七年级数学代数式专项练习

合集下载

七年级数学《代数式》专项练习及答案

七年级数学《代数式》专项练习及答案

代数式一、选择题1.下列代数式书写规范的是()A。

a×2 B. 112a C. (5÷3)a D. 2a32.下列代数式中符合书写要求的是()A。

ab4 B. 413m C. x÷y D. −52a3.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为()A。

10x+y B. xy C。

100x+y D。

1000x+y4.今年学校运动会参加的人数是m人,比去年增加10%,那么去年运动会参加的人数为()人.A. (1+10%)mB. (1−10%)m C。

m1+10%D. m1−10%5.若x表示一个两位数,y也表示一个两位数,小明想用x、y来组成一个四位数,且把x放在y的右边,你认为下列表达式中正确的是()A。

100y+x B。

100x+y C. x+y D。

yx6.若干人做某项工作,每个人的工作效率相同,m个人做n天可完成,如果增加a人,则完成这项工作所需天数为()A。

n−a B. mnm+a C。

mnm−aD. n+a二、填空题7.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是______ 万元.8.某种商品单价为a元,按8折出售后又涨价5%,则最后售价为______元.9.某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为______ .10.巧克力糖每千克a元,奶油糖每千克b元,用6千克巧克力糖和4千克奶油糖混合成10千克混合糖,则这样得到的混合糖每千克的平均价格为______元.11.某轮船顺水航行了4小时,溺水航行了3小时,已知轮船在静水中的速度为每小时a千米,水流速度为每小时b千米,则轮船共航行了______千米.12.请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是______.三、计算题(本大题共5小题,共30.0分)13.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?少30人,如果从第二车间调出10人14.某工厂第一车间有x人,第二车间比第一车间人数的23到第一车间,那么:(1)两个车间共有______ 人?(2)调动后,第一车间的人数为______ 人,第二车间的人数为______ 人;(3)求调动后,第一车间的人数比第二车间的人数多几人?15.某船顺水航行3h,逆水航行2h.(1)已知轮船在静水中前进的速度是m km/h,水流的速度是a km/h,则轮船共航行多少千米? (2)轮船在静水中前进的速度是80km/h,水流的速度是3km/h,则轮船共航行多少千米?16.某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽x米,回答下列问题:(1)修建的十字路面积是多少平方米?(2)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?答案和解析【答案】1。

【精选】七年级数学代数式专题练习(解析版)

