞
男
2016
硕士
凝聚态物理
7
王文祥
男
2018
硕士
材料科学与工程
8
任杰鋆
男
2017