【精选】七年级数学代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

七年级数学《代数式求值》专项练习

七年级数学《代数式求值》专项练习

七年级数学《代数式求值》专项练习七年级数学代数式求值一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1 B.1C.﹣2 D.22.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣183.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.B.1C.﹣1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,15.当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.46.已知x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1 C.2D.﹣37.x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 XXX或6D.﹣2或308.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣99.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.C.1D.210.x﹣2y=3,则代数式6﹣2x+4y的值为()A.B.﹣1 C.﹣3 D.311.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣712.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3B.27C.9D.1二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为.15.若a﹣2b=3,则9﹣2a+4b的值为.16.已知3a﹣2b=2,则9a﹣6b=.17.若a2﹣3b=5,则6b﹣2a2+2015=.18.依照如下图的操纵步调,若输入的值为3,则输出的值为.19.若a﹣2b=3,则2a﹣4b﹣5=.20.已知m2﹣m=6,则1﹣2m2+2m=.21.当x=1时,代数式x2+1=.22.若m+n=0,则2m+2n+1=.23.按如下图的程序计较.若输入x的值为3,则输出的值为.24.依照如下图的操纵步调,若输入x的值为2,则输出的值为.25.XXX的把戏表演风行全国,XXX也学起了XXX创造了一个把戏盒,当随便实数对(a,b)进入个中时,会获得一个新的实数:a2+b﹣1,比方把(3,﹣2)放入个中,就会获得32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入个中,获得实数m,再将实数对(m,1)放入个中后,获得实数是.26.如果x=1时,代数式2ax3+3bx+4的值是5,那末x=﹣1时,代数式2ax3+3bx+4的值是.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.29.x(x+3)=1,则代数式2x2+6x﹣5的值为.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为.参考答案与试题解析一、选择题(共12小题)1.m=1,n=0,则代数式m+n的值为()A.﹣1 B.1C.﹣2 D.2【考点】代数式求值.【阐发】把m、n的值代入代数式举行计较即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【阐发】所求式子前两项提取3变形后,将等式变形子女入计较即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.a2+2a=1,则代数式2a2+4a﹣1的值为()A.B.1C.﹣1 D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,闇练掌握运算法例是解本题的枢纽.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【阐发】把各项中的数字代入程序入网算获得结果,即可做出判断.【解答】解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项分歧题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项分歧题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法例是解本题的枢纽.5.当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计较题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,闇练掌握运算法例是解本题的枢纽.6.x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1 C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 XXX或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计较题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,首要利用了二元一次方程的解,理解运算程序列出方程是解题的枢纽.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的枢纽.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.B.﹣1 C.﹣3 D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式按照前提举行变形,然后利用整体的思想举行计较.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【阐发】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入举行计较即可得解.【解答】解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若入手下手输入x的值为81,则第2014次输出的结果为()A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【阐发】按照运算程序举行计较,然后获得纪律从第4次入手下手,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.2、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,枢纽是按照整体代入法计较.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故谜底为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为3.【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,闇练掌握运算法例是解本题的枢纽.16.3a﹣2b=2,则9a﹣6b=6.【考点】代数式求值.【阐发】把3a﹣2b整体代入举行计较即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015=2005.【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题首要考查了代数式的求值题目,接纳代入法即可,要闇练掌握,题型简朴总结以下三种:①前提不化简,所给代数式化简;②前提化简,所给代数式不化简;③前提和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55.【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故谜底为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的枢纽.19.若a﹣2b=3,则2a﹣4b﹣5=1.【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故谜底是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m=﹣11.【考点】代数式求值.【专题】整体思想.【阐发】把m2﹣m看做一个整体,代入代数式举行计较即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1=2.【考点】代数式求值.【阐发】把x的值代入代数式举行计较即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1=1.【考点】代数式求值.【阐发】把所求代数式转化成前提的形式,然后整体代入举行计较即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的枢纽.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3.【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,正确选择关系式是解题的枢纽.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是根蒂根基题,按照图表正确写出运算程序是解题的枢纽.25.XXX的魔术表演风靡全国,XXX也学起了XXX发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9.【考点】代数式求值.【专题】应用题.【阐发】观察可看出未知数的值没有间接给出,而是隐含在题中,需要找出纪律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照划定规矩,第一计较m的值,再进一步计较即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是3.【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故谜底为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9.【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取2变形后,将已知等式代入计算即可求出值.【解答】解:∵x2﹣2x=3,∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.故谜底为:9【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.28.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为5.【考点】代数式求值.【专题】整体思想.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,以是,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.29.已知x(x+3)=1,则代数式2x2+6x﹣5的值为﹣3.【考点】代数式求值;单项式乘多项式.【专题】整体思想.【分析】把所求代数式整理出已知条件的形式,然后代入数据进行计算即可得解.【解答】解:∵x(x+3)=1,∴2x2+6x﹣5=2x(x+3)﹣5=2×1﹣5=2﹣5=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.30.已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为9.【考点】代数式求值.【专题】整体思想.【阐发】把所求代数式收拾整顿成前提的形式,然子女入举行计较即可得解.【解答】解:∵x2﹣2x=5,∴2x2﹣4x﹣1=2(x2﹣2x)﹣1,=2×5﹣1,=10﹣1,=9.故谜底为:9.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.。

代数式(基础、典型、易错、压轴)分类专项训练(原卷版)

代数式(基础、典型、易错、压轴)分类专项训练(原卷版)

第4章代数式(基础、典型、易错、压轴)分类专项训练【基础】一、单选题1.(2022·浙江·七年级专题练习)化简:﹣(﹣2)=( ) A .﹣2B .﹣1C .1D .22.(2022·浙江金华·七年级期末)如果单项式3n xy 和24m x y -是同类项,则m 和n 的值是( ) A .2,1B .2-,1C .1-,2D .1,23.(2022·浙江杭州·七年级期中)若6x y =+,11xy =,则225x xy y -+的值为( ) A .3B .5C .17D .253-4.(2022·浙江丽水·七年级期末)若20x y +-=,则代数式8x y --+的值是( ) A .10B .8C .6D .45.(2022·浙江绍兴·七年级期末)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推事得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是( )A .aB .bC .mD .n6.(2022·浙江丽水·七年级期末)若313m n x y -与3-x y 是同类项,则m -2n 的值为( ) A .1B .0C .-1D .-37.(2022·浙江台州·七年级阶段练习)如果单项式2522m n a b -+与32n ab -可以合并同类项,那么m 和n 的值分别为( ) A .2,3B .3,2C .-3,2D .3,-28.(2022·浙江绍兴·七年级期末)如图,小明在33⨯的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为1A ,2A ,3A ,每列的三个式子的和自左至右分别记为1B ,2B ,3B ,其中值可以等于732的是( )A .1AB .1BC .2AD .3B二、填空题9.(2022·浙江台州·七年级期末)写出一个系数为3,次数为2的单项式. _____. 10.(2022·浙江舟山·七年级期末)用代数式表示:x 的2倍与y 的平方的差___________. 11.(2022·浙江台州·七年级阶段练习)单项式342m n -的系数是______,次数是________.12.(2022·浙江台州·七年级阶段练习)下列说法中:①若a a =-,则0a <;②若0a <,0ab <,则0b >;③式子233412xy x y -+是七次三项式;④若a b =,m 是有理数,则a bm m=;⑤几个有理数相乘,负因数的个数是奇数时积为负.其中说法正确的是____________.13.(2022·浙江台州·七年级阶段练习)已知1004a b -=-,则1322a b -+=__________. 14.(2022·浙江绍兴·七年级期末)将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第67个数为______.15.(2022·浙江杭州·七年级期末)已知3x =,则代数式11x x x x ⎛⎫-⋅ ⎪+⎝⎭的值为______.三、解答题16.(2022·浙江·七年级专题练习)化简: (1)﹣(﹣5); (2)﹣(+7);(3)23⎡⎤⎛⎫--+ ⎪⎢⎥⎝⎭⎣⎦.17.(2022·浙江台州·七年级阶段练习)先化简,再求值:(1)2225435256x x x x x +----+,其中3x =(2)2211312()()2323x x y x y --+-+,其中-2x =,23y =18.(2022·浙江台州·七年级阶段练习)如图,长为60cm ,宽为(cm)x 的大长方形被分割为7小块,除阴影A 、B 外,其余5块是形状大小完全相同的小长方形,其中小长方形的较短一边长度为10cm .(1)从图可知,每块小长方形的较长的一边长度是_________cm .代数式30x -,40x -中,哪一个代数式的值为正数?_______________.(2)请你先用含x 的代数式表示阴影A 、B 的面积,并说明阴影A 的面积一定比阴影B 的面积大2300cm . (3)设阴影A 和B 的面积之和为2(cm )S ,阴影A 和B 的周长之和为(cm)C ,问代数式“S -C ”的值可能是负数吗?请你先作出判断,并说明理由.19.(2022·浙江·杭州市大关中学七年级期中)已知s =﹣3,能否确定代数式(s ﹣2t )(s +2t +1)+4t 1()2t +的值?如果能确定,试求出这个代数式的值.【典型】一、单选题1.(2022·浙江·宁波市海曙外国语学校七年级开学考试)若x =2时,代数式ax 4+bx 2+5的值是3,则当x =﹣2时,代数式ax 4+bx 2+7的值为( ) A .﹣3B .3C .5D .72.(2020·浙江·七年级期中)下列说法正确的是( ) A .0是单项式;B .a -的系数是1C .31a a+是三次二项式 D .23a b 与2ab -是同类项3.(2020·浙江嘉兴·七年级期末)下列去括号正确的是( ) A .a 2-(2a -b+c)=a 2-2a -b+c B .-(x -y)+(xy -1)=-x -y+xy -1 C .a -(3b -2c)=a -3b -2c D .9y 2-[x -(5y+4)]=9y 2-x+5y+44.(2020·浙江金华·七年级期中)如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .2+6nB .8+6nC .4+4nD .8n5.(2021·浙江绍兴·七年级期中)杨辉是我国南宋时期杰出的数学家和教育家,如图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”.它是古代重要的数学成就,比西方的“帕斯卡三角形”早了300多年.请仔细观察计算该图中第n 行中所有数字之和为( )A .2n ﹣2B .2n ﹣1C .2nD .2n +16.(2022·浙江·杭州育才中学七年级期中)将正方形BEFG 和正方形DHMN 按如图所示放入长方形ABCD 中,AB =10,BC =13,若两个正方形的重叠部分长方形甲的周长为10,则下列无法确定的选项为( )A .乙的周长B .丙的周长C .甲的面积D .乙的面积二、填空题7.(2021·浙江·杭州育才中学七年级阶段练习)如果单项式4n x y -与22m x y 是同类项,则代数式1254m mn +-的值为______.8.(2022·浙江·七年级专题练习)若|a+3|+(b ﹣6)2=0,则a +b=_____.9.(2022·浙江·七年级专题练习)若x ,y 互为相反数,a 、b 互为倒数,则代数式16x+16y-2ab的值是_______.10.(2022·浙江宁波·七年级期末)已知5x y =--,2xy =,计算334x y xy +-的值为______.11.(2020·浙江温州·七年级阶段练习)已知a 、b 互为相反数,c 、d 互为倒数,且2m =,则a +b +3cd -m 2的值是_____.12.(2020·浙江杭州·七年级期末)由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍): 第1行 2 第2行 4 6 第3行8 10 12 14若规定坐标号(,)m n 表示第m 行从左向右第n 个数,则(5,6)所表示的数是________;数2022对应的坐标号是________.13.(2020·浙江·诸暨市滨江初级中学七年级阶段练习)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题14.(2020·浙江·七年级期末)“十一”期间,某中学七年级(1)班的三位老师带领本班a 名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元. (1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【易错】一.选择题(共10小题)1.(2021秋•西湖区期末)下列各组中的两项是同类项的是( ) A .2a 与2abB .3xy 与﹣yxC .2a 2b 与2ab 2D .x 2y 与﹣12.(2021秋•嘉兴期末)代数式x ﹣2(y ﹣1)去括号正确的是( ) A .x ﹣2y ﹣1B .x ﹣2y +1C .x ﹣2y ﹣2D .x ﹣2y +23.(2021秋•鄞州区期末)下列计算正确的是( ) A .2a +b =2ab B .2a 2﹣a =2a C .a 2b ﹣2a 2b =﹣a 2bD .2ab +ab =2a 2b 24.(2021秋•湖州期末)单项式﹣12x 3y 的系数和次数分别是( ) A .﹣12,4B .﹣12,3C .12,3D .12,45.(2021秋•定海区期末)下列各组中的两个代数式属于同类项的是( ) A .3xy 与﹣x 2yB .﹣2.1与C.2a3b与2ab3D.3ab2与0.001ba26.(2021秋•青田县期末)去括号等于()A.B.C.D.7.(2021秋•西湖区期末)请仔细分析下列赋予4a实际意义的例子,其中错误的是()A.若葡萄的价格是4元/千克,则4a表示买a千克该种葡萄的金额B.若a表示一个正方形的边长,则4a表示这个正方形的周长C.一辆汽车以a千米/小时的速度行驶,从A城到B城需4小时,则4a表示A,B两城之间的路程D.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数8.(2021秋•江北区期末)当x=1时,代数式px3+qx+1的值是﹣2020,则当x=﹣1时,代数式px3+qx+1的值是()A.2019B.2020C.2021D.20229.(2021秋•海曙区期末)如果代数式a﹣2b的值为4,那么代数式4b﹣2a﹣3的值等于()A.﹣11B.﹣7C.7D.110.(2021秋•越城区期末)当x为1,2,4时,代数式ax+b的值分别是m,1,n,则2m+n的值为()A.4B.3C.2D.1二.填空题(共2小题)11.(2021秋•西湖区期末)3x﹣7x=.12.(2021秋•东阳市期末)按下面的程序计算,若输出结果为16,则满足条件的正数a为.三.解答题(共2小题)13.(2021秋•杭州期末)在数学课上,老师给出了一道题目:“先化简再求值:(x2+□x﹣1)﹣3(x2﹣2x+4),其中x=﹣1”,□中的数据被污染,无法解答,只记得□中是一个实数,于是老师即兴出题,请同学们回答.(1)化简后的代数式中常数项是多少?(2)若点点同学把“x =﹣1”看成了“x =1”,化简求值的结果仍不变,求此时□中数的值;(3)若圆圆同学把“x =﹣1”看成了“x =1”,化简求值的结果为﹣3,求当x =﹣1时,正确的代数式的值.14.(2021秋•拱墅区期末)如图是一个运算程序示意图: (1)若输入的数x =﹣2,求输出的数值A 的值. (2)若输出的数值A =﹣8,求输入的数x 的值.【压轴】一、单选题1.(2020·浙江杭州·七年级期末)如图,已知在矩形ABCD 内,将两张边长分别为5和3的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠);矩形中末被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴部分的面积为2S 当3AD AB -=时,21S S -的值为( )A .3B .6C .9D .122.(2020·浙江杭州·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760二、填空题3.(2022·浙江·七年级专题练习)按如图所示的规律排列,请写出第17行,第16列的数字:__________.4.(2020·浙江·余姚市子陵中学教育集团七年级期中)下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………5.(2020·浙江·杭州采荷实验学校七年级期中)下列式子按一定规律排列:2a -,36a ,512a -,720a ,…,则第5个式子是_____则第n 个式子是______.6.(2020·浙江宁波·七年级期末)已知有理数a ,b ,c 满足a b c a b c ++=+-,且0c ≠,则210a b c c +-+--=_____.7.(2020·浙江杭州·七年级阶段练习)一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22213-=,则3就是智慧数;22204-=,则4就是智慧数. (1)从0开始第7个智慧数是____; (2)不大于200的智慧数共有____.8.(2020·浙江杭州·七年级期末)大于1的正整数的三次方都可以分解为若干个连续奇数的和,如333235,37911,413151719=+=++=+++,按此规律,若3m 分解后,其中有一个奇数为1799,则m 的值为____________.9.(2020·浙江·华东师范大学附属杭州学校七年级阶段练习)下图各圆中三个数之间都有相同的规律,根据这个规律,探索第n 个圆中的m =________.(用含n 的代数式表示).三、解答题10.(2020·浙江·杭州市十三中教育集团(总校)七年级期中)回答下列问题:(1)已知一列数:2,6,18,54,162,….,若将这列数的第一个数记为1a ,第二个数记为2a …,第n 个数记为n a ,则67________;____a a == (2)观察下列运算过程: 231222...2n S =+++++①①2⨯得2312222...2n S +=++++②②-①得121n S +=-参考上面方法,求(1)中数列的前n 个数的和S .11.(2020·浙江杭州·七年级期末)已知关于x 的多项式4323ax bx cx dx e ++++,其中a b c d ,,,为互不相等的整数,且4abcd =.(1)求+++a b c d 的值.(2)当1x =时,这个多项式的值为64,求e 的值.(3)当1x =-时,求这个多项式的所有可能的值.12.(2020·浙江杭州·七年级期末)(1)如图,长为50cm ,宽为xcm 的大长方形被分刚为8小块,除阴影,A B 外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm .①从图可知,每个小长方形较长一边长是_____cm (用含a 的代数式表示).②求图中两块阴,A B 的周长和(可以用含x 的代数式表示).(2)将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD 内,未被覆盖的部分恰好分割为两个长方形,面积分别为1S 和2S ,已知小长方形纸片的长为a ,宽为b ,且a b >,当AB 长度不变而BC 长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD 内,1S 与2S 的差总保持不变,求,a b 满足的关系式.①为解决上述问题,如图3,小明设EF x =,则可以表示出1S =_____,2S =______;②求,a b 满足的关系式,写出推导过程.13.(2020·浙江·宁波市镇海区尚志中学七年级期中)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出2个四位“和谐数”,并猜想任意一个四位“和谐数”能否被11整除?并说明理由.(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字是x (14x ≤≤,x 为自然数),十位上的数字是y ,用含x 的代数式表示y .14.(2020·浙江·宁波市第七中学七年级期中)如图,点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b 请你利用数轴回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和2-的两点之间的距离为________. (2)数轴上表示x 和1两点之间的距离为_______,数轴上表示x 和3-两点之间的距离为________. (3)若x 表示一个实数,且53x -<<,化简35x x -++=________. (4)12345x x x x x -+-+-+-+-的最小值为________.(5)13x x +--的最大值为________.15.(2020·浙江·七年级期末)如果一个两位数的个位数字是n ,十位数字是m ,那么我们可以把这个两位数简记为mn ,即10mn m n =+. 如果一个三位数的个位数字是c ,十位数字是b ,百位数字是a ,那么我们可以把这个三位数简记为abc ,即10010abc a b c =++.(1)若一个两位数mn 满足75mn m n =+,请求出m ,n 的数量关系并写出这个两位数.(2)若规定:对任意一个三位数abc 进行M 运算,得到整数()32+M abc a b c =+.如:()3232132+1=32M =+. 若一个三位数5xy 满足()5132M xy =,求这个三位数.(3)已知一个三位数abc 和一个两位数ac ,若满足65abc ac c =+,请求出所有符合条件的三位数.16.(2020·浙江·七年级期末)任何一个正整数n 都可以这样分解:n p q =⨯(p 、q 是正整数,且p q ),则n 的所有这种分解中,如果两因数p ,q 之差的绝对值最小,我们就称p q ⨯是n 的最佳分解,并规定:()p F n q=. 例如:18可以分解成118,29⨯⨯或36⨯,则1(18)236F ==. (1)计算:(24)F 、(270)F . (2)如果一个三位正整数,10600t t x y =++(19x y <,x ,y 为自然数),交换其个位上的数与百位上的数得到的新三位正整数加上原来的三位正整数所得的和恰好能被11整除,那么我们称这个数t 为“心意数”.①求所有满足条件的“心意数”t ;②对于满足“心意数”t 中的x ,y ,设10m x y =+,求()F m 的最小值.17.(2020·浙江杭州·七年级期末)已知b 是立方根等于本身的负整数,且a 、b 满足21(2)02a b c +++=,请回答下列问题:(1)请直接写出a 、b 、c 的值:=a ______,b =______,c =______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简12m +; (3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒一个单位长度的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离为AC ,点A 与点B 之间的距离为AB ,请问:AB AC -的值是否随着t 的变化而改变?若变化,请说明理由;若不变,请求出AB AC -的值.18.(2020·浙江杭州·七年级期末)已知()621211212112101x x a x a x a x a x a -+=++⋯+++.(1)求01212a a a a +++⋯+的值;(2)求24612a a a a +++⋯+的值.。

七年级数学代数式知识点专项复习练习

七年级数学代数式知识点专项复习练习

七年级数学代数式知识点专项复习练习一.选择题1.将﹣{﹣[﹣(a2﹣a)]}去括号,得()A.﹣a2﹣a B.a2+a C.﹣a2+a D.a2﹣a2.下列去括号中正确的是()A.x﹣(2x+y﹣1)=x﹣2x+y﹣1B.3x2﹣3(x+6)=3x2﹣3x﹣6C.5a2+(﹣3a﹣b)﹣(2c﹣d)=5a2﹣3a﹣b﹣2c+dD.x﹣[y﹣(z+1)]=x﹣y﹣z﹣13.下列各题中合并同类项,结果正确的是()A.3a+2b=5ab B.4x2y﹣2xy2=2xyC.7a+a=7a2D.5y2﹣3y2=2y24.已知2x n+1y3与x4y3是同类项,则n的值是()A.2 B.3 C.4 D.55.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1 B.0 C.1 D.26.当x=1时,代数式px3+qx+1的值为2021,则当x=﹣1时,px3+qx+1的值为()A.2020 B.﹣2020 C.2019 D.﹣20197.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1 B.3 C.6 D.88.如图,按此规律,第6行最后一个数字是16,第()行最后一个数是2020.A.673 B.674 C.1008 D.1010二.填空题9.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.10.若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.11.若代数式ax2﹣1﹣2x﹣5+2x﹣x2的值与x的取值无关,则a=.12.代数式5a的意义可解释为.13.如果2x2﹣3x的值为﹣1,则6x﹣4x2+3的值为.14.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.三.解答题15.已知式3m2+3km﹣7+2m是关于m的多项式,且不含一次项,求k的值.16.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a+﹣5=0,求代数式的值.17.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.52元收费,如果超过140度,超过部分按每度0.60元收费.(1)若该住户五月份的用电量是100度,则他五月份应交多少电费?(2)若该住户六月份的用电量是200度,则他六月份应交多少电费?(3)若某住户七月份的用电量是a度(a>140),求这个用户七月份应交多少电费?(结果用含a的式子表示)18.阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题1.解:﹣{﹣[﹣(a2﹣a)]}=﹣(a2﹣a)=﹣a2+a.故选:C.2.解:A、x﹣(2x+y﹣1)=x﹣2x﹣y+1,故此选项错误;B、3x2﹣3(x+6)=3x2﹣3x﹣18,故此选项错误;C、5a2+(﹣3a﹣b)﹣(2c﹣d)=5a2﹣3a﹣b﹣2c+d,正确;D、x﹣[y﹣(z+1)]=x﹣y+z+1,故此选项错误.故选:C.3.解:(A)原式=3a+2b,故A错误;(B)原式=4x2y﹣2xy2,故B错误;(C)原式=8a,故C错误;故选:D.4.解:∵2x n+1y3与是同类项,∴n+1=4,解得,n=3,故选:B.5.解:∵x2a y4﹣b与﹣x3﹣b y3a是同类项,∴,解得,∴a+b=1+1=2.故选:D.6.解:将x=1代入px3+qx+1=2021可得p+q=2020,当x=﹣1时,px3+qx+1=﹣p﹣q+1=﹣(p+q)+1=﹣2020+1=﹣2019,故选:D.7.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.8.解:由图可知,第一行1个数字,1开头,第二行3个数字,2开头,第三行5个数字,3开头,…,则第n行(2n﹣1)个数字,n开头,故第n行最后一个数字是n+(2n﹣1)﹣1=3n﹣2,令3n﹣2=2020,得n=674,故选:B.二.填空题9.解:mx3﹣3nxy2﹣(2x3﹣xy2)+xy=(m﹣2)x3+(1﹣3n)xy2+xy,∵关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,∴m﹣2=0,1﹣3n=0,解得m=2,n=,∴m﹣6n=2﹣=2﹣2=0.故答案为:0.10.解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.11.解:ax2﹣1﹣2x﹣5+2x﹣x2=(a﹣1)x2﹣6,由题意可知:a﹣1=0,∴a=1,故答案为:1.12.解:代数式5a的意义可解释为5与a的积;故答案为:5与a的积.13.解:∵2x2﹣3x=﹣1,∴6x﹣4x2+3=﹣2(2x2﹣3x)+3=﹣2×(﹣1)+3=2+3=5.故答案为:5.14.解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.三.解答题15.解:化简结果:3m2+(3k+2)m﹣7,∵3m2+3km﹣7+2m是关于m的多项式,且不含一次项,∴3k+2=0,解得.16.解:(1)∵x2﹣2x=y,∴3x2﹣6x+2020=3(x2﹣2x)+2020=3y+2020;故答案为:3y+2020;(2)∵y=1,∴3x2﹣6x+2020=3y+2020=3×1+2020=2023;故答案为:2023;(3)设,则.∵,∴b﹣5=0,解得:b=5.∴.17.解:(1)100×0.52=52(元)答:他五月份应交52元电费.(2)140×0.52+0.6×(200﹣140)=72.8+36=108.8(元)答:他六月份应交108.8元电费.(3)140×0.52+0.6(a﹣140)=(0.6a﹣11.2)元.答:他七月份应交(0.6a﹣11.2)元电费.18.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.。

最新七年级上册数学 代数式专题练习(word版

最新七年级上册数学 代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。

某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。

(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。

(3)根据一共花费712元,列方程求解即可。

2.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。

【人教版】七年级数学代数式练习题及答案

【人教版】七年级数学代数式练习题及答案

代数式 同步练习一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .198.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−10.当2x=时,38ax bx++=;那么当2x=−时,3ax bx++的值为() A.8−B.2C.2−D.8二.填空题(共9小题)11.已知23a b−=,则代数式241a b−+的值为.12.根据如图所示的计算程序,若输入的值3x=−,则输出y的值为.13.如果某种商品每8千克的售价为32元,那么这种商品m千克的售价为元.14.m的2倍与n的差大于0表示为:.15.将下列各式按照列代数式的规范要求重新书写:(1)5a⨯,应写成;(2)S t÷应写成;(3)123a a b⨯⨯−⨯,应写成;(4)413x,应写成.16.每件a元的上衣,降价20%后的售价是.17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小明共花费元(用含a,b的代数式表示).18.下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△523511=⨯+=,2△(1)23(1)5−=⨯+−=,6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为.19.已知有理数x、y满足2|3|(24)0x y−++=,则代数式x y+的值为.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶. (1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?21.当2x =,5y =−时,求多项式223x y x y +−+−的值.22.根据下列语句列出代数式: (1)x 与y 的和乘以3的积的倒数; (2)x 、y 两数的平方差; (3)x 、y 两数和的平方的2倍.23.阅读下列例题:计算:23456102222222++++++⋯+. 解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−. 所以原式1122=−. 仿照上面的例题计算: 234201833333++++⋯+.24.当2a =−,3b =时,求下列代数式的值. (1)2(2)a b +; (2)222a b ab −−.代数式 巩固练习 答案一.选择题(共10小题)1.“m 与n 差的3倍”用代数式可以表示成( ) A .3m n −B .3m n −C .3()n m −D .3()m n −【解答】解:“m 与n 差的3倍”用代数式可以表示为:3()m n −. 故选:D .2.下列各式符合代数式书写规范的是( ) A .18b ⨯B .114xC .2b a −D .2m n ÷【解答】解:A 、正确书写格式为:18b ,故此选项不符合题意; B 、正确书写格式为:54x ,故此选项不符合题意;C 、是正确的书写格式,故此选项符合题意;D 、正确书写格式为:2mn,故此选项不符合题意. 故选:C .3.下列代数式的书写格式规范的是( ) A .51a b ⨯÷+B .34abC .2abD .213x【解答】解:.15abA +,故A 不符合题意; 3.4B ab ,故B 符合题意; .2C ab ,故C 不符合题意;5.3D x ,故D 不符合题意; 故选:B .4.某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是( ) A .原价减去10元后再打8折 B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元【解答】解:某商店促销的方法是将原价x 元的衣服以(0.810)x −元出售,意思是:原价打8折后再减去10元, 故选:B .5.代数式2x y −的意义为( ) A .x 与y 的差的平方 B .x 与y 的平方的差C .x 的平方与y 的平方的差D .x 与y 的相反数的平方差【解答】解:字母表达式2x y −的意义为x 与y 的平方的差. 故选:B .6.下列图形是按照一定规律画出的.对于第n 个图形,有x 个正方形和一定数量的三角形,三角形的个数可以表示为( )A .44x −B .44n −C .4x n +D .4n x +【解答】解:第1个图形中,有2个正方形和4个三角形,44(21)=⨯−; 第2个图形中,有3个正方形和8个三角形,84(31)=⨯−; 第3个图形中,有4个正方形和12个三角形,124(41)=⨯−; ⋯⋯,∴第n 个图形中,三角形的个数为4n 或44x −.故选:A .7.按一定规律排列的一列数依次为16,112,11,2030⋯⋯按此规律排列下去,这列数的第9个数是( ) A .119B .1110C .190 D .19【解答】解:11623=⨯, 111234=⨯, 112045=⨯, ⋯⋯∴第n 个数为:1(1)(2)n n ++,∴第9个数为:111011110=⨯. 故选:B .8.一个矩形的周长为l ,若矩形的长为a ,则该矩形的宽为( ) A .2la − B .2l a− C .l a − D .2l a【解答】解:矩形的宽为:2la −. 故选:A .9.代数式3m n +的值为5,则代数式32m n −−−的值为( ) A .7B .7−C .3D .3−【解答】解:35m n +=, ∴原式3()2m n =−+−52=−−7=−.故选:B .10.当2x =时,38ax bx ++=;那么当2x =−时,3ax bx ++的值为( ) A .8−B .2C .2−D .8【解答】解:当2x =时,3ax bx ++的值是8, 2238a b ∴++=,即225a b +=,∴当2x =−时,3(22)3532ax bx a b ++=−++=−+=−.故选:C .二.填空题(共9小题)11.已知23a b −=,则代数式241a b −+的值为 7 . 【解答】解:23a b −=,∴原式2(2)1617a b =−+=+=.故答案为:7.12.根据如图所示的计算程序,若输入的值3x =−,则输出y 的值为 10 .【解答】解:当3x =−时,由程序图可知:221(3)19110y x =+=−+=+=. 故答案为:10.13.如果某种商品每8千克的售价为32元,那么这种商品m 千克的售价为 4m 元. 【解答】解:这种商品的单价为3284÷=元,∴这种商品m 千克的售价为4m 元.故答案为:4m .14.m 的2倍与n 的差大于0表示为: 20m n −> . 【解答】解:m 的2倍为2m ,与n 的差为:2m n −,m ∴的2倍与n 的差大于0表示为:20m n −>.故答案为:20m n −>.15.将下列各式按照列代数式的规范要求重新书写: (1)5a ⨯,应写成 5a ; (2)S t ÷应写成 ;(3)123a a b ⨯⨯−⨯,应写成 ;(4)413x ,应写成 .【解答】(1)55a a ⨯=, 故答案为:5a ; (2)SS t t÷=. 故答案为:S t; (3)212233ba ab a ⨯⨯−⨯=−,故答案为:223b a −; (4)47133x x =,故答案为:73x .16.每件a 元的上衣,降价20%后的售价是 (120%)a −元/件 . 【解答】解:每件a 元的上衣降价20%后,出售的价格为(120%)a −(元/件). 故答案为:(120%)a −(元/件).17.小明买了6本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小明共花费 (610)a b + 元(用含a ,b 的代数式表示). 【解答】解:依题意得:小明共花费(610)a b +元, 故答案是:(610)a b +.18.下列各式是按新定义的已知“△”运算得到的,观察下列等式: 2△523511=⨯+=,2△(1)23(1)5−=⨯+−=, 6△363321=⨯+=,4△(3)43(3)9−=⨯+−=⋯⋯根据这个定义,计算(2022)−△2022的结果为 4044− . 【解答】解:根据前几个数可以找到规律,a △3b a b =⨯+, 故(2022)−△20222022320224044=−⨯+=−, 故答案为:4044−.19.已知有理数x 、y 满足2|3|(24)0x y −++=,则代数式x y +的值为 1 .【解答】解:2|3|(24)0x y −++=, 30x ∴−=,240y +=,解得:3x =,2y =−, 则321x y +=−=. 故答案为:1.三.解答题(共5小题)20.某校为实现垃圾分类投放,计划购进大小两种垃圾桶,大小垃圾桶的进价分别为m 元/个、50元/个,购进7个大垃圾桶和10个小垃圾桶.(1)用含m 的代数式表示共付款多少元?(2)若110m =,学校预算购买垃圾桶资金为1200元是否够用?为什么?【解答】解:(1)购进7个大垃圾桶和10个小垃圾桶,共付款71050(7500)m m +⨯=+(元);(2)当110m =时,750071105001270m +=⨯+=(元),12001270<,1200∴元不够用.21.当2x =,5y =−时,求多项式223x y x y +−+−的值.【解答】解:当2x =,5y =−时,223x y x y +−+−222(5)2(5)3=+−−+−−425253=+−−−19=.22.根据下列语句列出代数式:(1)x 与y 的和乘以3的积的倒数;(2)x 、y 两数的平方差;(3)x 、y 两数和的平方的2倍.【解答】解:(1)由题意可得,13()x y +; (2)由题意可得,22x y −;(3)由题意可得,22()x y +.23.阅读下列例题:计算:23456102222222++++++⋯+.解:设23456102222222S =++++++⋯+,①那么2345102345101122(222222)222222S =⨯+++++⋯+=++++⋯++.② ②−①,得1122S =−.所以原式1122=−.仿照上面的例题计算:234201833333++++⋯+.【解答】解:设234201833333S =++++⋯+,①那么23420182019333333S =+++⋯++.②(②−①)2÷,得2019332S −=. 所以原式2019332−=. 24.当2a =−,3b =时,求下列代数式的值.(1)2(2)a b +;(2)222a b ab −−.【解答】解:(1)2a =−,3b =,2(2)a b ∴+2(223)=−+⨯2(26)=−+24=16=;(2)2a =−,3b =,222∴−−a b ab22=−−−⨯−⨯(2)32(2)3 4912=−+=.7。

七年级数学代数式专题练习(解析版)

七年级数学代数式专题练习(解析版)
一、初一数学代数式解答题压轴题精选(难)
1.如图所示,在边长为 a 米的正方形草坪上修建两条宽为 b 米的道路.
(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:
方法①:________ 方法②:________
请你从小明的两种求面积的方法中,直接写出含有字母 a,b 代数式的等式是:
3.已知整式 P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以 表示为 aP+bQ+cR(其中 a,b,c 为常数).则可以进行如下分类 ①若 a≠0,b=c=0,则称该整式为 P 类整式; ②若 a≠0,b≠0,c=0,则称该整式为 PQ 类整式; ③若 a≠0,b≠0,c≠0.则称该整式为 PQR 类整式; (1)模仿上面的分类方式,请给出 R 类整式和 QR 类整式的定义,若,则称该整式为“R 类 整式”,若,则称该整式为“QR 类整式”; (2)说明整式 x2﹣5x+5 为“PQ 类整式; (3)x2+x+1 是哪一类整式?说明理由. 【答案】 (1)解:若 a=b=0,c≠0,则称该整式为“R 类整式”. 若 a=0,b≠0,c≠0,则称该整式为“QR 类整式”. 故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:①123 不是“友好数”.理由如下: ∵ 12+21+13+31+23+32=132≠123, ∴ 123 不是“友好数”; ②十位数字是 9 的“和平数”有 198,297,396,495,594,693,792,891,一个 8 个; 十位数字是 8 的“和平数”有 187,286,385,584,682,781,一个 6 个; 十位数字是 7 的“和平数”有 176,275,374,473,572,671,一个 6 个; 十位数字是 6 的“和平数”有 165,264,462,561,一个 4 个; 十位数字是 5 的“和平数”有 154,253,352,451,一个 4 个; 十位数字是 4 的“和平数”有 143,341,一个 2 个; 十位数字是 3 的“和平数”有 132,231,一个 2 个; 所以,“和平数”一共有 8+(6+4+2)×2=32 个. 故答案为 32; ③设三位数 既是“和平数”又是“友好数”,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档